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Abstract

If the Higgs mas my is as low as suggested by present experimental information, the Stan-
dard Model ground state might not be absolutely stable. We present a detailed analysis of
the lower bound on my imposed by the requirement that the electroweak vacuum be suffi-
ciently long-lived. We perform a complete one-loop calculation of the tunnelling probability
at zero temperature, and we improve it by means of two-loop renormalization-group equa-
tions. We find that, forny = 115 GeV, the Higgs potentid develops an instability below the

Planck scale for,; > (166 +2) GeV, but the electroweak vacuum is sufficiently long-lived for

my < (175 £ 2) GeV.
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1 Introduction

If the Higgs boson if sufficiently lighter than the top quark, radiative corrections induced by top
loops destabilize the electroweak minimum and the Higgs potential of the Standard Model (SM)
becomes unbounded from below at large field values. The requirement that such an unpleasant
scenario be avoided, at least up to some stalearacteristic of some kind of new physics [1,2],
leads to a lower bound on the Higgs masg that depends on the value of the top quark mass
my, and onA itself. The most recent analyses of this bound [3], performed after the discovery
of the top quark, led to the conclusion that if the Higgs boson was clearly observed at LEP2
(orif my < 100 GeV), then new physics would have to show up well below the Planck scale,
Ap; = 1.2 x 10 GeV, in order to restore the stability of the electroweak minimum. We now
know thatmy must be larger than about 113 GeV [4]. nify lays just above this bound,

as hinted by direct searches [5] and consistently with electroweak fits [6], absolute stability
up to the Planck scale is possible, provided is close to the lower end of its experimental
range [7]. Fom, around its central value, the SM vacuum may not be absolutely stable, but still
sufficiently long-lived with respect to the age of the universe. Motivated by these observations,
we decided to reanalyse in detail the lower limitsra, imposed by the condition of (meta-
)stability of the electroweak minimum.

We assume that no modifications to the Standard Model occur at gcatealler than the
Planck scale. In general, field-theoretical modifications invoked to stabilize the SM potential at
scalesA < Ap), such as supersymmetry, or the introduction of extra scalar degrees of freedom,
induce computable corrections of ordet to the squared Higgs mass, thereby forcintp be
of the order of the electroweak scale by naturalness arguments. On the other hand, it cannot be
apriori excluded that the uncomputable gravitational corrections of otdevanish.

Three different classes of bounds have been discussed in the literature [2]:

i) absolute stability;
ii) stability under thermal fluctuations in the hot universe;
iii) stability under quantum fluctuations at zero temperature.

The condition of absolute stability is the most stringent one. However, although appealing from
an aesthetic point of view, this constraint is not demanded by any experimental observation: it
is conceivable that we live in an unstable vacuum, provided only that it is not “too unstable”.
The condition (ii) — less stringent than (i) and more stringent than (iii) — relies on the assump-
tion that the early universe passed through a phase of extremely high temperatures (the most
stringent bounds are obtained fbr~ Ap;). Although plausible, this is just an assumption; so

far, it has been indirectly tested only for temperatures up to few MeV. A naive extrapolation
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of big-bang cosmology by 20 orders of magnitude in temperature would not only give a
bound on the SM Higgs mass; it would also exclude various popular unified, supersymmetric
or extra-dimensional models, because of over-abundance of monopoles, gravitinos, gravitons,
respectively.

Finally, the requirement of sufficient stability under quantum fluctuations at zero temper-
ature gives the less stringent bounds, but does not rest on any cosmological assumptions. The
only cosmological input required is an approximate knowledge of the age of the uniyerse
the bound is formulated by requiring that the probability of quantum tunnelling out of the elec-
troweak minimum be sufficiently small when integrated over this time interval. In this work we
will mainly concentrate on this scenario.

The probability that the electroweak vacuum has survived quantum fluctuations until to-
day is given, in semi-classical approximation, by [8]

p~ (Ty/R)*e™ (1.1)

where S, is the Euclidean action of thisounce, the solution of the classical field equations
that interpolates between the false vacuum and the opposite side of the barri€t, isra
dimensional factor associated with the characteristic size of the bounce. The main purpose of
this paper is to reduce the theoretical uncertainties in the above result, performing a complete
one-loop calculation of the action functional around the bounce configuration [10]. As we shall
show, this calculation allows us to unambiguously fix the pre-exponential factor and the finite
corrections at the one-loop level, and also to consistently resum (by means of renormalization
group equations) the sizeable logarithmic corrections appearing in the exponential factor.

The paper is organized as follows: in Section 2 we shall briefly recall the semi-classical re-
sult for the tunnelling rate, applied to the case of the SM Higgs. In Section 3 we shall discuss the
general properties of the one-loop formula, emphasizing the differences with the semi-classical
one. Section 4 contains all the technical details of the calculation, whereas the numerical bounds
on the Higgs mass are presented in Section 5. Finally we summarize our results in Section 6.

2 Tree-level computation of the tunnelling rate

The Standard Model contains a complex scalar doubleith hypercharge-1,

o= | HHOM @)

and tree-level potential
1 1
V() = mPlof" + Aol = GmPH + 0T 4. 2
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where the dots stand for terms that vanish whei~ are set to zero. The neutral component
H is assumed to acquire a non-vanishing expectation vd@lje= v. With this normalization,
v = (Gpv2)~'/? = 246.2 GeV, and the mass of the single physical degree of freedbia
m2, = V"(H)|g=, = 2\v?. As is well known, forH > v the quantum corrections 6(H)
can be reabsorbed in the running couplix@), renormalized at a scale ~ H. To good
accuracyV (H > v) = tA(H)H* and the instability occurs if, for some value Bf, \(H)
becomes negative. Since, far; larger than 100 GeV, this occurs at scales larger tifaGeV,
we shall neglect the quadratic term? H?/2 throughout the paper.

