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Abstract
We propose a systematic way of constructing N = 2, d = 4 superfield Born-Infeld action

with a second nonlinearly realized N = 2 supersymmetry. The latter, together with the manifest
N = 2 supersymmetry, form a central-charge extended N = 4, d = 4 supersymmetry. We embed
the Goldstone-Maxwell N = 2 multiplet into an infinite-dimensional off-shell supermultiplet of
this N = 4 supersymmetry and impose an infinite set of covariant constraints which eliminate all
extra N = 2 superfields through the Goldstone-Maxwell one. The Born-Infeld superfield
Lagrangian density is one of these composite superfields. The constraints can be solved by
iterations to any order in the fields. We present the sought N = 2 Born-Infeld action up to the
10th order. It encompasses the action found earlier by Kuzenko and Theisen to the 8th order
from a self-duality requirement. This is a strong indication that the complete N = 2  Born-Infeld
action with partially broken N = 4 supersymmetry is also self-dual.
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1 Introduction

For many reasons it is important to know off-shell superfield actions of supersymmetric exten-
sions of the Born-Infeld (BI) theory [1]-[6] and to understand the geometry behind them. One
of the basic sources of interest in such actions is that their notable subclass, the BI actions
with a hidden extra nonlinearly realized supersymmetry, provides a manifestly worldvolume
supersymmetric description of various Dp-branes in a static gauge [2]. As was demonstrated in
[3] (see also [4]), this sort of BI actions supplies a nice example of systems with partial spon-
taneous breaking of global supersymmetry (PBGS). The covariant superfield gauge strengths
in terms of which such actions are formulated, can be identified with the Goldstone super-
fields supporting a nonlinear realization of some underlying extended supersymmetry. The
manifest supersymmetry of the given BI action is the linearly realized half of the underlying
supersymmetry.

At present, the Goldstone superfield BI actions are known in a closed explicit form only for
the 1/2 PBGS options N = 2 → N = 1 in d = 4 [3, 4] and d = 3 [5]. They amount to the
worldvolume actions of the spacetime-filling D3- and D2-branes in a fixed gauge and involve,
respectively, the N = 1, d = 4 and N = 1, d = 3 vector multiplets as the Goldstone ones.

In [7, 8] it was suggested that, by analogy with the construction of ref. [3], N = 2, d = 4
vector multiplet could serve as the Goldstone multiplet for the 1/2 spontaneous breaking of
N = 4, d = 4 supersymmetry. The associated Goldstone superfield action should be a particular
representative of the N = 2 supersymmetric BI actions, such that it possesses a hidden N = 2
supersymmetry in parallel with the manifest one. By inspection of the component field content
of the N = 2 vector multiplet, it is obvious that such action should describe a D3-brane in
D = 6, with the scalar component fields parameterizing two transverse directions. The N = 2
BI action constructed in [6] reveals no hidden extra supersymmetry [9] and so it can be regarded
merely as a part of the hypothetical genuine N = 4 → N = 2 BI action.

In recent papers [10, 11] we showed how the full set of superfield equations describing the
N = 2 → N = 1 BI system in d = 3 and the N = 2 → N = 1, N = 4 → N = 2 and
N = 8 → N = 4 ones in d = 4 can be deduced from the customary nonlinear realizations
approach applied to the relevant PBGS patterns. A characteristic common feature of these
superfield systems is that the pure BI part of the corresponding bosonic equations always
appears in a disguised form in which the Bianchi identity for the Maxwell field strength and
the dynamical equation are mixed in a tricky way. On the other hand, the equations for the
scalar fields (in the N = 4 → N = 2 and N = 8 → N = 4 cases in which the Goldstone
vector multiplets include such fields) come out in a form explicitly derivable from the standard
static-gauge Nambu-Goto actions. The disguised form of the BI equations can be split into the
kinematical and dynamical parts by a nonlinear equivalence redefinition of the corresponding
bosonic component field. As was demonstrated in [11] for the N = 4 → N = 2 example, the
superfield version of this redefinition is an equivalence transformation from the original basic
N = 2 Goldstone superfield to the standard N = 2 Maxwell superfield strength. It enables one
to divide the original system of superfield equations into the pure kinematical and dynamical
parts which are separately invariant under the original hidden supersymmetry, and to construct
the correct N = 2 superfield action yielding the dynamical part as the equation of motion. In
this way we reconstructed the N = 2 BI action with the hidden extra N = 2 supersymmetry
up to the sixth order in N = 2 Maxwell superfield strength.

