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1 Introduction

If the Higgs boson if sufficiently lighter than the top quark, radiative corrections induced by top

loops destabilize the electroweak minimum and the Higgs potential of the Standard Model (SM)

becomes unbounded from below at large field values. The requirement that such an unpleasant

scenario be avoided, at least up to some scaleΛ characteristic of some kind of new physics [1,2],

leads to a lower bound on the Higgs massmH that depends on the value of the top quark mass

mt, and onΛ itself. The most recent analyses of this bound [3], performed after the discovery

of the top quark, led to the conclusion that if the Higgs boson was clearly observed at LEP2

(or if mH
<∼ 100 GeV), then new physics would have to show up well below the Planck scale,

ΛPl = 1.2 × 1019 GeV, in order to restore the stability of the electroweak minimum. We now

know thatmH must be larger than about 113 GeV [4]. IfmH lays just above this bound,

as hinted by direct searches [5] and consistently with electroweak fits [6], absolute stability

up to the Planck scale is possible, providedmt is close to the lower end of its experimental

range [7]. Formt around its central value, the SM vacuum may not be absolutely stable, but still

sufficiently long-lived with respect to the age of the universe. Motivated by these observations,

we decided to reanalyse in detail the lower limits onmH imposed by the condition of (meta-

)stability of the electroweak minimum.

We assume that no modifications to the Standard Model occur at scalesΛ smaller than the

Planck scale. In general, field-theoretical modifications invoked to stabilize the SM potential at

scalesΛ � ΛPl, such as supersymmetry, or the introduction of extra scalar degrees of freedom,

induce computable corrections of orderΛ2 to the squared Higgs mass, thereby forcingΛ to be

of the order of the electroweak scale by naturalness arguments. On the other hand, it cannot be

a priori excluded that the uncomputable gravitational corrections of orderΛ2Pl vanish.

Three different classes of bounds have been discussed in the literature [2]:

i) absolute stability;

ii) stability under thermal fluctuations in the hot universe;

iii) stability under quantum fluctuations at zero temperature.

The condition of absolute stability is the most stringent one. However, although appealing from

an aesthetic point of view, this constraint is not demanded by any experimental observation: it

is conceivable that we live in an unstable vacuum, provided only that it is not “too unstable”.

The condition (ii) — less stringent than (i) and more stringent than (iii) — relies on the assump-

tion that the early universe passed through a phase of extremely high temperatures (the most

stringent bounds are obtained forT ∼ ΛPl). Although plausible, this is just an assumption; so

far, it has been indirectly tested only for temperatures up to few MeV. A naı̈ve extrapolation
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of big-bang cosmology by∼ 20 orders of magnitude in temperature would not only give a

bound on the SM Higgs mass; it would also exclude various popular unified, supersymmetric

or extra-dimensional models, because of over-abundance of monopoles, gravitinos, gravitons,

respectively.

Finally, the requirement of sufficient stability under quantum fluctuations at zero temper-

ature gives the less stringent bounds, but does not rest on any cosmological assumptions. The

only cosmological input required is an approximate knowledge of the age of the universeTU ;

the bound is formulated by requiring that the probability of quantum tunnelling out of the elec-

troweak minimum be sufficiently small when integrated over this time interval. In this work we

will mainly concentrate on this scenario.

The probability that the electroweak vacuum has survived quantum fluctuations until to-

day is given, in semi-classical approximation, by [8]

p ≈ (TU/R)
4e−S0 , (1.1)

whereS0 is the Euclidean action of thebounce, the solution of the classical field equations

that interpolates between the false vacuum and the opposite side of the barrier, andR is a

dimensional factor associated with the characteristic size of the bounce. The main purpose of

this paper is to reduce the theoretical uncertainties in the above result, performing a complete

one-loop calculation of the action functional around the bounce configuration [10]. As we shall

show, this calculation allows us to unambiguously fix the pre-exponential factor and the finite

corrections at the one-loop level, and also to consistently resum (by means of renormalization

group equations) the sizeable logarithmic corrections appearing in the exponential factor.

The paper is organized as follows: in Section 2 we shall briefly recall the semi-classical re-

sult for the tunnelling rate, applied to the case of the SM Higgs. In Section 3 we shall discuss the

general properties of the one-loop formula, emphasizing the differences with the semi-classical

one. Section 4 contains all the technical details of the calculation, whereas the numerical bounds

on the Higgs mass are presented in Section 5. Finally we summarize our results in Section 6.

2 Tree-level computation of the tunnelling rate

The Standard Model contains a complex scalar doubletφ with hypercharge−1,

φ =

[
(H + iG)/

√
2

G−

]
, (2.1)

and tree-level potential

V (φ) = m2|φ|2 + λ|φ|4 = 1

2
m2H2 +

1

4
λH4 + . . . (2.2)
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where the dots stand for terms that vanish whenG,G− are set to zero. The neutral component

H is assumed to acquire a non-vanishing expectation value〈H〉 = v. With this normalization,

v = (GF

√
2)−1/2 = 246.2 GeV, and the mass of the single physical degree of freedomH is

m2H = V ′′(H)|H=v = 2λv2. As is well known, forH � v the quantum corrections toV (H)

can be reabsorbed in the running couplingλ(µ), renormalized at a scaleµ ∼ H. To good

accuracy,V (H � v) = 1
4
λ(H)H4 and the instability occurs if, for some value ofH, λ(H)

becomes negative. Since, formH larger than 100 GeV, this occurs at scales larger than105 GeV,

we shall neglect the quadratic termm2H2/2 throughout the paper.

In general, the bounce [8] is a solutionH = h(r) of the Euclidean equations of motion

that depends only on the radial coordinater2 ≡ xµxµ:

−∂µ∂µh+ V ′(h) = −d2h

dr2
− 3

r

dh

dr
+ V ′(h) = 0 , (2.3)

and satisfies the boundary conditions

h′(0) = 0 , h(∞) = v → 0 . (2.4)

We can perform a tree-level computation of the tunnelling rate withλ < 0. This leads to

h(r) =

√
2

|λ|
2R

r2 +R2
, S0[h] =

8π2

3|λ| , (2.5)

whereR is an arbitrary scale. At first sight, the approximation of takingV (h) = λh4/4 may

appear rather odd, since the unstable vacuum configurationh = 0 corresponds to the maxi-

mum of the potential. However, this is not a problem within quantum field theory, since the

tunnelling configuration requires a non-zero kinetic energy (the bounce is not a constant field

configuration) and is therefore suppressed even in the absence of a potential barrier [9]. The SM

potential is eventually stabilized by unknown new physics aroundΛPl: because of this uncer-

tainty, we cannot really predict what will happen after tunnelling has taken place. Nevertheless,

a computation of the tunnelling rate can still be performed [8].