In general, the bounce [8] is a solutidh = h(r) of the Euclidean equations of motion
that depends only on the radial coordinate= z,z,:

and satisfies the boundary conditions
h'(0) =0, h(co) =v—0. (2.4)

We can perform a tree-level computation of the tunnelling rate with0. This leads to

2 2R 8
h(r) = \/mm 7 So[h] = 3N (2.5)

whereR is an arbitrary scale. At first sight, the approximation of taking:) = Ah*/4 may
appear rather odd, since the unstable vacuum configuratien0 corresponds to the maxi-

mum of the potential. However, this is not a problem within quantum field theory, since the
tunnelling configuration requires a non-zero kinetic energy (the bounce is not a constant field
configuration) and is therefore suppressed even in the absence of a potential barrier [9]. The SM
potential is eventually stabilized by unknown new physics aralupd because of this uncer-
tainty, we cannot really predict what will happen after tunnelling has taken place. Nevertheless,
a computation of the tunnelling rate can still be performed [8].

The arbitrary parametdg appears in the expression of the bounce since, because of our
approximations, the potential is scale-invariant: at this level, there is an infinite set of bounces
of different sizes that lead to the same action.

Substituting the bounce action (2.5) in Eq. (1.1), the condijtien1 for a universe about
10" years old is equivalent th > —0.065/(1—0.011n Rv), i.e.\ cannot take too large negative
values. The bound oh can be translated into a lower bound mn; taking into account the
renormalization-group evolution (RGE) of ) (see Fig. 1). At this stage, however, there is
clearly a large theoretical ambiguity due to the scale dependence. Which vallesdfof the
RGE scale: should one use? As we shall see in the next section, both ambiguities are solved
by performing a complete one-loop calculation of the tunnelling rate.
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3 Quantum corrections to the tunnelling rate

The procedure to compute one-loop corrections to tunnelling rates in quantum field theory has
been described by Callan and Coleman [10], following the work of Langer [11] in statistical
physics. At this level of accuracy, the tunnelling probability per unit four-dimensional volume
V' can be written as

—-1/2

e~ Solhl (3.1)

p e Sl S2[n) |SDet’ Sy[h]
V V. 42

a SDet S¢/[0]

whereh still denotes the tree-level bounce asid(5;) is the tree-level (one-loop) action func-
tional. Hereh = 0 indicates the false (electroweak) vacuum; we assume that the potential has
been shifted so that;[0] = 0; S; denotes double functional differentiation 8f with respect

to the various fieldsDet is the functional determinant, aset = Det or SDet = 1/ Det?,
depending on whether it acts on boson or fermion fields.

When evaluated with a constant field configuratienjs simply given by the usual one-
loop effective potential. Computing,[h] is a much harder task because the bounce (2.5) is
not a constant field configuration. Furthermore, unlike the constant-field case, there are quan-
tum fluctuations that correspond to translations of the bubble. The ‘prim&Dan’ S{/[A] in
Eq. (3.1) indicates that these fluctuations, corresponding to zero modes, have been explicitly
removed from the functional determinant. In this way the result acquires a dimensional factor
that will be compensated by the integration over the volume of the universe.

Fortunately, in order to compute the one-loop corrections to the tunnelling rate we do not
need to find the field configuration that extremizes the full one-loop action: we only need to
computeS [h], whereh is the field configuration that extremiz8g and has the simple form in
Eg. (2.5). The difference betweéh|h] andS; [h,] is a two-loop correction.

In our case, the main effect of quantum fluctuations is the breaking of scale invariance
of the tree-level potential. As we shall show explicitly, this implies that bounces with different
R, which have the same action at the semi-classical level, turn out to have a one-loop action
roughly given byS;[h] ~ 87%/(3|\(1/R)|). At the same time, for these configurations the
dimensional factor due to the zero eigenvalues turns out to i 8f*). In this way the two
scale ambiguities of the semi-classical result are completely resolved. Indeed, the complete
result for the tunnelling probability at one loop can be written as

VU 87'('2
= max -2 exp |- — — AS 3.2
P mI%XR4eXp[ 3] ], (3.2)
where
AS = —2(5+6L)+g—t2(13+12L)+g—’i‘1(5+6L)—M(7+6L)+
3 6/ 672 12|
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Figure 1: Running of the quartic Higgs coupling for my = 115 GeV and m; = 165, 170,
175, 180 and 185 GeV [a,(myz) = 0.118]. Absolute stability [\ > 0] is still possible if m, <
166 GeV. The hatched region indicates the metastability bound.
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sons (L+2L) + fu() —ft(g—f) +fg(@) +2f9(9—§). (3.3)

R Ry Al

HereVy ~ T, L = In(Rue™® /2), g; is the top Yukawa coupling, angt, g% = g3 + g3 are
the weak gauge coupling constants, defined at tree leveb by g.v/v/2, m¥, = g2v?/4,
m% = g3v*/4. All couplings are renormalized at the RGE scalélhe numerical values of the
functionsf,, f; are plotted in Fig. 2, wheregs is given in Eq. (4.61). Thé terms cancel the
w dependence of in the leading semi-classical term. If one chooses a valye~ofl /R, such
that L ~ 0, the typical correction to the action is 6¥(g}/\?) ~ 10, to be compared with the
leading term of order 100.

In previous analyses (see e.g. Ref. [12]) a full one-loop computation of the tunnelling rate
was never performed, and the semi-classical result was improved by considering only quantum
corrections to the effective potential, or to the running\ofThis procedure leads to a correct
estimate of the leading logarithmic corrections to the action, but the finite terms of the calcula-
tion are not under control. Within this approximation the use of two-loop RGE equations does
not improve the accuracy of the calculation. On the other hand, a consistent implementation of
two-loop RGE equations fox(u) is possible starting from Eqg. (3.2).