Although this approach can in principle be applied to restore, step by step, the N = 4 →
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N = 2 BI action to any order, it would be desirable to develop a more direct way for constructing
such an action, similar to the method which was used in [3] in the N = 2 → N = 1, d = 4
case (see also [4] and [5]). It deals with the linear Maxwell superfield strength from the very
beginning, and it is based upon completing the latter to a linear off-shell supermultiplet of
the full supersymmetry by adding a few extra superfields of the unbroken supersymmetry.
After imposing a nonlinear covariant constraint on the superfields of the linear supermultiplet
one ends up with a nonlinear realization of the full supersymmetry in terms of the Maxwell
superfield strength as the only independent Goldstone superfield. In all the cases studied so
far, both the BI superfield Lagrangian density and the Goldstone-Maxwell superfield strength
belong to the linear supermultiplet just mentioned.

In this paper we propose a generalization of the method of [3, 4] to the N = 4 → N = 2
BI case. Two essentially novel closely related points of our construction, as compared to the
previously elaborated cases, are as follows: (i) We start from a proper extension of N = 4, d = 4
Poincaré superalgebra by a complex central charge, in order to gain a geometric place for the
complex bosonic N = 2 Maxwell superfield strength W as the Goldstone superfield [11]; (ii)
The minimal linear N = 4 supermultiplet into which one can embed W necessarily involves
an infinite tower of chiral N = 2 superfields of growing dimension interrelated by the central
charge generators. As in the previous cases, the chiral N = 2 Lagrangian density of the
N = 4 → N = 2 BI theory is one of these extra superfields, but in order to express it in terms
of W, W̄ one is led to impose an infinite set of the covariant constraints which eliminate all
the extra superfields as well. We give these constraints in the explicit form and solve them
by iterations, in order to restore the correct N = 4 → N = 2 BI action up to the 10th order
in W, W̄ . Surprisingly, up to the 8th order it reproduces the N = 2 action found earlier to
this order in [9] from the requirements of self-duality and invariance under a shift symmetry of
W, W̄ (in our approach it comes out as the symmetry generated by central charges). This is
an indication that the requirements of [9] are equivalent to the single demand of hidden N = 2
supersymmetry. As a consequence, the full N = 4 → N = 2, d = 4 BI action is expected to be
self-dual.

2 Getting started

The basic object we shall deal with is a complex scalar N = 2 off-shell superfield strength W.
It is chiral and satisfies one additional Bianchi identity

(a) D̄α̇iW = 0 , Di
αW̄ = 0 , (b) DikW = D̄ikW̄ . (2.1)

Here

Di
α =

∂

∂θα
i

+ iθ̄α̇i∂αα̇ , D̄α̇i = −
∂

∂θ̄α̇i
− iθα

i ∂αα̇ ,
{

Di
α, D̄α̇j

}

= −2iδi
j∂αα̇ , (2.2)

Dij ≡ Dα iDj
α , D̄ij ≡ D̄i

α̇D̄α̇ j . (2.3)

Due to the basic constraints (2.1) the superfields W, W̄ obey the following useful relations:

D4W = −
1

2
2W̄ , D̄4W̄ = −

1

2
2W , (2.4)
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where

D4 ≡
1

48
DαiDj

αD
β
i Dβj , D̄4 = (D4) ≡

1

48
D̄i

α̇D̄α̇jD̄β̇iD̄
β̇
j , 2 ≡ ∂αα̇∂αα̇ . (2.5)

The irreducible field content of W, W̄ defined by (2.1) is the off-shell N = 2, d = 4 abelian
vector multiplet. It consists of a SU(2)-singlet complex scalar field, a Maxwell field strength,
a real SU(2)-triplet of the scalar bosonic auxiliary fields and a SU(2)-doublet of Weyl spinors,
i.e. a total of (8 + 8) independent components.