The arbitrary parameterR appears in the expression of the bounce since, because of our

approximations, the potential is scale-invariant: at this level, there is an infinite set of bounces

of different sizes that lead to the same action.

Substituting the bounce action (2.5) in Eq. (1.1), the conditionp < 1 for a universe about

1010 years old is equivalent toλ > −0.065/(1−0.01 lnRv), i.e.λ cannot take too large negative

values. The bound onλ can be translated into a lower bound onmH taking into account the

renormalization-group evolution (RGE) ofλ(µ) (see Fig. 1). At this stage, however, there is

clearly a large theoretical ambiguity due to the scale dependence. Which values ofR and of the

RGE scaleµ should one use? As we shall see in the next section, both ambiguities are solved

by performing a complete one-loop calculation of the tunnelling rate.
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3 Quantum corrections to the tunnelling rate

The procedure to compute one-loop corrections to tunnelling rates in quantum field theory has

been described by Callan and Coleman [10], following the work of Langer [11] in statistical

physics. At this level of accuracy, the tunnelling probability per unit four-dimensional volume

V can be written as

p

V
=
e−S1[h]

V
=

S20 [h]

4π2

∣∣∣∣∣SDet′ S ′′
0 [h]

SDetS ′′
0 [0]

∣∣∣∣∣
−1/2

e−S0[h] , (3.1)

whereh still denotes the tree-level bounce andS0 (S1) is the tree-level (one-loop) action func-

tional. Hereh = 0 indicates the false (electroweak) vacuum; we assume that the potential has

been shifted so thatS1[0] = 0; S ′′
0 denotes double functional differentiation ofS0 with respect

to the various fields;Det is the functional determinant, andSDet ≡ Det or SDet ≡ 1/Det2,

depending on whether it acts on boson or fermion fields.

When evaluated with a constant field configuration,S1 is simply given by the usual one-

loop effective potential. ComputingS1[h] is a much harder task because the bounce (2.5) is

not a constant field configuration. Furthermore, unlike the constant-field case, there are quan-

tum fluctuations that correspond to translations of the bubble. The ‘prime’ onSDet ′ S ′′
0 [h] in

Eq. (3.1) indicates that these fluctuations, corresponding to zero modes, have been explicitly

removed from the functional determinant. In this way the result acquires a dimensional factor

that will be compensated by the integration over the volume of the universe.

Fortunately, in order to compute the one-loop corrections to the tunnelling rate we do not

need to find the field configurationh1 that extremizes the full one-loop action: we only need to

computeS1[h], whereh is the field configuration that extremizesS0 and has the simple form in

Eq. (2.5). The difference betweenS1[h] andS1[h1] is a two-loop correction.

In our case, the main effect of quantum fluctuations is the breaking of scale invariance

of the tree-level potential. As we shall show explicitly, this implies that bounces with different

R, which have the same action at the semi-classical level, turn out to have a one-loop action

roughly given byS1[h] ∼ 8π2/(3|λ(1/R)|). At the same time, for these configurations the

dimensional factor due to the zero eigenvalues turns out to be ofO(R−4). In this way the two

scale ambiguities of the semi-classical result are completely resolved. Indeed, the complete

result for the tunnelling probability at one loop can be written as

p = max
R

VU

R4
exp

[
− 8π2

3 |λ(µ)| −∆S

]
, (3.2)

where

∆S = −2

3
(5 + 6L) +

g2t
6|λ|(13 + 12L) +

g4t
6λ2

(5 + 6L)− 2g22 + g2Z
12|λ| (7 + 6L) +
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Figure 1: Running of the quartic Higgs coupling for mH = 115 GeV and mt = 165, 170,
175, 180 and 185 GeV [αs(mZ) = 0.118]. Absolute stability [λ > 0] is still possible if mt <
166 GeV. The hatched region indicates the metastability bound.

−2g42 + g4Z
32λ2

(1 + 2L) + fh(λ)− ft

( g2t
|λ|

)
+ fg

( g2Z
|λ|

)
+ 2fg

( g22
|λ|

)
. (3.3)

HereVU ∼ T 4U , L = ln(RµeγE/2), gt is the top Yukawa coupling, andg22, g
2
Z ≡ g22 + g2Y are

the weak gauge coupling constants, defined at tree level bymt = gtv/
√
2, m2W = g22v

2/4,

m2Z = g2Zv
2/4. All couplings are renormalized at the RGE scaleµ. The numerical values of the

functionsfg, ft are plotted in Fig. 2, whereasfh is given in Eq. (4.61). TheL terms cancel the

µ dependence ofλ in the leading semi-classical term. If one chooses a value ofµ ∼ 1/R, such

thatL ∼ 0, the typical correction to the action is ofO(g4t /λ
2) ∼ 10, to be compared with the

leading term of order 100.

In previous analyses (see e.g. Ref. [12]) a full one-loop computation of the tunnelling rate

was never performed, and the semi-classical result was improved by considering only quantum

corrections to the effective potential, or to the running ofλ. This procedure leads to a correct

estimate of the leading logarithmic corrections to the action, but the finite terms of the calcula-

tion are not under control. Within this approximation the use of two-loop RGE equations does

not improve the accuracy of the calculation. On the other hand, a consistent implementation of

two-loop RGE equations forλ(µ) is possible starting from Eq. (3.2).