In Fig. 1 we plot the evolution of\(x) as obtained by integrating the two-loop RGE
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Figure 2:Numerical resultsfor the subtracted part of the correction to the action fromtop loops
[f:(g?/]A]), solid curve] and gauge boson loops [ f,(g?/|\|), dashed curve]. Relevant values of
g*/|\ ared = 8.

equations of\, the top Yukawa coupling; and the three gauge couplings[13] for my =

115 GeV and some reference values of the pole top mas$ For comparison we also show
the lower bound om\ derived from Eq. (3.2), imposing the conditipn< 1 and assuming
Vi = (101% yr)%. As can be noticed, the evolution dfcrosses the metastability bound (i.e. the
tunnelling rate becomes too high) for valuesuofuch larger than the electroweak scale. This
implies that our approximation of neglecting tf¥%v?) quadratic term in the tree-level potential
is very good, since the critical bounces are those with a size much smaller thah is also
important to notice how the lower bound anncreases as a function of the RGE scale (or of
1/R). This effect is due to the pre-exponential factor in Eq. (3.2), scalingftik& which we
have been able to determine from the one-loop computation. It is important to notice that, for
the experimentally interesting valuesraf; andm;, the tunnelling rate is dominated by bubbles
with 1/R about two orders of magnitude belaow,, as can be seen in Fig. 1 or, more clearly,
in Fig. 3. Therefore the metastability bound on; does not depend on the unknown physics
aroundAp;.

1The initial values of\ and and;, have been related to the valueswof; andm, using the matching conditions
given in [14] and [15], respectively. The discussion about the uncertainties involved in this estimdie) s
posponed to Section 5.
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Figure 3:Contribution to the tunnelling rate (in arbitrary units) from bubbles of different R, as
afunctionof 1/ R, for my = 115 GeV and m; = 175 GeV.

4  Explicit computation of the one-loop action

4.1 General strategy

The central point in the computation of the tunnelling probability, Eq. (3.1), is the evaluation of

ratios of functional determinants:
Det S{[h]

Det Sg[0]
in the various sectors of the theory. This requires solving eigenvalue equations of the type

(4.1)

Solhl v = [0 + W(r)] ¥ = N, (4.2)

where generically denotes scalar, fermion or gauge fieds. In order to perform such a cal-
culation, one should i) choose a suitable eigenfunction basis; ii) define the renormalization
procedure. In both respects, our approach will be similar to that of Ref. [16], where sphaleron
computations within the SM have been performed. Details will be given in the next subsections;
here we just sketch the main points of our strategy.

Because of the four-dimensional spherical symmetry of the bounce, the ‘interaction term’
W in (4.2) depends only on the radial coordinate- (z,x,)'/?. For this reason it is conve-
nient to decompose the various fields in eigenstates of the four-dimensional angular momentum
operatorLZ?, and to write the Laplace operator as

> 3d L?

- - == ) 4.3
dr2+rdr r2 Vi (4.3)

In the case of scalar fields, the eigenfunctiong.éfare the four-dimensional spherical har-
monicsY;(#) (whered collectively denotes the 3 polar angles) with eigenvalljgg + 1), and

0 = 9,0, =
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degeneracy?j + 1)?, where; takes integer and semi-integer values (see Appendix A). After
this decomposition, we have
log Det Sy =Y " log Det(Sy); (4.4)
j

where (Sy); is the restriction ofS{j to the subspace spanned by eigenfunctions with angular
momentum;. As we shall see, the situation is slightly more complicated for fermion and
vector fields. Their expansion in spinor and vectorial hyperspherical harmonic functions will
be obtained starting from the; ().

A further simplification arises from the fact that, in order to compute the ratio in Eq. (4.1),
it is only necessary to solve Eq. (4.2) for= 0. Indeed, we can use the result [17]
b = Det [-V + W (r)] — m det u{,v(r) 7

Det [-V] 7= det u} ()

wherew)y, (r) [uj)(r)] are eigenfunctions, regular at= 0, of =V + W (r) [V.] with zero
eigenvalues:

(4.5)

=V + W ()] uly(r) =0, Viul(r)=0. (4.6)
The symbol ‘det’ in Eqg. (4.5) stands for the ordinary determinant over residual (spinorial, gauge
group, etc.) indices of these solutions (see e.g. [16] and the next subsections for more details).

The one-loop action is affected by the usual ultraviolet divergences of renormalizable
quantum field theories. As a consequence, the sum pireEq. (4.4) is not convergent (the
ultraviolet behaviour being encoded in the behaviour of the determinanisforc), and the
usual renormalization procedure is needed. The expression

1 1
S1 = 5o+ 5 InSDet S5 [A] — 5 InSDet S[0] = Sy + AS (4.7)

can be made finite by adding an appropriate set of local counterterms, which lead to a redefi-
nition of the bare couplings if,. For example, in th&IS scheme (dimensional regularization
with MS subtraction) the renormalized one-loop action can be written as

Sy = S)5 + [AS — (AS) (4.8)

pote]
whereS&}TS is the lowest-order action expressed in terms of the renormalizedouplings, and
(AS)pOle is the divergent part oA S defined according to thelS renormalization prescription.
Computing the full determinant ith = 4 — 2¢ dimensions would be an extremely difficult task.
However, this is not necessary. In fact, the divergent terms are all containeslth defined
as the expansion @k.S up to second order in the ‘interaction’:

ASE = %[InSDet (=% +W) = nsDet (~°)] |
_ %STr (~0%) W] - iSTr (—0) W (=% W] (4.9)
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whereSTr = Tr or STr = —2Tr depending on whether it acts on boson or fermion fields. In
other words, the differencAS — AS? is ultraviolet-finite. Equation (4.8) can be rewritten as

(4.10)

pole |

S, — SV 4 [AS _ As[ﬂ + {Asm —(AS)

where the two terms in square brackets are separately finite. The advantage of this last ex-
pression is thanS™?l can be computed either as a (divergent) sum of terms corresponding to
different values of the angular momentum, which gives a finite result when subtracted pm

or by standard diagrammatic techniqued in 2¢ dimensions. In the next subsections we shall
show how this procedure is implemented in practice.

