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A unified approach to total cross-sections, based on the QCD contribution to the

rise with energy, is presented for the processes pp, pp̄, γp, γγ, e+e− → hadrons.

For proton processes, a discussion of the role played by soft gluon summation in

taming the fast rise due to mini-jets is presented. For photon-photon processes,

a comparison with other models indicates the need for precision measurements

in both the low and high energy region, likely only with measurements at future

Linear Colliders.

1 Introduction

This paper describes our approach towards a QCD description of total cross-sections,
examining both proton and photon processses. In recent years, data have become
available for a complete set of processes. In addition to proton-proton and proton-
antiproton, γp [1, 2] and γγ [3, 4, 5] total cross-sections are now known over a sufficiently
extended energy range to allow for the observation of the rise with energy of all these
cross-sections and one can aim to obtain a unified description. In what follows, we shall
describe a QCD based approach for the energy dependence of the total cross-section,
based on the Minijet model[6, 7] concerning the rise, and the use of soft gluon summation
techniques, not only, to tame this rise[8] but also to obtain the early decrease. We start
with purely hadronic cross-sections and then look in detail to photon-photon processes.
For these, we discuss various models[9] and the precision needed for discrimination
between them. Some of these models are based on the above mentioned QCD approach,
others rely strictly on factorization[10] while some others are a mixture of both[11, 12,
13, 14, 15].
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2 A QCD Approach

The task of describing the energy behaviour of total cross-sections can be broken down
into three parts:

• the rise

• the initial decrease

• the normalization

It has been known for quite some time, now, that the rise[16] can be obtained using the
QCD calculable contribution from the parton-parton cross-section, whose total yield
increases with energy[17]. It is not easy however to properly model this rise so as to
reproduce correctly the slope, and we believe that soft gluon radiation, is the key to
tame the rise due to hard gluon radiation. The distinction between soft and hard is so far
arbitrary, but in this context we call soft gluons as those which do not undergo scattering
against another parton in the colliding hadron, hard gluons as those which participate
in the perturbative parton-parton scattering. This distinction corresponds to saying
that the soft gluons have wavelength too long to see the content of the scattering area.
It should be noted that the definition of the scattering area is energy dependent, since
at very high energy, our physical picture of the scattering region is that of an expanding
disk. We shall return to this point in later sections.

To see how the jet cross-section can contribute to the rise, consider the quantity

σjet(s; ptmin) =
∫
ptmin

dpt
dσjet

dpt
=

∑
i,j,k,l

∫
fi/a(x1)dx1

∫
fj/b(x2)dx2

∫
dσ̂(ij → kl)
dpt

dpt

(1)
where the sum goes over all parton types. This quantity is a function of the mini-
mum transverse momentum ptmin of the produced jets and can be calculated using the,
phenomenologically determined, parton densities for protons and photons. We show in
Fig.1 the QCD jet cross-sections with ptmin = 2 GeV obtained using GRV[18] densi-
ties for the three processes proton − proton, γ proton and γγ, normalized so as to be
compared with each other. The rise with energy for any fixed value of ptmin is clearly
observed. Notice that the rise is stronger for smaller values of ptmin, whose value is a
measure of the smallness of the x-values probed in the collision. Thus different densi-
ties, which correspond to different small-x behaviour, give different results for the same
ptmin. In all cases however, what one observes is that σjet rises too fast to describe
σtot. For a unitary description, the jet cross-sections are embedded into the eikonal
formalism[19], in which

σtot
pp(p̄) = 2

∫
d2�b[1− e−χI(b,s)cos(χR)] (2)

with χ = χR + iχI , the eikonal function which contains both the energy and the trans-
verse momentum dependence of matter distribution in the colliding particles, through
the impact parameter distribution in b-space. The physical picture described by the
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Fig. 1: Integrated jet cross-sections for ptmin = 2 GeV .

eikonal representation is that of two colliding hadronic disks, with partons providing the
basic scattering constituents, distributed in the two hadrons according to an, a priori,
unknown matter distribution. Thus, schematically, at any given c.m. energy

√
s and

transverse distance, χI(b, s) should be obtained by integrating the differential cross-
section over all subenergies and initial momenta of the colliding partons. In the Eikonal
Minijet Model (EMM) one approximates χR ≈ 0 and calculates χI through the average
number of collisions, from the definition of the inelastic cross-section. The simplest
formulation, which incorporates the mini-jet assumption that it is the jet cross-section
which drives the rise, is given by

2χI(b, s) ≡ n(b, s) = A(b)[σsoft + σjet] (3)

so as to separate the calculable part, σjet, from the rest, to be parametrized. The
normalization depends both on σsoft and on the b-distribution. For the latter, the
simplest hypothesis, is that it is given by the Fourier transform of the e.m. form factors
of the colliding particles, i.e.