In Fig. 1 we plot the evolution ofλ(µ) as obtained by integrating the two-loop RGE
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Figure 2:Numerical results for the subtracted part of the correction to the action from top loops
[ft(g

2
t /|λ|), solid curve] and gauge boson loops [fg(g

2/|λ|), dashed curve]. Relevant values of
g2/|λ| are 4÷ 8.

equations ofλ, the top Yukawa couplinggt and the three gauge couplingsgi [13] for mH =

115 GeV and some reference values of the pole top massmt.1 For comparison we also show

the lower bound onλ derived from Eq. (3.2), imposing the conditionp < 1 and assuming

VU = (1010 yr)4. As can be noticed, the evolution ofλ crosses the metastability bound (i.e. the

tunnelling rate becomes too high) for values ofµ much larger than the electroweak scale. This

implies that our approximation of neglecting theO(v2) quadratic term in the tree-level potential

is very good, since the critical bounces are those with a size much smaller than1/v. It is also

important to notice how the lower bound onλ increases as a function of the RGE scale (or of

1/R). This effect is due to the pre-exponential factor in Eq. (3.2), scaling likeR−4, which we

have been able to determine from the one-loop computation. It is important to notice that, for

the experimentally interesting values ofmH andmt, the tunnelling rate is dominated by bubbles

with 1/R about two orders of magnitude belowΛPl, as can be seen in Fig. 1 or, more clearly,

in Fig. 3. Therefore the metastability bound onmH does not depend on the unknown physics

aroundΛPl.
1The initial values ofλ and andgt have been related to the values ofmH andmt using the matching conditions

given in [14] and [15], respectively. The discussion about the uncertainties involved in this estimate ofλ(µ) is
posponed to Section 5.
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Figure 3:Contribution to the tunnelling rate (in arbitrary units) from bubbles of different R, as
a function of 1/R, for mH = 115 GeV and mt = 175 GeV.

4 Explicit computation of the one-loop action

4.1 General strategy

The central point in the computation of the tunnelling probability, Eq. (3.1), is the evaluation of

ratios of functional determinants:
DetS ′′

0 [h]

DetS ′′
0 [0]

(4.1)

in the various sectors of the theory. This requires solving eigenvalue equations of the type

S ′′
0 [h]ψ = [−∂2 +W (r)]ψ = λψ, (4.2)

whereψ generically denotes scalar, fermion or gauge fieds. In order to perform such a cal-

culation, one should i) choose a suitable eigenfunction basis; ii) define the renormalization

procedure. In both respects, our approach will be similar to that of Ref. [16], where sphaleron

computations within the SM have been performed. Details will be given in the next subsections;

here we just sketch the main points of our strategy.

Because of the four-dimensional spherical symmetry of the bounce, the ‘interaction term’

W in (4.2) depends only on the radial coordinater = (xµxµ)
1/2. For this reason it is conve-

nient to decompose the various fields in eigenstates of the four-dimensional angular momentum

operatorL2, and to write the Laplace operator as

∂2 = ∂µ∂µ =
d2

dr2
+

3

r

d

dr
− L2

r2
≡ ∇L . (4.3)

In the case of scalar fields, the eigenfunctions ofL2 are the four-dimensional spherical har-

monicsYj(θ) (whereθ collectively denotes the 3 polar angles) with eigenvalues4j(j + 1), and
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degeneracy(2j + 1)2, wherej takes integer and semi-integer values (see Appendix A). After

this decomposition, we have

logDetS ′′
0 =

∑
j

log Det(S ′′
0 )j , (4.4)

where(S′′
0 )j is the restriction ofS ′′

0 to the subspace spanned by eigenfunctions with angular

momentumj. As we shall see, the situation is slightly more complicated for fermion and

vector fields. Their expansion in spinor and vectorial hyperspherical harmonic functions will

be obtained starting from theYj(θ).

A further simplification arises from the fact that, in order to compute the ratio in Eq. (4.1),

it is only necessary to solve Eq. (4.2) forλ = 0. Indeed, we can use the result [17]

ρj ≡ Det [−∇L +W (r)]

Det [−∇L]
= lim

r→∞
det uj

W (r)

det uj
0(r)

, (4.5)

whereuj
W (r) [uj

0(r)] are eigenfunctions, regular atr = 0, of −∇L + W (r) [∇L] with zero

eigenvalues:

[−∇L +W (r)] uj
W (r) = 0, ∇L u

j
0(r) = 0 . (4.6)

The symbol ‘det’ in Eq. (4.5) stands for the ordinary determinant over residual (spinorial, gauge

group, etc.) indices of these solutions (see e.g. [16] and the next subsections for more details).

The one-loop action is affected by the usual ultraviolet divergences of renormalizable

quantum field theories. As a consequence, the sum overj in Eq. (4.4) is not convergent (the

ultraviolet behaviour being encoded in the behaviour of the determinants forj → ∞), and the

usual renormalization procedure is needed. The expression

S1 = S0 +
1

2
ln SDetS ′′

0 [h]−
1

2
ln SDetS ′′

0 [0] ≡ S0 +∆S (4.7)

can be made finite by adding an appropriate set of local counterterms, which lead to a redefi-

nition of the bare couplings inS0. For example, in theMS scheme (dimensional regularization

with MS subtraction) the renormalized one-loop action can be written as

S1 = SMS0 +
[
∆S − (∆S)pole

]
, (4.8)

whereSMS0 is the lowest-order action expressed in terms of the renormalizedMS couplings, and

(∆S)pole is the divergent part of∆S defined according to theMS renormalization prescription.

Computing the full determinant ind = 4− 2ε dimensions would be an extremely difficult task.

However, this is not necessary. In fact, the divergent terms are all contained in∆S [2], defined

as the expansion of∆S up to second order in the ‘interaction’W :

∆S [2] =
1

2

[
ln SDet

(
−∂2 +W

)
− ln SDet

(
−∂2

)]
O(W 2)

=
1

2
STr

[
(−∂2)−1W

]
− 1

4
STr

[
(−∂2)−1W (−∂2)−1W

]
, (4.9)
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whereSTr = Tr or STr = −2Tr depending on whether it acts on boson or fermion fields. In

other words, the difference∆S −∆S [2] is ultraviolet-finite. Equation (4.8) can be rewritten as

S1 = SMS0 +
[
∆S −∆S [2]

]
+
[
∆S [2] − (∆S)pole

]
, (4.10)

where the two terms in square brackets are separately finite. The advantage of this last ex-

pression is that∆S [2] can be computed either as a (divergent) sum of terms corresponding to

different values of the angular momentum, which gives a finite result when subtracted from∆S,

or by standard diagrammatic techniques in4− 2ε dimensions. In the next subsections we shall

show how this procedure is implemented in practice.

The final result is expressed in terms of the renormalized parametersλ, gt andgi, whose

definitions depend on the renormalization scheme. Of course, the scheme dependence disap-

pears once these couplings are re-expressed in terms of physical observables, such as Higgs and

top pole masses. In practice, however, in the case of the gauge couplings it turns out to be more

convenient to directly use theMS definitions, since these parameters are accurately determined

by fitting multiple observables.