In order to be able to treat W, W̄ as the Goldstone superfields associated with the PBGS
pattern N = 4 → N = 2 in d = 4 we should define, first of all, an appropriate modification
of the standard N = 4, d = 4 Poincaré superalgebra. It should involve a complex bosonic
generator to which one could put in correspondence W, W̄ as the Goldstone superfields. As
was shown in [11], the proper extension is given by the following superalgebra:

{

Qi
α, Q̄α̇j

}

= 2δi
jPαα̇ ,

{

Si
α, S̄α̇j

}

= 2δi
jPαα̇ ,

{

Qi
α, S

j
β

}

= 2εijεαβZ ,
{

Q̄α̇i, S̄β̇j

}

= −2εijεα̇β̇Z̄ , (i, j = 1, 2) , (2.6)

with all other (anti)commutators vanishing. It was chosen in [11] as the starting point for
constructing a nonlinear realization of the PBGS pattern N = 4 → N = 2, with the generators
Qi

α, Q̄α̇j, Pαα̇ corresponding to the unbroken N = 2 supersymmetry and the remaining ones
to the spontaneously broken symmetries. Obviously, a linear realization of the same version
of PBGS should proceed from the same superalgebra. The necessary presence of the complex
central charge Z in the anticommutators of the broken and unbroken N = 2 spinor generators
is the crucial difference of the case under consideration from the PBGS case N = 2 → N = 1
in d = 4 [3] and its d = 3 counterpart [5]. In the latter two cases one proceeds from the
N = 2 Poincaré supersymmetries in d = 4 and d = 3 with no central charge generators; the
elementary Goldstone superfields are the fermionic ones which are eventually identified with
the corresponding N = 1 Maxwell superfield strengths. Note that the superalgebra (2.6) is a
d = 4 notation for the N = (2, 0) (or N = (0, 2)) Poincaré superalgebra in D = 6. In what
follows, we shall not actually need to resort to the D = 6 interpretation. We shall entirely deal
with the N = 2, d = 4 superfields, viewing (2.6) as a central-charge extension of the standard
N = 4 Poincaré supersymmetry in d = 4.

3 Embedding N=2 vector multiplet into a linear N=4

multiplet

In [11], starting from a nonlinear realization of N = 4 supersymmetry defined by the superalge-
bra (2.6), we found, up to the 4th order in fields, an equivalence transformation from the N = 2
Goldstone superfield associated with the generator Z to the standard N = 2 Maxwell superfield
strength W, W̄ defined by the constraints (2.1). We found that the nonlinear hidden N = 2
supersymmetry and Z, Z̄ symmetry are realized on W, W̄ by the following transformations:

δW = f

(

1 −
1

2
D̄4Ā0

)

+
1

4
f̄2A0 +

1

4i
D̄iα̇f̄Dα

i ∂αα̇A0, δW̄ = (δW)∗ , (3.1)
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where the functions f, f̄ ,

f = c + 2i ηiαθiα , f̄ = c̄ − 2i η̄i
α̇θ̄α̇

i , (3.2)

collect the parameters of broken supersymmetry (ηiα, η̄i
α̇) and those of the central charge trans-

formations (c, c̄). The complex chiral function A0 was specified up to the fourth order 1

A0 = W2
(

1 +
1

2
D̄4W̄2

)

+ O(W6) , (3.3)

D̄α̇iA0 = 0 . (3.4)

Actually, the transformation law (3.1), (3.2) is the most general hidden supersymmetry
transformation law of W, W̄ compatible with the defining constraints (2.1), provided that the
N = 2 superfield function A0 obeys the chirality condition (3.4). By analogy with the N = 1
construction of [3], in order to promote (3.1) to a linear (though still inhomogeneous) realiza-
tion of the considered N = 4 supersymmetry, it is natural to treat A0 as a new independent
N = 2 superfield constrained only by the chirality condition (3.4) and to try to define the
transformation law of A0 under the η, η̄, c, c̄-transformations in such a way that the N = 2
superfields A0, W, W̄ form a closed set. Then, imposing a proper covariant constraint on these
superfields one could hope to recover the structure (3.3) as a solution to this constraint. In
view of the covariance of this hypothetical constraint, the correct transformation law for A0 to
the appropriate order can be reproduced by varying (3.3) according to the transformation law
(3.1). Since we know A0 up to the 4th order, we can uniquely restore its transformation law
up to the 3d order. We explicitly find