Aab(b) ≡ A(b; ka, kb) = 1
(2π)2

∫
d2�qe�q·�bFa(q, ka)Fb(q, kb) (4)

where ki are the scale factors entering into the form factors. The problem with such
straightforward formulation for protons is that presently used gluon densities like GRV
have such an energy dependence that it is not possible, with the above scheme, and
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without further approximations, to simultaneously describe both the early rise and the
high energy end. For instance, it is possible to describe the early rise, which takes place
around 10 ÷ 30 GeV for proton-proton and proton-antiproton scattering, using GRV
densities and a ptmin 	 1 GeV , but then the cross-sections start rising too rapidly,
whereas a ptmin ≈ 2 GeV can reproduce the Tevatron points[20, 21], but it misses
the early rise. This can be seen in Fig.(2). To cure this difficulty, a QCD model for
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Fig. 2: Comparison between data[22] and predictions from the EMM (see text), for different

minimum jet transverse momentum.

the impact parameter distribution of partons has been proposed[8]. In this model the
function A(b, s) tames the rise at high energy induced by σjet. Technically this happens
because the proposed function, as the energy increases, is more and more suppressed at
large b. Physically this reflects the fact that as the energy increases, the partons become
more and more acollinear, due to soft gluon emission, and the probability of collisions is
reduced. To obtain such effect, it was proposed that the normalized function A(b, s) is
obtained as the Fourier transform of the trasverse momentum distribution of colliding
parton pair. In the leading order, the parton pair has zero transverse momentum as
each parton is emitted along the direction of its parent proton. But, at high energy,
this cannot be true, and the colliding valence quarks will have a degree of acollinearity,
which can be calculated using soft gluon resummation tecnniques. The distribution
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thus obtained, labelled Bloch-Nordsieck distribution[23], is the following

ABN (b, s) = F [PBN ] =
e−h(b,s)∫
d2�be−h(b,s)

(5)

with

h(b, s) =
8
3π

∫ qmax

0

dk

k
αs(k2) ln(

qmax +
√
q2max − k2

qmax −
√
q2max − k2

)[1 − J0(kb)] (6)

and qmax is a slowly increasing function of energy, which depends on the kinematics of
the process[24].

Such a total cross-section formulation exhibits a scale dependence through the QCD
coupling constant αs, basically

• through the well known and clearly defined pt-dependence in parton-parton colli-
sions, which we take to be αs(p2tmin) with ptmin ≥ 1÷ 2 GeV ,

• through the kt dependence of the initial colliding partons, obtained from soft
gluon emission.

This latter dependence needs to be clarified further. The integral in eq.(6) extends
down to kt = 0 and one needs to model the infrared behaviour of αs in order to carry
through the quantitative application of this Bloch-Nordsieck ansatz. It clearly follows
from eqs.(5,6) that the more singular αs is as kt → 0, the larger the function h(b, s) is
at large b-values and the faster is the fall of the function e−h(b,s) with increasing b. On
the other hand, as the energy of the colliding particles increases, qmax is larger causing
the function h(b, s) to be larger, producing a suppression at high energy, for large b.
The overall result is that the behaviour of A(b, s) at large b is determined by

• higher
√
s producing larger qmax and more emission

• singular behaviour of αs in the infrared region producing also many more soft
gluons

The above considerations can be made quantitative, by introducing an average over the
parton densities and assuming an approximate factorization between the transverse and
the longitudinal degrees of freedom, i.e.

n(b, s) ≈ nsoft + nhard ≈ nsoft +ABN (b,< qmax >)σjet (7)

The following average expression for < qmax > was proposed in [8],

M ≡< qmax(s) >=
√
s

2

∑
i,j

∫
dx1
x1
fi/a(x1)

∫
dx2
x2
fj/b(x2)

√
x1x2

∫ 1

zmin
dz(1− z)∑

i,j

∫
dx1
x1
fi/a(x1)

∫
dx2
x2
fj/b(x2)

∫ 1

zmin
dz

(8)

with zmin = 4p2tmin/(sx1x2) and fi/a the valence quark densities used in the jet cross-
section calculation.
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M establishes the scale which, on the average, regulates soft gluon emission in the
collisions, whereas ptmin provides the scale which characterizes the onset of hard parton-
parton scattering. For any parton parton subprocess characterized by a ptmin of 1 ÷
2 GeV , M has a logarithmic increase at reasonably low energy values and an almost
constant behaviour at high energy[8]. In Fig.(3) we plot the quantity M as a function
of