4.2 Higgs fluctuations

The relative corrections to the action due to fluctuations of the Higgs field are generally small

because the Higgs couplingλ is small; it is however important to consider them, because they

include the special zero-modes (eigenfunctions with zero eigenvalue) corresponding to trans-

lations (j = 1/2) and field dilatations (j = 0) of the bounce, as well as the unique negative

eigenvalue corresponding to space dilatations of the bounce. It is precisely the existence of this

negative eigenvalue that makes the false vacuum unstable. In this case the interaction term is

simply given by

W (r) = V ′′(h) = − 24R2

(r2 +R2)2
. (4.11)

It does not depend on any coupling constant, as expected, since the leading contribution to the

action is proportional to1/λ.

The solutions of the ‘free equation’∇Lu
j
0(r) = 0, regular inr = 0, are immediately

found to be proportional tor2j (see Eq. (4.3)). In order to exploit the result in Eq. (4.5), we

must compute the ratio

ρj(r) =
uj

W (r)

uj
0(r)

. (4.12)

The functionsρj(r) obey the differential equations

ρ′′j (r) +
4j + 3

r
ρ′j(r) = W (r) ρj(r) , (4.13)
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which can be solved analytically:

ρj(r) =
R4 + ajr

2R2 + bjr
4

(r2 +R2)2
, (4.14)

where

aj =
2j − 1

j + 1
; bj =

j(2j − 1)

(j + 1)(2j + 3)
. (4.15)

According to Eq. (4.5), we have therefore

ρj =
Det [−∇L +W (r)]

Det [−∇L]
= lim

r→∞ ρj(r) = bj . (4.16)

Let us neglect for the moment the contributions ofj = 0 andj = 1/2, for whichρj = 0. Taking

into account the multiplicities of the sub-determinants, we have

∆SHiggsj>1/2 =
1

2

∑
j>1/2

(2j + 1)2 ln ρj =
∑

j>1/2

[
−6j − 3− 3

2j
+

3

4j2
+ . . .

]
. (4.17)

As discussed in the previous section, we regularize this expression by subtracting from it the

terms obtained by solving Eq. (4.13) perturbatively inW . ReplacingW with εW , we define the

coefficientshij asρj(ε) = 1+εh1j +ε2h2j +O(ε3). These coefficients can be easily determined

numerically. The subtracted series is rapidly converging, and in practice the inclusion of the first

ten terms already provides an excellent approximation of the full result. We find

1

2

∑
j>1/2

(2j + 1)2 ln ρj − 1

2

∑
j≥0

(2j + 1)2
(
h1j − h21j +

h2j
2

)
= 12.6 . (4.18)

We now turn to a discussion of zero eigenvalues. The four zero-modes in thej = 1/2

sector correspond to translations of the bounce. They can be converted into a volume factor

following the procedure illustrated in [10], which amounts to replacingρ1/2 with

ρ′1/2 =
Det′ (S ′′

0 [h])1/2
Det (S ′′

0 [0])1/2
= lim

ε→0
Det [ε+ (S ′′

0 [h])1/2 ]/ε

Det (S ′′
0 [0])1/2

, (4.19)

and multiplying the expression for the tunnelling probability per unit volume by a factor√
S0[h]/2π for each of the four translation zero modes. This is the origin of the factorS20 [h]/(2π)

2

in Eq. (3.1), which, in our final result Eq. (3.3), is included infh. The elimination of the four

vanishing eigenvalues fromρ1/2 provides the dimensional factorR−4 in Eq. (3.2). In fact, after

numerical integration of the corresponding differential equation, we find

ρ′1/2 = 0.041R2 . (4.20)

10



As can be see from Eq. (4.15), there is another zero eigenvalue in thej = 0 sector. It arises

from the scale invariance of the tree-level potential: bubbles with different field value∼ 1/R

have the same tree-level action. Scale invariance is broken by quantum corrections, which shift

the zero eigenvalue by an amount ofO[g2i /(4πR)
2]. We can therefore computeρ0 by removing

the zero eigenvalue from the determinant as in Eq. (4.19), and replacing the zero eigenvalue

with a quantity ofO[g2i /(4πR)
2] (this small correction can in principle be extracted from theR

dependence of the one-loop bounce action [18]). This givesρ′0 ∼ −R2, and

1

2
ln |ρ0| ∼ 1

2
ln

∣∣∣∣∣ρ′0 g2t
(4πR)2

∣∣∣∣∣ = −2.5 (4.21)

for ρ′0 = −R2 andgt = 1. Note thatρ′0 is negative, as it should be because of the instability of

the electroweak vacuum [10].

Combining the results in Eqs. (4.18)–(4.21) we finally obtain

f
(1)
h ≡

[
(∆S ′ − 4 lnR)−∆S [2]

]
Higgs

= 4± 1 , (4.22)

where the quoted error is entirely ascribable to the uncertainty in Eq. (4.21). In Section 4.4,

f
(1)
h will be combined with analogous contributions generated by Goldstone boson fluctuations

to yield the constantfh in Eq. (3.3).

Renormalization

Following the general strategy discussed in Section 4.1, we now proceed to evaluate∆S [2] in

theMS scheme. The explicitd-dimensional expression of∆S [2], defined in Eq. (4.9), is

[
∆S [2]

]d

Higgs
=

3λµ4−d

2
∆1

∫
ddx h2(x)−9λ2µ2(4−d)

4

∫
ddx ddy h2(x)∆2(x−y)h2(y) , (4.23)

where

∆1 =
∫

ddk

(2π)d

1

k2
, (4.24)

∆2(x− y) =
∫ ddq

(2π)d
eiq(x−y)

∫ ddk

(2π)d

1

k2(k + q)2
, (4.25)

andµ is the usual mass scale that is introduced in dimensional regularization in order to keep the

action dimensionless. In dimensional regularization,∆1 = 0, and there is thus no contribution

to ∆S [2] from terms of orderO(W ). This is also true for theO(W ) terms in the fermion and

gauge sectors, as a consequence of our approximation of neglecting mass terms in the tree-level

potential. The second term in Eq. (4.23) can be written as

[
∆S [2]

]d

Higgs
= −9λ2µ4−d

4

∫
ddq

(2π)d

[
h̃2(q2)

]2
B0(q

2) , (4.26)

11



whereh̃2(q2) is thed-dimensional Fourier transform ofh2(x) and

B0(q
2) = µ4−d

∫ ddk

(2π)d

1

k2(k + q)2
=

1

(4π)2

[
1

ε̄
+ 2 + ln

µ2

q2

]
+O(ε̄) . (4.27)

Here1/ε̄ = 2/(d− 4)− γE + ln(4π) denotes the divergent part, to be subtracted according to

theMS prescription. We therefore have

(∆S)Higgspole = −1

ε̄

9λ2µ4−d

64π2

∫
ddq

(2π)d

[
h̃2(q2)

]2
. (4.28)

Since ∫
ddq

(2π)d

[
h̃2(q2)

]2
=
∫
ddx h4(x) , (4.29)

the divergent part in (4.26) is immediately recognized to have the same structure as the bare

action.