δA0 = 2fW +
1

4
f̄2A1 +

1

4i
D̄iα̇f̄Dα

i ∂αα̇A1, (3.5)

where

A1 =
2

3
W3 + O(W5) , D̄α̇iA1 = 0 . (3.6)

We observe the appearance of a new composite chiral superfield A1, and there is no way to
avoid it in the transformation law (3.5). This is the crucial difference from the N = 1 case of
ref. [3, 4] where a similar reasoning led to a closed supermultiplet with only one extra N = 1
superfield besides the N = 1 Goldstone-Maxwell one (the resulting linear multiplet of N = 2
supersymmetry is a N = 1 superfield form of the N = 2 vector multiplet with a modified
transformation law [12, 13]).

Thus, we are forced to incorporate a chiral superfield A1 as a new independent N = 2
superfield component of the linear N = 4 supermultiplet we are seeking. Inspecting the brackets
of all these transformations suggests that the only possibility to achieve their closure in accord
with the superalgebra (2.6) is to introduce an infinite sequence of chiral N = 2 superfields and
their antichiral conjugates An , Ān, n = 0, 1, . . .,

D̄α̇iAn = 0 , Di
αĀn = 0 , (3.7)

with the following transformation laws:

δA0 = 2fW +
1

4
f̄2A1 +

1

4i
D̄iα̇f̄Dα

i ∂αα̇A1, (3.8)

1For further convenience, here we use a slightly different notation for this function as compared to ref. [11].
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δA1 = 2fA0 +
1

4
f̄2A2 +

1

4i
D̄iα̇f̄Dα

i ∂αα̇A2

...........

δAn = 2fAn−1 +
1

4
f̄2An+1 +

1

4i
D̄iα̇f̄Dα

i ∂αα̇An+1, (n ≥ 1) (3.9)

δĀn = (δAn)
∗ .

It is a simple exercise to check that these transformations close off shell both among themselves
and with those of the manifest N = 2 supersymmetry just according to the N = 4 superalgebra
(2.6).

Realizing (formally) the central charge generators as derivatives in some extra complex
“central-charge coordinate” z

Z =
i

2

∂

∂z
, Z̄ =

i

2

∂

∂z̄
, (3.10)

and assuming all the involved N = 2 superfields to be defined on a z, z̄ extension of the
standard N = 2 superspace, it is instructive to rewrite the transformation laws under the c, c̄

transformations as follows:

∂W

∂z
=
(

1 −
1

2
D̄4Ā0

)

,
∂W

∂z̄
=

1

4
2A0 , (3.11)

∂A0

∂z
= 2W ,

∂A0

∂z̄
=

1

4
2A1 , (3.12)

∂An

∂z
= 2An−1 ,

∂An

∂z̄
=

1

4
2An+1 . (3.13)

These relations imply, in particular,

(

∂2

∂z∂z̄
−

1

2
2

)

W = 0 ,

(

∂2

∂z∂z̄
−

1

2
2

)

An = 0 . (3.14)

If we regard z, z̄ as the actual coordinates, which extend the d = 4 Minkowski space to the D = 6
one, the relations (3.14) mean that the constructed linear supermultiplet is on shell from the
D = 6 perspective. On the other hand, from the d = 4 point of view this multiplet is off-shell,
and the relations (3.11) - (3.13), (3.14) simply give a specific realization of the central charge
generators Z, Z̄ on its N = 2 superfield components. In this sense this multiplet is similar to the
previously known special N = 2, d = 4 and N = 4, d = 4 supermultiplets, which are obtained
from the on-shell multiplets in higher dimensions via non-trivial dimension reductions and
inherit the higher-dimensional translation generators as non-trivially realized central charges
in d = 4 [14, 15] (a renowned example of this sort is the (8 + 8) Fayet-Sohnius hypermultiplet
[14]). Since the superalgebra (2.6) is just a d = 4 form of the N = (2, 0) (or N = (0, 2))
D = 6 Poincaré superalgebra, it is natural to think that the above supermultiplet has a D = 6
origin and to try to reveal it.2 We hope to come back to this interesting problem in the future.
For the time being we prefer to treat the above infinite-dimensional representation in the pure