√
s.
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Fig. 3: The average maximum energy allowed to soft gluon emission in jet production as a

function of
√

s for various ptmin values and with GRV94 densities

With the quantity qmax thus determined, one can now calculate the Bloch-Nordsieck
distribution function A(b,s), using different ansätze for the functional expression for αs
in the kt going to zero limit. It must be noticed that what enters in all calculations is not
so much αs as such, but rather its integral over the infrared region. Thus in principle
from a phenomenological point of view, even a singular αs can be used, provided it is
integrable. Two models have been looked in detail so far, the frozen[25, 26] αs model,
in which

αs(k2t ) =
b

log(a2 + k2t /Λ2)
(9)

and the singular[27] αs model, in which

αs(k2t ) =
b′

log(1 + (k2t /Λ2)2p)
kt→0−→ 1

k2pt
(10)

is singular, but integrable for p < 1. One can now calculate the overlap function ABN (b)
for frozen and singular αs cases and compare it with the Form Factor model, as shown
in Fig. 4.

The different behaviour of A(b, s) in the large b region, changes the energy behaviour
of the average number of collisions in this region, with the result that the cross-section
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Fig. 4: Comparison of the A(b,s) for the Form factor model with that in BN model, for frozen

αs (left panel) and for singular αs, for various values of the parameter p (right panel).

indeed rises much less rapidly when the singular αs model is used. We compare the
three different models for the case of proton-proton and proton-antiproton scattering
in Fig.(5), where the early decrease and normalization have been described, in all three
cases, using the Form factor model and a parametrization of low energy data with 5
parameters. The rise on the other hand is described using σjet and the three different
b-distribution functions just described. Notice that, for the three models, we have
used different values of ptmin in the jet cross-section, since we wanted to have curves
passing through the high energy points. We see that the EMM model for protons using
current parton densities like GRV does not reproduce well the initial rise with energy,
and the same is also true for the frozen αs model. For a comparison, we also show
the QCD inspired description, labelled BGHP, used in the Aspen model [10] to predict
photon cross-sections through factorization. What this exercise shows is that the energy
behaviour of the total cross-section is determined both by soft gluon emission, and by
hard gluons. Work is in progress to determine whether soft gluon emission, which
produces a decrease of the cross-section with energy, plays a role also in the initial low
energy region, the so called Regge region.

3 Photon processes

We now turn to discuss processes with photons, like photo-production or e+e− →
hadrons, a process which, at high energy, is dominated by γγ → hadrons. Again
the main characteristics of the photonic cross-sections, are the overall normalization,
the rise past

√
s ≈ 10 GeV , and an initial decrease. For γγ, the errors on the overall

normalization at low energy are so large that the initial decrease is hard to parametrized,
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not so for γp. In this paper, we do not address the question of the low energy behaviour,
which is simply obtained from the hadronic processes, through scaling hypotheses. For
the normalization, one uses Vector Meson Dominance and Quark Parton Model ideas,
by defining a quantity Phad =

∑
V=ρ,ω,φ

4πα

f2
V

which represents the probability that a
photon exhibits a hadronic content. The eiknoal formulation then has to be modified
to take this into account [28] and is written as[29]

σtot = 2Phad
∫
d2�b[1− e−χI (b, s)] (11)

with 2χI(b, s) = A(b)[σsoft + σjet/Phad] with the notation of the previous section. In
this approach, P γγhad = (P γphad)

2 ≈ (1/240)2, at √
sγγ ≈ 100 GeV . This factorization

ansatz seems to work reasonably well. The soft part of the cross-section, which defines
the normalization, is obtained from the number of quarks in the colliding particles,
through a simple scaling factor, i.e. σγpsoft =

2
3σ

pp
soft and σ

γγ
soft =

2
3σ

γp
soft. As for the rise,

the eikonal minijet model of course uses jet cross-sections with the appropriate photon
densities. We should mention that there are at present at least two other models, which
obtain not only the rise, but the entire cross-section from the proton cross-section,
using factorization [10, 11] or a Regge-Pomeron type behaviour[12, 13]. We show in
Fig.(6) old [22] and recent [30] data for γp total cross-section, together with BPC data
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extrapolated [31] from DIS[32], compared with a band which represents the predictions
from the EMM model, using two different formulations[33] with GRS[34] and GRV[18]
type densities for the photonic partons. This band is compatible with the predictions for
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Fig. 6:

γγ, for which we show in Fig. (7), our favourite curve for the recent data from LEP[4].
The b-dependence in these figures is obtained from an intrinsic transverse momentum
description [6], using the experimentally measured transverse momentum distribution
of the photonic partons [35]. Work is in progress to apply to photonic processes the
Bloch-Nordsieck approach described in the previous section.