After subtraction of the1/ε̄ pole, the integral in Eq. (4.26) can be safely performed in four

dimensions (see Appendix B), leading to[
∆S [2] − (∆S)pole

]
Higgs

= − 9λ2

64π2

∫
d4q

(2π)4

[
h̃2(q2)

]2 [
2 + ln

µ2

q2

]
= −3L− 5

2
, (4.30)

whereL = ln(RµeγE/2). Combining the above result with Eq. (4.22), we obtain the full one-

loop correction to the action due to fluctuations of the Higgs field, renormalized in theMS

scheme.

4.3 Top fluctuations

The fermionic determinant due to fluctuations of the top-quark field assumes a form similar to

the bosonic one, if expressed in terms of the squared Dirac operator:

D/†D/ = −∂2 +
(
g2t
2
h2 +

gt√
2
∂/h

)
≡ −∂2 +W 2 , (4.31)

wheregt is the top Yukawa coupling. Indeed, we can write

∆Stop = −Nc

2

[
lnDet

(
D/†D/

)
− lnDet

(
−∂2

)]
, (4.32)

whereNc = 3 is the number of colours.

The only difference with respect to the Higgs case is the structure ofW . SinceW does not

commute withL2 because of the∂/h term, we cannot decompose the eigenfunctions as products

of scalar spherical harmonics times constant Dirac spinors. However, the spherical symmetry

of the bounce, which implies

∂/h(r) = x̂/h′(r) , x̂µ = xµ/r , (4.33)
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considerably simplifies the problem. Following Ref. [19], we decompose the fermionic field as

ψ(r, θ) =
∑

J=±3/2, ±5/2,...
[α1J(r)ψ1J(θ) + α2J (r)ψ2J(θ)] , (4.34)

whereαiJ(r) are scalar functions andψiJ (θ) are spinors written in terms of appropriate hy-

perspherical harmonic functions of multiplicityJ 2 − 1/4 (see Appendix A). In this basis the

equationD/†D/ψ = 0 becomes − d2

dr2 + J(J−1)
r2 +

g2
t

2
h2(r) gt√

2
h′(r)

gt√
2
h′(r) − d2

dr2 + J(J+1)
r2 +

g2
t

2
h2(r)

 [ α1J(r)
α2J(r)

]
= 0 . (4.35)

In the limit gt = 0 the two components of Eq. (4.35) are decoupled; forJ > 0 their solutions,

regular inr = 0, are given byα01J ∝ rJ andα02J ∝ rJ+1. Since Eq. (4.35) is invariant under

the exchangeJ ↔ −J , we shall consider in the following only the caseJ > 0, and include an

extra factor of 2 in the multiplicity of the solutions. Equation (4.35) can be cast in the form
ρ′′1J + 2

J

r
ρ′1J =

g2t
2
h2ρ1J +

gt√
2
h′ρ2Jr ,

ρ′′2J + 2
J + 1

r
ρ′2J =

g2t
2
h2ρ2J +

gt√
2
h′ρ1Jr−1 ,

(4.36)

whereρiJ (r) = αiJ(r)/α
0
iJ(r). The system Eq. (4.36) has two solutionsρk

iJ(r), k = 1, 2 with

initial conditionsρk
iJ (0) = δik. According to Ref. [17] we can finally write

∆Stop = −3
∑

J=IN+1/2

(
J2 − 1

4

)
ln

{
lim

r→∞ det

[
ρ11J(r) ρ21J(r)
ρ12J(r) ρ22J(r)

]}
. (4.37)

The sub-determinants at fixedJ can be computed by means of numerical methods. As usual,

the sum in Eq. (4.37) is divergent and we regularize it by subtracting the first two powers inW .

Sincegt appears always multiplied byh(r), the final result depends only on the ratiog2t /|λ|:[
∆S −∆S [2]

]
top

= −ft

(
g2t
|λ|

)
, (4.38)

and is plotted in Fig. 2 in the range of interest.

The evaluation of∆S [2] in dimensional regularization is very similar to the Higgs case.

We find [
∆S [2]

]d

top
=
Nc

4

∫
ddq

(2π)d

{
g4tµ

4−d[h̃2(q2)]2 + 2g2t q
2h̃2(q2)

}
B0(q

2) , (4.39)

which, after subtraction of the divergent terms, leads to[
∆S [2] − (∆S)pole

]
top

=
g4t

6|λ|2 (5 + 6L) +
g2t
6|λ| (13 + 12L) . (4.40)
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4.4 Gauge and Goldstone fluctuations

In order to evaluate quantum fluctuations in the sector of gauge fields we need to modify the

bare action introducing an appropriate gauge fixing. Both the correction to the potential and that

to the kinetic term are gauge-dependent, but they combine to give gauge-independent physical

quantities [20]. For example, at one loop, the divergent corrections change the Higgs action into

S =
∫
d4x

[
(1 + ZT )|Dµφ|2 + (1 + ZV )λ|φ|4

]
, (4.41)

and the gauge dependence ofZT andZV cancels in the combinationZV − 2ZT that determines

the RGE equation forλ. By requiring that the bounce action be an extremum under the transfor-

mationh(r) → h(ξr), one finds thatST = −2SV , whereST (SV ) is the ‘kinetic part’ (‘potential

part’) of the tree-level bounce actionS = ST + SV . Therefore, the divergent corrections to the

bounce action are gauge-independent. More generally, it was shown by Nielsen [21] that the

value of the effective potential at its minimum is gauge-invariant. Similarly, the value of the

effective action is also invariant, when evaluated over a field configuration that extremizes it. It

follows that the full corrections to the bounce action are gauge-independent.

The functional obtained after gauge fixing depends on gauge fieldsAa
µ, Goldstone bosons

Gb and Faddeev–Popov ghostsηc. We are only interested in the second functional derivative of

the action evaluated atAa
µ = Gb = ηc = 0 andh �= 0. This considerably simplifies the problem,

since we can ignore the non-Abelian part of gauge interactions. In the following, we will denote

with a suffixA the corrections to the action for a generic abelian gauge fieldAµ, with coupling

g. We can also ignore the fluctuations of the electromagnetic field: they vanish in the difference

∆S[h]−∆S[0] because the photon field is not coupled toh. The problem is thus equivalent to

the case of three independent Abelian fields: the twoW ’s and theZ.