2By analogy with the previously known examples [3, 5], one could expect, at first glance, that this multiplet
is a d = 4 form of the vector N = 2, D = 6 multiplet which is known to exist only on shell (in D = 6) [16].
However, this cannot be true because such a multiplet can be defined only for the N = (1, 1) supersymmetry in
D = 6 [16] while we are facing N = (2, 0) or N = (0, 2) supersymmetry in our case. Note that the PBGS option
N = 4 → N = 2, d = 4, with the N = 4, d = 4 supersymmetry being isomorphic just to the N = (1, 1), D = 6
one, was discussed in [7]. It requires the N = 2 hypermultiplet, as the Goldstone multiplet.
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d = 4 framework as a linear realization of the partial spontaneous breaking of the central-
charge extended N = 4, d = 4 supersymmetry (2.6) to the standard N = 2 supersymmetry.
The Goldstone character of this realization is manifested in the transformation law (3.1) which
contains pure shifts by the parameters of the spontaneously broken symmetries. Therefore,
the appropriate components of the superfield strength W are the Goldstone fields, and this
superfield itself can be interpreted as the Goldstone N = 2 superfield of the linear realization
of the considered PBGS pattern N = 4 → N = 2.

4 Superfield action of the N = 4 → N = 2 BI theory

As was already mentioned, in the approach proceeding from a linear realization of PBGS, the
Goldstone superfield Lagrange density is, as a rule, a component of the same linear supermul-
tiplet to which the relevant Goldstone superfield belongs. This is also true for the case under
consideration. A good candidate for the chiral N = 2 Lagrangian density is the superfield A0.
Indeed, the “action”

S =
∫

d4xd4θA0 +
∫

d4xd4θ̄Ā0 (4.1)

is invariant with respect to the transformation (3.8) up to surface terms, because, taking into
account the basic constraints (2.1) and the precise form of these transformations, the integrand
is shifted by x-derivatives. With the interpretation of the central charge transformations as
shifts with respect to the coordinates z, z̄, the action (4.1) does not depend on these coordinates
in virtue of eqs. (3.12), though the Lagrangian density can bear such a dependence.

It remains for us to define covariant constraints which would express A0, Ā0 in terms of W,
W̄ , with preserving the linear representation structure (3.1), (3.8), (3.9). Because an infinite
number of N = 2 superfields An is present in our case, there should exist an infinite set of
constraints trading all these superfields for the basic Goldstone ones W, W̄ .

As a first step in finding these constraints let us note that the following expression:

φ0 = A0

(

1 −
1

2
D̄4Ā0

)

−W2 −
∑

k=1

(−1)k

2 · 8k
Ak2

kD̄4Āk (4.2)

is invariant, with respect to the f part of the transformations (3.1), (3.8) - (3.9). This leads us
to choose

φ0 = 0 (4.3)

as our first constraint. For consistency with N = 4 supersymmetry, the constraint (4.3) should
be invariant with respect to the full transformations (3.1), (3.8), (3.9), with the f̄ part taken
into account as well. We shall firstly specialize to the c̄ part of the f̄ transformations. The
requirement of the c̄ covariance produces the new constraint

φ1 = 2A1 + 2 (A02W −W2A0)−
∑

k=0

(−1)k

2 · 8k

(

2Ak+12
kD̄4Āk −Ak+12

k+1D̄4Āk

)

= 0 . (4.4)

It is invariant under the f transformations, but requiring it to be invariant also under the c̄

part gives rise to the new constraint

φ2 = 2
2A2 + 2

(

A02
2A0 − 2A02A0 + 22A12W −A12

2W −W2
2A1

)

−
∑

k=0

(−1)k

2 · 8k

(

2
2Ak+22

kD̄4Āk − 22Ak+22
k+1D̄4Āk + Ak+22

k+2D̄4Āk

)

= 0 . (4.5)
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Applying the same procedure to (4.5), we find the next constraint