The final result is expressed in terms of the renormalized parametetsandg;, whose
definitions depend on the renormalization scheme. Of course, the scheme dependence disap-
pears once these couplings are re-expressed in terms of physical observables, such as Higgs and
top pole masses. In practice, however, in the case of the gauge couplings it turns out to be more
convenient to directly use thRdS definitions, since these parameters are accurately determined
by fitting multiple observables.

4.2 Higgs fluctuations

The relative corrections to the action due to fluctuations of the Higgs field are generally small
because the Higgs couplingis small; it is however important to consider them, because they
include the special zero-modes (eigenfunctions with zero eigenvalue) corresponding to trans-
lations (j = 1/2) and field dilatations{ = 0) of the bounce, as well as the unique negative
eigenvalue corresponding to space dilatations of the bounce. It is precisely the existence of this
negative eigenvalue that makes the false vacuum unstable. In this case the interaction term is

simply given by )
" 24R
W(r)=V"(h) = iR (4.11)
It does not depend on any coupling constant, as expected, since the leading contribution to the
action is proportional ta / \.

The solutions of the ‘free equatioiV ,u(r) = 0, regular inr = 0, are immediately
found to be proportional te? (see Eq. (4.3)). In order to exploit the result in Eq. (4.5), we
must compute the ratio '

pylr) = ). (4.12)
u(r)
The functions,(r) obey the differential equations

i)+ : Shir) = W) py(r) (4.13)
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which can be solved analytically:

_ R*+ a;r*R* 4+ b;r*

P = — (4.14)
wnere 2~ 1 (2 - 1)
BT GET TR+ (449
According to Eq. (4.5), we have therefore
L L) G (4.16)

Pi = T Det [V, oo

Let us neglect for the moment the contributiong ef 0 and;j = 1/2, for whichp; = 0. Taking
into account the multiplicities of the sub-determinants, we have

Aghisss _ 1 > (25 +1)Inp; = > |65 —3— 3 + 3 +. . (4.17)

i>1/2 7o T 2j = 452
§>1/2 j>1/2

As discussed in the previous section, we regularize this expression by subtracting from it the
terms obtained by solving Eqg. (4.13) perturbativelylin ReplacingV’ with eIV, we define the
coefficientsh;; asp;(e) = 1+¢€hy; +€*hy; + O(€®). These coefficients can be easily determined
numerically. The subtracted series is rapidly converging, and in practice the inclusion of the first
ten terms already provides an excellent approximation of the full result. We find

1 , 1 . haj
5 > (2§+1)%np; — 5 > (25 +1)° (hlj — b3+ #) =126. (4.18)
3>1/2 j>0
We now turn to a discussion of zero eigenvalues. The four zero-modes jn-the/2
sector correspond to translations of the bounce. They can be converted into a volume factor
following the procedure illustrated in [10], which amounts to replaging with

o Det! (S§[h])1ya _ i, Det [e + (S [R])1/2]/€
Y2 Det (SE[0),, 0 Det(SH[0]),,

(4.19)

and multiplying the expression for the tunnelling probability per unit volume by a factor
\/So[R] /27 for each of the four translation zero modes. This is the origin of the fa&tan /(27)?

in Eq. (3.1), which, in our final result Eq. (3.3), is includedfin The elimination of the four
vanishing eigenvalues from ,» provides the dimensional facté* in Eq. (3.2). In fact, after
numerical integration of the corresponding differential equation, we find

pijs = 0.041R* . (4.20)
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As can be see from Eq. (4.15), there is another zero eigenvalue jn-th@ sector. It arises
from the scale invariance of the tree-level potential: bubbles with different field valugR
have the same tree-level action. Scale invariance is broken by quantum corrections, which shift
the zero eigenvalue by an amount®fy? /(47 R)?]. We can therefore compugg by removing
the zero eigenvalue from the determinant as in Eq. (4.19), and replacing the zero eigenvalue
with a quantity ofO[g¢? /(47 R)?] (this small correction can in principle be extracted from khe
dependence of the one-loop bounce action [18]). This giyes —Rk?, and

.9
Po (47 R)?

1 1
5 In |pg| ~ 5 In =-25 (4.22)

for p, = —R? andg, = 1. Note thaty] is negative, as it should be because of the instability of
the electroweak vacuum [10].

Combining the results in Egs. (4.18)—(4.21) we finally obtain
W =[(AS —4mR) - Asm}mggs —4+1, (4.22)
where the quoted error is entirely ascribable to the uncertainty in Eqg. (4.21). In Section 4.4,
,El) will be combined with analogous contributions generated by Goldstone boson fluctuations
to yield the constanf;, in Eq. (3.3).