Introducing a ’t Hooft–Feynman gauge-fixing term, which has proved to be the most

convenient choice for our calculation, the relevant part of the bare action can be written as∫
d4x

[
1

4
F 2µν +

1

2
(∂A − ghG)2 + |Dφ|2 + V (φ) + η∗[−∂2 +M(G, h)]η

]
, (4.42)

whereM(0, h) = g2h2/4. This choice of the gauge fixing term has the advantage that all terms

of the typeAµ∂µG and∂µ∂νAµ, generated by|Dφ|2 andF 2µν , respectively, are eliminated from

the equations of motion.

The ghost fields can be treated separately since the the second derivative of the action is

diagonal with respect to them. On the contrary, we cannot separateAµ andG, whose zero-

eigenvalue equation is given by[ −∂2δµν + 1
4
g2h2(r)δµν −gx̂µh

′(r)
−gx̂νh

′(r) −∂2 +
(
1
4
g2 + λ

)
h2(r)

] [
Aν(x)
G(x)

]
= 0 . (4.43)
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In order to solve Eq. (4.43) we need a suitable decomposition ofAµ in terms of spherical

harmonics. A convenient choice is provided by

Aµ(x) =
∑

j=0, 1
2

,1,...

[
a1j(r)x̂µ +

a2j(r)

2[j(j + 1)]1/2
r∂µ +

∑
i=3,4

aij(r)εµνρσV
(i)

ν xρ∂σ

]
Yj(θ) , (4.44)

where theaij(r) are scalar functions andV (i)ν are two generic orthogonal vectors. In this basis

the operatorL2 is diagonal with respect to the indexj and, at fixedj, mixes only the first two

components,a1j anda2j . Since∂µY0 = 0, the casej = 0 deserves special attention. For this

reason, we discuss separately the two casesj > 0 andj = 0.

Sub-determinantswith j > 0

As shown in Appendix A, forj �= 0 the zero-eigenvalue equation is
−∇L + 3

r2 +
1
4
g2h2(r) −4

√
j(j+1)

r2 −gh′(r)

−4
√

j(j+1)

r2 −∇L − 1
r2 +

1
4
g2h2(r) 0

−gh′(r) 0 −∇L + (1
4
g2 + λ)h2(r)


 a1j(r)
a2j(r)
Gj(r)

 = 0 ,

(4.45)[
−∇L +

1

4
g2h2(r)

]
aij(r) = 0 , i = 3, 4 , (4.46)

whereGj(r) are the components of a standard decomposition ofG(x) in spherical harmonics.

Interestingly, the componentsa3j anda4j , which are decoupled from the Goldstone boson

sector, obey exactly the same equation as the two components of the complex ghost field. The

latter contribute to the action with an opposite sign; therefore these two contributions cancel

against each other forj �= 0.

Equation (4.45) can be further simplified by means of a rotation in the(a1j , a2j) space,[
a1j
a2j

]
=

1√
2j + 1

[ √
j −√

j + 1√
j + 1

√
j

] [
ã1j
ã2j

]
, (4.47)

which diagonalizes it in the gauge sector. In this new basis we have
−∇L− + 1

4
g2h2 0 −gh′

√
j/(2j + 1)

0 −∇L+ + 1
4
g2h2 gh′

√
(j + 1)/(2j + 1)

−gh′
√
j/(2j + 1) gh′

√
(j + 1)/(2j + 1) −∇L + (1

4
g2 + λ)h2


 ã1j
ã2j
Gj

 = 0 , (4.48)

where∇L± denote the usual∂2 operator at fixed angular momentum, with eigenvalues shited

by j → j± 1/2. The free equation (h → 0) is now diagonal and, similarly to the top and Higgs

15



cases, can be easily solved. We finally obtain

ρ′′1j +
1 + 4j

r
ρ′1j =

1

4
g2h2ρ1j − rρ3jgh

′
√

j

2j + 1

ρ′′2j +
5 + 4j

r
ρ′2j =

1

4
g2h2ρ2j +

1

r
ρ3jgh

′
√

j + 1

2j + 1

ρ′′3j +
3 + 4j

r
ρ′3j =

(
1

4
g2h2 + λh2

)
ρ3j − 1

r
ρ1jgh

′
√

j

2j + 1
+ rρ2jgh

′
√

j + 1

2j + 1

,

(4.49)

where, as in the previous cases, we have defined

ρij =
ãij

ã0ij
, i = 1, 2; ρ3j =

Gj

G0j
. (4.50)

In complete analogy with the top case, the above system has three solutionsρk
ij(r) (k = 1, 2, 3),

with initial conditionsρk
ij(0) = δik, and the resulting correction to the action can be written as

∆SA
j>0 =

1

2

∑
j>0

(2j + 1)2 ln

 lim
r→∞det

 ρ11j(r) ρ21j(r) ρ31j(r)
ρ12j(r) ρ22j(r) ρ32j(r)
ρ13j(r) ρ23j(r) ρ33j(r)


 . (4.51)

All the determinants in Eq. (4.51) are different from zero and, as usual, their sum must be

regularized by the subtraction of∆S [2].

Sub-determinantwith j = 0

For j = 0 only the x̂µ component ofAµ is different from zero [A(j=0)µ = a10(r)x̂µ] and the

eigenvalue equation is[ − d2

dr2 − 3
r

d
dr

+ 3
r2 + 1

4
g2h2(r) −gh′(r)

−gh′(r) − d2

dr2 − 3
r

d
dr

+ (1
4
g2 + λ)h2(r)

] [
a10(r)
G0(r)

]
= 0 . (4.52)

This leads to 
ρ′′1 +

5

r
ρ′1 =

1

4
g2h2ρ1 − 1

r
ρ2gh

′

ρ′′2 +
3

r
ρ′2 =

(
1

4
g2h2 + λh2

)
ρ2 − rρ1gh

′
(4.53)

where, as usual,ρ1 = a10/a
0
10 andρ2 = G0/G

0
0. The absence of transverse components in

A(j=0)µ implies that thej = 0 sub-determinant of the ghost fields is not cancelled; it is obtained

as the large-r limit of the functionρη(r), where

ρ′′η +
3

r
ρ′η =

1

4
g2h2ρη . (4.54)
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Employing the usual notation for the two solutions of the system (4.52), we can write