4 Precision needed to discriminate betwen models

It is instructive to compare different models among each other, also in view of the
proposed electron-positron Linear Collider which should reach very high c.m. ener-
gies, with √

sγγ potentially as high as 500-700 GeV (if operated in the photon collider
mode). This comparison between various model predictions is shown in Fig.(8). The
stars for large energy values correspond to pseudo-data points, and illustrate a possible
extrapolation of the measured cross-section with realistic errors[36].

In Table 1 we show total γγ cross-sections for three models of the ”proton-is-like-
the-photon’ type. The last column shows the 1σ level precision needed to discriminate
between Aspen[10] and BSW[11] models. The model labelled DL is obtained from



10 R.M. Godbole, A. Grau, G. Pancheri and Y.N. Srivastava

100

200

300

400

500

600

700

800

900

1000

1 10 10
2

10
3

√s (GeV)

σ to
t(n

b
)

LEP2-L3 189 GeV and
 192-202 GeV

 TPC
Desy 1984
DESY 86
LEP2-OPAL 189 GeV

GRS tot ptmin=1.5 GeV
k0=0.4 A=0 Phad=1/240

Fig. 7:

Table 1 Total γγ cross-sections and required precision for models based on factorization

√
sγγ(GeV ) Aspen BSW DL 1σ

20 309 nb 330 nb 379 nb 7%
50 330 nb 368 nb 430 nb 11%
100 362 nb 401 nb 477 nb 10%
200 404 nb 441 nb 531 nb 9%
500 474 nb 515 nb 612 nb 8%
700 503 nb 543 nb 645 nb 8%

Regge/Pomeron exchange with parameters from Donnachie and Landshoff[12] and fac-
torization at the residues. The difference between DL and either Aspen or BSW is
bigger than between Aspen and BSW at each energy value.

Similar tables can be drawn for distinguishing among different formulations of the
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Eikonal Minijet Model or between the EMM and other QCD based models, like BKKS
[15]. Part of the problem in comparing data with theoretical expectations and hence
make predictions for future machines, lies in the fact that the total cross-section for
photon processes is difficult to measure, and theoretically difficult to define. A less un-
certain quantity is actually the e+e− cross-section into hadrons, which is the quantity
from which the γγ cross-sections are extracted. Thus it may be more appropriate to
fold different model predictions for γγ cross-sections, with the photon distribution in
the electrons taking into account the (anti)tagging of the electrons [37] and compare
the resultant uncertainties. We show one such folding, using the Weiszäcker Williams
approximation, with two different models for σtotγγ , EMM with GRV densities and the
Aspen model, in Fig.(9). We see that as a result of the folding, the difference be-
tween different model predictions of a factor 2 or so get reduced to about 30%. Given
the expected experimental errors at the future linear colliders it would be possible to
discriminate between different theoretical models for γγ cross-sections even at a e+e−

collider [36].
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5 Conclusion

A QCD approach to the calculation of total cross-section based on the eikonal formula-
tion, shows that QCD can describe the rise for both, photon and proton, processes. For
protons there exist extensive and very accurate data, and it is seen that a treatment
of both hard and soft gluon emission needs to be used in order to reproduce the rise
at intermediate and high energies. Photon processes are still characterized by large ex-
perimental errors and the Eikonal Minijet Model, with only hard gluon scattering and
fixed intrinsic transverse momentum for the photon, appears adequate. However, there
exist models which are consistent with the current data within the experimental errors
and which predict a much slower rise at higher energies. A more complete treatment
would be required for data with much smaller experimental errors, likely only with
measurements at the future Linear Colliders.



Total Cross-Sections 13

6 Ackowledgments

We acknowledge support from the EEC, TMR contract 98-0169.

References

[1] H1 Collaboration, Aid, S., et al.,: Zeit. Phys. C 69 (1995) 27; , hep-ex/9405006.

[2] ZEUS Collaboration, Derrick, M., et al., Phys. Lett. B 293, 465 (1992); Derrick, M., et
al., Zeit. Phys. C 63, 391 (1994).

[3] L3 Collaboration, Paper 519 submitted to ICHEP’98, Vancouver, July 1998; Acciarri, M.,
et al., Phys. Lett. B 408, 450 (1997); L3 Collaboration, Csilling, A., Nucl.Phys.Proc.Suppl.
B 82, 239 (2000); L3 collaboration, L3 Note 2548, Submitted to the International High
Energy Physics Conference, Osaka, August 2000.

[4] L3 Collaboration, Acciarri, M., et al., CERN-EP 2001-012, submitted for publication.

[5] OPAL Collaboration. Waeckerle, F., Multiparticle Dynamics 1997, Nucl. Phys. Proc.
Suppl.B 71, 381 (1999) edited by G. Capon, V. Khoze, G. Pancheri and A. Sansoni;
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