Renormalization

Following the general strategy discussed in Section 4.1, we now proceed to evafidtin
theMS scheme. The explicit-dimensional expression ¢S, defined in Eq. (4.9), is

4—d 2, 2(4—d)
[as) = 3”; A / dz h%m)—% / dlz dly B2 (2) Ag(z—1y)h2(y) , (4.23)
iggs
where
Ak 1
A, = / - 4.24
diq k1
Ao(r —y) = / ia(e—y) / 4.25
2(.1' y) (27T)d€ (27T>d k2(k +q)2 ) ( )

andy is the usual mass scale that is introduced in dimensional regularization in order to keep the
action dimensionless. In dimensional regularizatitn,= 0, and there is thus no contribution

to AS® from terms of ordel?(W). This is also true for thé (W) terms in the fermion and

gauge sectors, as a consequence of our approximation of neglecting mass terms in the tree-level
potential. The second term in Eq. (4.23) can be written as

35 = = ] G [P Bt (420
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whereh?(¢2) is thed-dimensional Fourier transform éf(z) and

o aa [ A% 1 1 1 12
Bo(q*) = p /(27T)dk2(k;+q) 7 [ +2+lnq—]+(9() (4.27)

Herel/e = 2/(d — 4) — vg + In(47) denotes the divergent part, to be subtracted according to
theMS prescription. We therefore have

1 9A2’u47d ddq N 9
Higgs =+ 20 .2
(As)pole - € 6412 /(27_(_)01 [h (q )} : (428)
Since "
/ ) & / dlz h(z (4.29)
7T

the divergent part in (4.26) is |mmed|ately recognized to have the same structure as the bare
action.
After subtraction of the /€ pole, the integral in Eq. (4.26) can be safely performed in four
dimensions (see Appendix B), leading to
2

9\2 d'q 1~ 2 I )
[2} — = — 2( 2 — = — — —
AS (AS)pole - 612 / ) {h (q )} [2 +1In 7 3L 5 (4.30)

whereL = In(Rpe™/2). Combining the above result with Eq. (4.22), we obtain the full one-
loop correction to the action due to fluctuations of the Higgs field, renormalized inithe
scheme.

4.3 Top fluctuations

The fermionic determinant due to fluctuations of the top-quark field assumes a form similar to
the bosonic one, if expressed in terms of the squared Dirac operator:

2
Dp=-0*+ (%fﬂ \/_$h> =0+ W2, (4.31)
whereg; is the top Yukawa coupling. Indeed, we can write

ASiep = —% [InDet (P'P) — In Det (—0%)], (4.32)

whereN, = 3 is the number of colours.

The only difference with respect to the Higgs case is the structufé.@incell” does not
commute withZ? because of th@h term, we cannot decompose the eigenfunctions as products
of scalar spherical harmonics times constant Dirac spinors. However, the spherical symmetry
of the bounce, which implies

Phr)=q0'(r), Ty =m./r, (4.33)
12



considerably simplifies the problem. Following Ref. [19], we decompose the fermionic field as

P(r,0) = > [a17 ()15 (0) + oy (r)hes (0)] (4.34)
J=43/2, £5/2,...
whereaq;;(r) are scalar functions angd,;(¢) are spinors written in terms of appropriate hy-
perspherical harmonic functions of multipliciti? — 1/4 (see Appendix A). In this basis the
equationlf )y = 0 becomes

dd; + J(J 1) gt h2( ) &h/( ) [ ay(r) ] 0. (4.35)
o) L A || et

In the limit g, = 0 the two components of Eq. (4.35) are decoupled;far 0 their solutions,
regular inr = 0, are given byn!; oc 7/ andad; « r’*1. Since Eq. (4.35) is invariant under
the exchange « —J, we shall consider in the following only the cage> 0, and include an
extra factor of 2 in the multiplicity of the solutions. Equation (4.35) can be cast in the form
J g2
Py + Q;P/U = h

J+1 2
ooy +2——phy = Ln?

gt 5,
p1g+ =N payr,
V2 (4.36)

g _
P27 + 7%h,plﬂn h

wherep;;(r) = a;;(r)/a?;(r). The system Eq. (4.36) has two solutigifs(r), k = 1,2 with
initial conditionsp?,;(0) = d;x. According to Ref. [17] we can finally write

1 : 1(r) pis(r)

ASpp = —3 (ﬁ - —) In { lim det l PLs 1 . 4.37
o J=H§1/2 4 e P2y (1) p3s(r) ( )

The sub-determinants at fixetican be computed by means of numerical methods. As usual,

the sumin Eq. (4.37) is divergent and we regularize it by subtracting the first two powéfs in

Sinceg; appears always multiplied By(r), the final result depends only on the ragity | \[:

{AS _ As[ﬂtop —_y, (&) (4.38)

and is plotted in Fig. 2 in the range of interest.
The evaluation ofAS™ in dimensional regularization is very similar to the Higgs case.
We find

[AasP) = - / dq SR + 29741 (6) |} Bo(d?) (4.39)
op
which, after subtraction of the dlvergent terms, leads to
2
ASP — (A } 0+ (134121) . 4.4
[ S ( S)pole top 6‘)\’2 (5+6 ) 6’)\‘( 3+ ) ( O)
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4.4 Gauge and Goldstone fluctuations

In order to evaluate quantum fluctuations in the sector of gauge fields we need to modify the
bare action introducing an appropriate gauge fixing. Both the correction to the potential and that
to the kinetic term are gauge-dependent, but they combine to give gauge-independent physical
quantities [20]. For example, at one loop, the divergent corrections change the Higgs action into

S = /d% (1 + Z0)| Dyus P + (1 + Zy)Aol] (4.41)

and the gauge dependencefandZ, cancels in the combinatiaky, — 27 that determines
the RGE equation fok. By requiring that the bounce action be an extremum under the transfor-
mationh(r) — h({r), one finds thabr = —25y, whereSr (Sy) is the ‘kinetic part’ (‘potential
part’) of the tree-level bounce actigh= S + Sy. Therefore, the divergent corrections to the
bounce action are gauge-independent. More generally, it was shown by Nielsen [21] that the
value of the effective potential at its minimum is gauge-invariant. Similarly, the value of the
effective action is also invariant, when evaluated over a field configuration that extremizes it. It
follows that the full corrections to the bounce action are gauge-independent.