∆SA
j=0 =

1

2
ln

{
lim

r→∞ det

[
ρ11(r) ρ21(r)
ρ12(r) ρ22(r)

]}
− ln lim

r→∞ ρη(r) . (4.55)

The 2 × 2 determinant in Eq. (4.55) contains a vanishing eigenvalue. This is present also in

the limit g = 0, and originates from the global symmetry of the action, which persists even

after the introduction of the gauge-fixing term. This corresponds to the possibility, for the false

vacuum, to tunnel in different directions with equal probabilities. As discussed in [16,22], the

fluctuations corresponding to global rotations can be converted into an integral over the group

volume. These zero-mode fluctuations probe the non-abelian structure of the gauge group, so

that we can no longer compute separately theZ,W± contributions. Considering the full gauge

group, we obtain

e−∆Sgauge = 16π2
[
1

2π

∫
d4x h2(r)

]3/2
e−∆S′

gauge ≡ R3e−f
(2)
h

−∆S′
gauge , (4.56)

where the factor16π2 is the volume of the brokenSU(2) group. The resulting integral ofh2

is logarithmically infrared divergent, as a consequence of our approximation of neglecting the

mass term in the Higgs potential, which would have acted as an infrared regulator. For this

reason, we cut off the integral in Eq. (4.56) atr = 1/v. The result, forRv � 1, is

f
(2)
h = −3

2
ln

[
217/3π7/3

|λ| ln
1

Rv

]
+O(1/ lnRv) . (4.57)

This vanishing eigenvalue is the only aspect of our calculation that is sensitive to the infrared

behaviour of the potential, and therefore beyond the control of our approximation. However,

the sensitivity to the infrared cut-off is mild and does not induce an appreciable numerical

uncertainty.

Once the vanishing eigenvalues have been removed from thej = 0 sub-determinant, the

latter acquires a dimensional factor that is compensated by the factorR3 in Eq. (4.56).

Final resultfor thegaugesector

Summing the regularized gauge and Goldstone corrections, we finally obtain

∆Sgauge = 2fg

(
g22
|λ|

)
+ fg

(
g2Z
|λ|

)
+ f

(2)
h + 3f

(3)
h , (4.58)

where

f
(3)
h = lim

g→0

[
(∆S ′

j=0 − lnR) + ∆Sj>0 −∆S [2]
]A ≈ 2 (4.59)
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Figure 4: Metastability region of the Standard Model vacuum in the (mH , mt) plane, for
αs(mZ) = 0.118 (solid curves). Dashed and dot-dashed curves are obtained for αs(mZ) =
0.118 ± 0.002. The shaded area indicates the experimental range for mt. Sub-leading effects
could shift the bounds by ±2 GeV in mt.

and

fg

( g2
|λ|

)
=
[
(∆S ′

j=0 − lnR) + ∆Sj>0 −∆S [2]
]A − f

(3)
h , (4.60)

so thatfg(0) = 0. The functionfg, obtained by means of numerical integration, is plotted in

Fig. 2. The constantsf (2)h , f
(3)
h can finally be combined withf (1)h in Eq. (4.22) and with the

translation prefactorsS20/(2π)
2 to yield

fh = f
(1)
h + f

(2)
h + 3f

(3)
h − ln

16π2

9λ2
=

7

2
ln |λ| − 8± 1 . (4.61)

This numerical estimate has been obtained withRv = 10−14, but it is very mildly sensitive to

the value ofRv.

In analogy with the previous cases, dimensional regularization leads to

[
∆S [2]

]d

A
= −1

4

∫
ddq

(2π)d

{[
(d− 2)

g4

16
+

(
g2

4
+ λ

)2 ]
µ4−d[h̃2(q2)]2 − 2g2q2h̃2(q2)

}
B0(q

2) ,

(4.62)

which, after subtraction of the divergent terms, reduces to[
∆S [2] − (∆S)pole

]A

= −5 + 6L

18
− g2

|λ|
7 + 6L

12
− g4

λ2
1 + 2L

32
. (4.63)
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5 Results

Using Eq. (3.2), the conditionp < pmax can be translated into an upper bound on|λ(µ)|:

|λ(2e−γE/R)| <
8π2/3

ln(VU/R4)−∆S − ln pmax

=
0.065

1− [ln(Rv) + ln(T 0U/TU)] /100− [∆S + ln pmax] /400
, (5.1)

where∆S is computed atL = ln(RµeγE/2) = 0, VU = T 4U andT 0U = 1010 yr. Equation (5.1)

must be satisfied for all values ofR. From this inequality, a lower limit onmH can be obtained

by integrating the two-loop RGE equations [13] forλ, gt and the three gauge couplingsgi. The

initial values ofλ andgt atµ = v are related to the values ofmH andmt by the matching condi-

tions given in [14] and [15], respectively. As in most recent analyses of the Higgs potential [3],

we include the finite two-loop QCD correction in the relation betweengt(mt) and the top pole

massmt. The latter is formally a higher-order contribution, and can be used to estimate the

theoretical uncertainty in the determination ofλ(µ) at high scales.

Stability and metastability bounds in the(mH , mt) plane are shown in Fig. 4, which has

been obtained withpmax = 1. The metastability condition can be approximated as

mH(GeV) > 117+2.9 [mt(GeV)− (175± 2)]−2.5

[
αs(mZ)− 0.118

0.002

]
+0.1 ln

(
TU

1010 yr

)
,

(5.2)

while the absolute stability bound is given by

mH(GeV) > 133 + 2.0 [mt(GeV)− (175± 2)]− 1.6

[
αs(mZ)− 0.118

0.002

]
. (5.3)

The numerical impact of∆S is rather weak, provided the renormalization scale is chosen such

thatL = 0: for mH = 115 GeV, a correction∆S = 50 shifts the metastability bound by

1 GeV in mt. For this reason, our results are numerically close to those obtained in [12] (at

zero temperature), where this correction was not included. Note that one could have expected

a larger effect, because of the large value of the top Yukawa couplinggt at the weak scale.

However, the relevant quantity here isgt(1/R), with 1/R ∼ 1016 GeV, which is substantially

smaller thangt(mt).

The uncertainties in the determination of∆S turn out to be negligible with respect to

the uncertainties involved in the determination ofλ(µ) at high scales. We estimate the latter

to generate an errorδmt ∼ 2 GeV at fixedmH andαs, both in the stability and metastability

bounds, as shown in Eqs. (5.2) and (5.3).