The functional obtained after gauge fixing depends on gauge figld&oldstone bosons
G* and Faddeev—Popov ghosts We are only interested in the second functional derivative of
the action evaluated at;, = G® = n° = 0 andh # 0. This considerably simplifies the problem,
since we can ignore the non-Abelian part of gauge interactions. In the following, we will denote
with a suffix A the corrections to the action for a generic abelian gauge fig|dvith coupling
g. We can also ignore the fluctuations of the electromagnetic field: they vanish in the difference
AS[h] — AS[0] because the photon field is not coupled:tdr he problem is thus equivalent to
the case of three independent Abelian fields: theliws and theZ.

Introducing a 't Hooft—-Feynman gauge-fixing term, which has proved to be the most
convenient choice for our calculation, the relevant part of the bare action can be written as

/d4x

whereM (0, h) = ¢g*h? /4. This choice of the gauge fixing term has the advantage that all terms
of the typeA,,d,G andd,d, A,,, generated byD | andFj,,, respectively, are eliminated from
the equations of motion.

The ghost fields can be treated separately since the the second derivative of the action is
diagonal with respect to them. On the contrary, we cannot sepdrasnd &G, whose zero-
eigenvalue equation is given by

1 1
P+ 5(0A = ghG)? + DO + V(9) + 0 [-0F + M(G. )| . (4.42)

_825uy + ig2h2(7“)(5lw —gf,th/(r) AV(:L‘)
—gi, 0 (r) —0%+ (g% + \) h3(r) ] [ ] =0. (4.43)
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In order to solve Eq. (4.43) we need a suitable decompositiod,ofn terms of spherical
harmonics. A convenient choice is provided by

R Qo5 (T i
Ay =Y [aumxu + %8 + 3 (1) e Vi 2,05 | Y(0)  (4.44)

where theu;;(r) are scalar functions and® are two generic orthogonal vectors. In this basis
the operatoi.? is diagonal with respect to the indé>xand, at fixedj, mixes only the first two
componentsg,; anday;. Sinced,Y, = 0, the casg = 0 deserves special attention. For this
reason, we discuss separately the two cased) and;j = 0.

Sub-determinantaith j > 0

As shown in Appendix A, forj # 0 the zero-eigenvalue equation is

Vit E i) A —gh/(r) ar; (r)
e e T 0 i) | =0
—gh'(r) "0 VLt G An(r) | LG
(4.45)
—Vi+ igth(r) ai;(r)=0, i=34, (4.46)

whereG,(r) are the components of a standard decompositi@i(ef in spherical harmonics.
Interestingly, the componenis; anda,;, which are decoupled from the Goldstone boson
sector, obey exactly the same equation as the two components of the complex ghost field. The
latter contribute to the action with an opposite sign; therefore these two contributions cancel
against each other fgr+ 0.
Equation (4.45) can be further simplified by means of a rotation irfidhg a,;) space,

[au’ _ 1 l Vi —ViFl l&u] (4.47)
a2j V2i+1 | Vi+1 Vi agj |’ '

which diagonalizes it in the gauge sector. In this new basis we have
[~V +ign2 0 —gh'\[i/2i+1) 1 ay,
0 ~Vi, +3?h2  gh\J(j+1)/(2j+1) | | Gy | =0, (4.48)
—gh'\[i/2i+1) gh'\JG+1)/2j+1) —Vi+(Gg?+np | LE

whereV . denote the usudl® operator at fixed angular momentum, with eigenvalues shited
by j — j+1/2. The free equation(— 0) is now diagonal and, similarly to the top and Higgs
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cases, can be easily solved. We finally obtain

1+4y 1 j
11 / _ 212 /
Pyt Py = Y hZp1j — rp3igh 2 +1
5+ 4j 1 1 j+1
/! / 2712 /
T = Za2Rh2py. 4+ Zpaigh ,
p2] + r p2] 49 p2] + rp3jg 2] + 1
3+4y (1 > 1 Ji Jj+1
/! / 212 2 / /
4+ — . = | Zg*h* + \h C— Zpah ] —1— ah
Paj+ =Py 19t Psi = P95 + rp2;g 5+ 1
(4.49)
where, as in the previous cases, we have defined
aij . G
pij = aoja 1=1,2; p3; = G_g? : (4.50)

In complete analogy with the top case, the above system has three sobj;(@mik =1,2,3),
with initial conditionSpfj(O) = 4,1, and the resulting correction to the action can be written as

P%j (r) P%j (r) P1; (r)

1 . .
ASLy = 52(23+1)2ln lim det p%j(T) p3;(r) p;(r) | ¢ (4.51)
>0 /033‘(7") P3j(7") P3j(7")

All the determinants in Eq. (4.51) are different from zero and, as usual, their sum must be
regularized by the subtraction afS!2,
Sub-determinanwith j = 0

Forj = 0 only thei, component of4,, is different from zero f/=% = ayo(r)z,] and the
eigenvalue equation is

d? 3d 3 1,272 /
—az — ta t =+ 19°h(r) —gh'(r) a10(r)
dr rdr r 4 = 0 . 452
gt (1 -3 (g R0) | | Gol) 52
This leads to
/1 5 / 1 212 1 /
potome = 9 h”p1 — —pagh
r r (4.53)

3 1
prt = <192h2 + Ah2) p2 — rpigh
where, as usualy; = ajg/al, andp, = Go/G). The absence of transverse components in

Af{zo) implies that thej = 0 sub-determinant of the ghost fields is not cancelled; it is obtained
as the large-limit of the functionp,,(r), where

3 1
Py + ;P;, = 192’12077 : (4.54)
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Employing the usual notation for the two solutions of the system (4.52), we can write

1 2
ASL = %m {TILIEO det [ Zi E:g Zégg ]} — In lim p, (r) . (4.55)
The 2 x 2 determinant in Eg. (4.55) contains a vanishing eigenvalue. This is present also in
the limit ¢ = 0, and originates from the global symmetry of the action, which persists even
after the introduction of the gauge-fixing term. This corresponds to the possibility, for the false
vacuum, to tunnel in different directions with equal probabilities. As discussed in [16,22], the
fluctuations corresponding to global rotations can be converted into an integral over the group
volume. These zero-mode fluctuations probe the non-abelian structure of the gauge group, so
that we can no longer compute separatelyZh&’ * contributions. Considering the full gauge
group, we obtain

AS of 1 4 .72 32 A 3 —fP_agr
e~ Someze — 167 {2— /d xh (7“)] e Aanze = R /i ~ASauge (4.56)
T

where the factoil 672 is the volume of the brokeSU (2) group. The resulting integral df?

is logarithmically infrared divergent, as a consequence of our approximation of neglecting the
mass term in the Higgs potential, which would have acted as an infrared regulator. For this
reason, we cut off the integral in Eq. (4.56)at 1/v. The result, forRv < 1, is

/3
o _ 3 [27 1 11 4.57
In 2nl By n +O(1/In Rv) . (4.57)

This vanishing eigenvalue is the only aspect of our calculation that is sensitive to the infrared
behaviour of the potential, and therefore beyond the control of our approximation. However,
the sensitivity to the infrared cut-off is mild and does not induce an appreciable numerical
uncertainty.

Once the vanishing eigenvalues have been removed from+hé sub-determinant, the
latter acquires a dimensional factor that is compensated by the fatiarEq. (4.56).

Final resultfor the gaugesector

Summing the regularized gauge and Goldstone corrections, we finally obtain

2 2
ASgange = 214 (%) + £, <]g7Z\> + f}(L?) + 3f}(L3) ’ (4.58)

where B
£ = lim [(AS)_ —n R) + ASjo0 — ASP| " ~ 2 (4.59)
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Figure 4: Metastability region of the Standard Model vacuum in the (m g, m;) plane, for
as(myz) = 0.118 (solid curves). Dashed and dot-dashed curves are obtained for o;(my) =
0.118 4+ 0.002. The shaded area indicates the experimental range for m,. Sub-leading effects
could shift the bounds by +2 GeV in m;.

and
g° A
fg(‘ AI) [(ASj_y — InR) + ASj50 — ASP]" — £V, (4.60)

so thatf,(0) = 0. The funct|onfg, obtained by means of numerical integration, is plotted in
Fig. 2. The constant$h , ) can finally be combined Wltlfh in Eq. (4.22) and with the
translation prefactors? / (27r) to yield

1672
~ o
This numerical estimate has been obtained vidth= 10~14, but it is very mildly sensitive to
the value ofRv.
In analogy with the previous cases, dimensional regularization leads to

fo= £+ 57 307

:;mm—gﬂ. (4.61)

4 2

[ASQ] | = 4/ diq {[ _2)%6+<gz+)\>2]u4d[ﬁg(qgﬂg_2g2q252(q2)}30(q2)’

(4.62)
which, after subtraction of the divergent terms, reduces to
4 54+6L ¢>T7+6L g 1+2L
ASE — (A =— . 4.
{ 57 = (Ao 18 [\ 12 A2 32 (4.63)
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5 Results

Using Eg. (3.2), the conditiop < p...x can be translated into an upper bound bf)|:

8m2/3
ln(VU/R4) —AS — lnpmax
0.065

- 1_ [In(Rv) + In(TY/Ty)] /100 — [AS + In pray] /400 (5.1)

IA(2¢7"2/R)| <

whereAS is computed al. = In(Rue’®/2) = 0, Vi = T andTP = 10 yr. Equation (5.1)
must be satisfied for all values &f. From this inequality, a lower limit om gz can be obtained
by integrating the two-loop RGE equations [13] fgrg; and the three gauge couplings The
initial values of\ andg; aty = v are related to the values of; andm, by the matching condi-
tions given in [14] and [15], respectively. As in most recent analyses of the Higgs potential [3],
we include the finite two-loop QCD correction in the relation betwgém,) and the top pole
massm;. The latter is formally a higher-order contribution, and can be used to estimate the
theoretical uncertainty in the determination’df.) at high scales.

Stability and metastability bounds in tlie: ;, m;) plane are shown in Fig. 4, which has
been obtained with,,.,. = 1. The metastability condition can be approximated as

mu(GeV) > 117+ 2.9 [my(GeV) — (175 £ 2)] — 2.5 lO‘S(mZ) — 0‘118] +0.1In (i) ,

0.002 1010 yr
(5.2)
while the absolute stability bound is given by
—0.11
mu(GeV) > 133 + 2.0 [my(GeV) — (175 + 2)] — 1.6 [O‘S(mg)omo 8] (5.3)

The numerical impact oA S is rather weak, provided the renormalization scale is chosen such
that L = 0: for my = 115 GeV, a correctiomAS = 50 shifts the metastability bound by
1 GeV in m,. For this reason, our results are numerically close to those obtained in [12] (at
zero temperature), where this correction was not included. Note that one could have expected
a larger effect, because of the large value of the top Yukawa coupliag the weak scale.
However, the relevant quantity heredg1/R), with 1/R ~ 10'® GeV, which is substantially
smaller thary; (m,).

The uncertainties in the determination AfS turn out to be negligible with respect to
the uncertainties involved in the determination\df:) at high scales. We estimate the latter
to generate an erroim, ~ 2 GeV at fixedmy anda,, both in the stability and metastability
bounds, as shown in Egs. (5.2) and (5.3).