Some comments are in order:
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• Vacuum decay can also be catalysed by collisions of cosmic rays. However, it has been

shown [23] that the tunnelling rate induced by such processes is negligible with respect

to the probability of quantum tunnelling.

• Thermal tunnelling gives stronger bounds than quantum tunnelling only under the as-

sumption that the temperature of the universe has been above108 − 109 GeV (formH =

115 GeV).

• We have assumed the validity of the Standard Model up to the Planck scale. Experiments

at Tevatron run IIB can reduce the error onmt down to±2 GeV [25] and possibly discover

the Higgs and measure its mass ifmH < 130GeV. Some extension of the SM will become

necessary, shouldmH andmt be found in the excluded region. All concrete modifications

invoked to cure this problem give a computable correction to the squared Higgs mass; for

example, a scalar with mass̃m and a coupling̃λ to the Higgs givesδm2H ∼ λ̃m̃2/(4π)2.

Sinceλ̃ cannot be too small, by naturalness arguments we expect the scalem̃ of new

physics to be in the electroweak range.

• All observed neutrino anomalies could be explained in terms of neutrino oscillations with-

out affecting our result [24].

6 Conclusions

All recent LEP1, LEP2, SLD and Tevatron data are compatible with the Standard Model with

mt ≈ 175 GeV and a light Higgs, maybemH ≈ 115 GeV [5]. It is well known that the

Standard Model is affected by the so-called hierarchy problem, which manifests itself through

uncomputable quadratically divergent corrections to the Higgs squared mass. The extensions

of the theory proposed to cure this potential problem are likely to involve the presence of new

phenomena not far above the electroweak scale. However, a definite solution of the naturalness

problem is not yet established, and it is interesting to consider the possibility that it be solved

by some unknown mechanism that takes place around the Planck scale. Even within this as-

sumption, a possible phenomenological problem affects the SM, namely the possibility that the

scalar potential become unbounded from below at large field values, below the Planck scale.

FormH = 115 GeV such instability is present if the top mass is larger than(166± 2) GeV, i.e.

only about two standard deviations below the central value of the Tevatron data.

The instability of the SM vacuum does not contradict any experimental observation, pro-

vided its lifetime is longer than the age of the universe. In semi-classical approximation, this

happens if the running quartic Higgs couplingλ is larger than about−0.05. In this paper we

have presented a more accurate assessment of this bound by performing a full next-to-leading
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order computation of the tunnelling rate of the metastable vacuum. In particular, we have com-

puted the one-loop corrections to the bounce action. Our result is summarized in Eq. (3.3)

and plotted in Fig. 4. Next-to-leading corrections turn out to be numerically small, with an

appropriate choice of the renormalization scale (µ = 1/R), but they allow fixing the various

ambiguities of the semi-classical calculation, thus reducing the overall uncertainty of the result.

We find that, formH = 115 GeV (that is, just above the present exclusion limit), the instability

is dangerous only formt > (175 ± 2) GeV; this result does not depend on the unknown new

phyiscs at the Planck scale. A determination ofmt at this level of accuracy would therefore be

extremely interesting in this respect, and will probably be achieved at Tevatron run II.
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A Spherical harmonics

The spherical harmonicsYjmm′(θ) are eigenfunctions ofL2 = LµνLµν , where

Lµν =
i√
2
(xµ∂ν − xν∂µ) , (A.1)

with eigenvalues4j(j + 1); the indicesm,m′ range between−j andj (with j = 0, 1/2, 1, . . .)

giving the multiplicity(2j + 1)2. This multiplicity can be understood by noting that the group

of rotations in four dimensions isO(4) ∼ SU(2) ⊗ SU(2), and its scalar representations cor-

respond toSU(2) ⊗ SU(2) representations(l, k) with l = k [26]. The indicesm,m′ will be

omitted in the following.

Spin-1/2 representations are obtained forl = k ± 1/2. The indexJ that appears in

Eq. (4.34) is related tol andk through

J = 2k +
3

2
for l = k +

1

2
, k = 0, 1/2, 1, . . . ; (A.2)

J = −2k − 1

2
for l = k − 1

2
, k = 1/2, 1, . . . . (A.3)

Therefore, the multiplicity of the representation labelled byJ is (2k + 1)(2l + 1) = J 2 − 1/4.

The action of the operatorD/ on the(l, k) spinor representations can be found in Ref. [19].

In the case of vector representations, it is straightforward to work out the action of∂2 on

Aµ(x) as in Eq. (4.44). Using Eq. (4.3) we find

∂2a1j x̂µYj(θ) =
[
a′′1j + 3

a′1j
r

− a1j
L2 + 3

r2

]
x̂µYj(θ) + a1j

2

r
∂µYj(θ) (A.4)
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∂2a2jr∂µYj(θ) =
[
a′′2j + 3

a′2j
r

− a2j
L2 − 1

r2

]
r∂µYj(θ) + a2j

2L2

r2
x̂µYj(θ) (A.5)

∂2aijεµνρσV
(i)

ν xρ∂σYj(θ) =
[
a′′ij + 3

a′ij
r

− aij
L2

r2

]
εµνρσV

(i)
ν xρ∂σYj(θ) . (A.6)

Therefore, we have ∫
d4xAµ∂

2Aµ =
∑

j

∫
r3dr aij(r)D

(j)
ik akj(r) , (A.7)

where, with an appropriate normalization of the two vectorsV (i)µ ,

D(j) =
d2

dr2
+

3

r

d

dr
− 4j(j + 1)

r2
+


− 3

r2

4
√

j(j+1)

r2 0 0
4
√

j(j+1)

r2
1
r2 0 0

0 0 0 0
0 0 0 0

 . (A.8)

B Fourier transform of the bounce

The four-dimensional Fourier transform of a functionf , depending only on the radial coordinate

r, is given by

f̃(p2) ≡
∫
d4xeipµxµf(r) =

4π2

p

∫ ∞

0
dr r2f(r)J1(pr) , (B.1)

wherep2 = pµpµ and

J1(pr) =
pr

π

∫ π

0
dθ sin2 θ eipr cos θ . (B.2)

In the case of the bounce we find

h̃(p2) =
4π2

p

∫ ∞

0
dr r2h(r)J1(pr) =

8
√
2π2R2K1(pR)

p
√
|λ|

, (B.3)

h̃2(p2) =
4π2

p

∫ ∞

0
dr r2h2(r)J1(pr) =

16π2R2

|λ| K0(pR) . (B.4)

The functionsKn(x) andJn(x) are Bessel functions defined as in Mathematica [27].
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