Some comments are in order:
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e Vacuum decay can also be catalysed by collisions of cosmic rays. However, it has been
shown [23] that the tunnelling rate induced by such processes is negligible with respect
to the probability of quantum tunnelling.

e Thermal tunnelling gives stronger bounds than quantum tunnelling only under the as-
sumption that the temperature of the universe has been abdve 10° GeV (formy =
115 GeV).

¢ We have assumed the validity of the Standard Model up to the Planck scale. Experiments
at Tevatron run 1IB can reduce the errorrepdown to+2 GeV [25] and possibly discover
the Higgs and measure its massif; < 130 GeV. Some extension of the SM will become
necessary, should ; andm, be found in the excluded region. All concrete modifications
invoked to cure this problem give a computable correction to the squared Higgs mass; for
example, a scalar with mass and a coupling\ to the Higgs givesm?2, ~ Am?/(4r)2.
Since\ cannot be too small, by naturalness arguments we expect thersoalenew
physics to be in the electroweak range.

¢ All observed neutrino anomalies could be explained in terms of neutrino oscillations with-
out affecting our result [24].

6 Conclusions

All recent LEP1, LEP2, SLD and Tevatron data are compatible with the Standard Model with
m; ~ 175 GeV and a light Higgs, maybe:y ~ 115 GeV [5]. It is well known that the
Standard Model is affected by the so-called hierarchy problem, which manifests itself through
uncomputable quadratically divergent corrections to the Higgs squared mass. The extensions
of the theory proposed to cure this potential problem are likely to involve the presence of new
phenomena not far above the electroweak scale. However, a definite solution of the naturalness
problem is not yet established, and it is interesting to consider the possibility that it be solved
by some unknown mechanism that takes place around the Planck scale. Even within this as-
sumption, a possible phenomenological problem affects the SM, namely the possibility that the
scalar potential become unbounded from below at large field values, below the Planck scale.
Formpy = 115 GeV such instability is present if the top mass is larger thait + 2) GeV, i.e.

only about two standard deviations below the central value of the Tevatron data.

The instability of the SM vacuum does not contradict any experimental observation, pro-
vided its lifetime is longer than the age of the universe. In semi-classical approximation, this
happens if the running quartic Higgs coupliigs larger than about-0.05. In this paper we
have presented a more accurate assessment of this bound by performing a full next-to-leading
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order computation of the tunnelling rate of the metastable vacuum. In particular, we have com-
puted the one-loop corrections to the bounce action. Our result is summarized in Eq. (3.3)
and plotted in Fig. 4. Next-to-leading corrections turn out to be numerically small, with an
appropriate choice of the renormalization scale< 1/R), but they allow fixing the various
ambiguities of the semi-classical calculation, thus reducing the overall uncertainty of the result.
We find that, formy = 115 GeV (that is, just above the present exclusion limit), the instability

is dangerous only fom; > (175 + 2) GeV; this result does not depend on the unknown new
phyiscs at the Planck scale. A determinatiomgfat this level of accuracy would therefore be
extremely interesting in this respect, and will probably be achieved at Tevatron run II.
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A  Spherical harmonics

The spherical harmonics;,,..., (6) are eigenfunctions at* = L, L,,, where
1

L, = ﬁ (,0, — x,0,) , (A1)
with eigenvaluedj(j + 1); the indicesn, m’ range between-j andj (with j = 0,1/2,1,...)
giving the multiplicity (25 + 1)2. This multiplicity can be understood by noting that the group
of rotations in four dimensions i9(4) ~ SU(2) ® SU(2), and its scalar representations cor-
respond taSU(2) ® SU(2) representation§, k) with [ = & [26]. The indicesn, m’ will be
omitted in the following.

Spin-1/2 representations are obtained fo= &k + 1/2. The index.J that appears in

Eq. (4.34) is related tbandk through

1
J:2/€+§ for l:k—|—§,k:0,1/2,1,...; (A.2)
1 1
Jz—2k;—§ for l:k—é,kzl/Q,l,.... (A.3)

Therefore, the multiplicity of the representation labelled/ig (2k + 1)(20 + 1) = J? — 1/4.
The action of the operatdpon the(l, k) spinor representations can be found in Ref. [19].

In the case of vector representations, it is straightforward to work out the actinouf
A,(z) asin Eq. (4.44). Using Eq. (4.3) we find

L>+37.

. a) ; 2
0%ai;i,Y;(0) = |df, + 3% — = 2,Y;(0) + alj;am(e) (A.4)
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a’ . L —1 2L2
Payrd,Vi(0) = | +3°2 — == }ra Yi(0) +ary=5-,Y5(6) (AS)
. al. L? .
P V2,0, Y5(0) = [a;; +3% - aijﬂewpav,ﬁ)xpaayj(e) . (A.6)
Therefore, we have
/d4xA PA, = Z/ ridr a;;(r Zk ak](r) (A.7)

where, with an appropriate normalization of the two veciqj’%,

_i 4\/ J(J+1) O O
7‘2 7’2
) . e
po— 34 _HUTD ke . g (A.8)
dr rdr r 0 0 0 0
0 0 00

B  Fourier transform of the bounce

The four-dimensional Fourier transform of a functirdepending only on the radial coordinate
r, IS given by

. A2 oo
= /d%e”’“““f(r) = i/ drr®f(r)Ji(pr) , (B.1)
p Jo
wherep? = p,p, and
Ji(pr) = / df sin® @ ¢ eos? (B.2)
In the case of the bounce we find
_ 2 2 2K
h(pQ) = / drr’h r)Ji(pr) = 8V’ R 1(pR), (B.3)
VAR
—~ 4 0o 1 2 P2
h2(p2) = i/ derhQ(r)Jl(pr) = G‘L)fzKo(pR). (B.4)
p Jo

The functionsk’, (z) and.J, (z) are Bessel functions defined as in Mathematica [27].
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