φ3 = 2
3A3 + 2

(

322A22W + 32A12
2A0 + A02

3A1 −A12
3A0 + A22

3W

− W2
3A2 − 322A12A0 − 32A22

2W
)

+ . . . = 0, (4.6)

and so on. The full infinite set of constraints is by construction invariant under the f and c̄

transformations. Indeed, using the relations (3.11)-(3.13) one may explicitly check that

∂φn

∂z
= 0 ,

∂φn

∂z̄
=

1

4
φn+1 , (4.7)

so the full set of constraints is indeed closed.
The variation of the basic constraints with respect to the f̄ transformations has the following

general form:
δφn = η̄iα̇θ̄iα̇Bn + η̄iα̇(Fn)iα̇ . (4.8)

Demanding this variation to vanish gives rise to the two sets of constraints

(a) Bn = 0 , (b) (Fn)iα̇ = 0 . (4.9)

The constraints (4.9a) are easily recognized as those obtained above from the c̄ covariance
reasoning. One can show by explicit calculations that

D̄iα̇(Fn)jβ̇ ∼ δi
jδ

α̇
β̇
Bn . (4.10)

Thus the fermionic constraints (4.9b) seem to be more fundamental. For example, for the
constraint φ1 (4.4) the basic fermionic constraint reads

(F1)iα̇ = Dα
i ∂αα̇A1 + 2 (A0D

α
i ∂αα̇W −WDα

i ∂αα̇A0)

−
∑

k=0

(−1)k

2 · 8k

(

Dα
i ∂αα̇Ak+12

kD̄4Āk −Ak+12
kDα

i ∂αα̇D̄4Āk

)

= 0 . (4.11)

In order to prove that the basic fermionic constraints (4.9b) are actually equivalent to the
bosonic ones (4.9a), one has to know the general solution to all constraints. For the time
being we have explicitly checked this important property only for the iteration solution given
below. Taking for granted that this is true in general, we can limit our attention to the type
(a) constraints only. The constraints (4.2), (4.4) are just of this type.

At present we have no idea, how to explicitly solve the above infinite set of constraints and
find a closed expression for the Lagrangian densities A0, Ā0 similar to the one known in the
N = 2 → N = 1 case [3]. What we are actually able to do, so far, is to restore a general
solution by iterations. E.g., in order to restore the action up to the 10th order, we have to
know the following orders in Ak:

A0 = W2 + A
(4)
0 + A

(6)
0 + A

(8)
0 + . . . ,

A1 = A
(3)
1 + A

(5)
1 + A

(7)
1 + . . . ,

A2 = A
(4)
2 + A

(6)
2 + . . . , A3 = A

(5)
3 + . . . . (4.12)
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These terms were found to have the following explicit structure:

A
(4)
0 =

1

2
W2D̄4W̄2 , A

(6)
0 =

1

4
D̄4

[

W2W̄2
(

D4W2 + D̄4W̄2
)

−
1

9
W3

2W̄3
]

,

A
(8)
0 =

1

8
D̄4

[

4W2Ā
(6)
0 + 4W̄2A

(6)
0 + W2W̄2D4W2D̄4W̄2 −

2

9
W3

2

(

W̄3D4W2
)

−
2

9
W3D̄4W̄2

2W̄3 +
1

144
W4

2
2W̄4

]

,

A
(3)
1 =

2

3
W3 , A

(5)
1 =

2

3
W3D̄4W̄2 ,

A
(7)
1 = D̄4

[

1

2
W3W̄2D̄4W̄2 +

1

3
W3W̄2D4W2 −

1

24
W4

2W̄3
]

,

A
(4)
2 =

1

3
W4 , A

(6)
2 =

1

2
W4D̄4W̄2 , A

(5)
3 =

2

15
W5 . (4.13)

Note that, despite the presence of growing powers of the operator 2 in our constraints,
in each case the maximal power of 2 can be finally taken off from all the terms in the given
constraint, leaving us with this maximal power of 2 acting on an expression which starts from
the appropriate An. Equating these final expressions to zero allows us to algebraically express
all An in terms of W, W̄ and derivatives of the latter. For example, for A

(5)
3 we finally get the

following equation:

2
3A

(5)
3 =

2

15
2

3W5 ⇒ A
(5)
3 =

2

15
W5 . (4.14)

This procedure of taking off the degrees of 2 with discarding possible “zero modes” can
be justified as follows: we are interested in an off-shell solution that preserves the manifest
standard N = 2 supersymmetry including the Poincaré covariance. This rules out possible
on-shell zero modes as well as the presence of explicit θ’s or x’s in the expressions which remain
after taking off the appropriate powers of 2. It can be checked to any desirable order that
these “reduced” constraints yield correct local expressions for the composite superfields An,
which prove to transform just in accordance with the original transformation rules (3.1), (3.8),
(3.9). We have explicitly verified this for our iteration solution (4.13). We do not know, for the
time being, how to demonstrate the possibility to take off the powers of 2 from the original
constraints in general, without explicitly solving them. In Appendix we deduce a set of purely
algebraic constraints which immediately give the above iteration solution and so are candidates
for the general form of the “reduced” constraints.

The explicit expression for the action, up to the 8th order in W, W̄ , reads

S(8) =
(
∫

d4xd4θW2 + c.c.
)

+
∫

d4xd4θd4θ̄

{

W2W̄2
[

1 +
1

2

(

D4W2 + D̄4W̄2
)

]

−
1

18
W3

2W̄3 +
1

4
W2W̄2

[

(

D4W2 + D̄4W̄2
)2

+ D4W2D̄4W̄2
]

−
1

12
D4W2W̄3

2W3 −
1

12
D̄4W̄2W3

2W̄3 +
1

576
W4

2
2W̄4

}

. (4.15)

This action, up to a slight difference in the notation, coincides with the action found by Kuzenko
and Theisen [9] from the requirements of self-duality and invariance under nonlinear shifts
of W, W̄ (the c, c̄ transformations in our notation). Let us point out that the structure of
nonlinearities in the c, c̄ transformations of W, W̄ in our approach is uniquely fixed by the
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original N = 4 supersymmetry transformations and the constraints imposed. In [9] it was
guessed order by order from the requirement that the action be invariant.

The next, 10th order part of the N = 4 invariant N = 2 BI action can be easily restored
from eqs. (4.13). Its explicit form looks not too enlightening, so here we present only the
relevant part of the chiral Lagrangian density in the condensed notation

A
(10)
0 =

1

2
D̄4

[

W2Ā
(8)
0 + W̄2A

(8)
0 + A

(4)
0 Ā

(6)
0 + Ā

(4)
0 A

(6)
0 −

1

8
A

(3)
1 2Ā

(7)
1 −

1

8
A

(7)
1 2Ā

(3)
1

−
1

8
A

(5)
1 2Ā

(5)
1 +

1

64
A

(4)
2 2

2Ā
(6)
2 +

1

64
A

(6)
2 2

2Ā
(4)
2 −

1

512
A

(5)
3 2

3Ā
(5)
3

]

. (4.16)

It would be interesting to compare it with the 10th order of the Kuzenko-Theisen action (which,
unfortunately, was not explicitly given in [9]). Anyway, the coincidence of the action of [9] with
the N = 4 → N = 2 BI action, up to the 8th order, can be regarded as a strong indication that
these actions coincide at any order and, hence, that the N = 4 → N = 2 BI action is self-dual
like its N = 2 → N = 1 prototype [3, 4].

Finally, let us point out that after doing the θ integral, the pure Maxwell field strength
part of the bosonic sector of the above action (and of the hypothetical complete action) comes
entirely from the expansion of the standard Born-Infeld bosonic action. Just in this sense the
above action is a particular N = 2 extension of the bosonic BI action. The difference from the
action of ref. [6] is just in higher-derivative terms with the 2 operators. These correction terms
are crucial for the invariance under the hidden N = 2 supersymmetry, and they drastically
change, as compared to ref. [6], the structure of the bosonic action, both in the pure scalar
fields sector and the mixed sector involving couplings between the Maxwell field strength and
the scalar fields. By a reasoning of [11], the additional terms are just those needed for the
existence of an equivalence field redefinition bringing the scalar fields action into the standard
static-gauge Nambu-Goto form.

The analysis of the auxiliary field sector shows that the equation for the auxiliary field
P (ik)(x) has the following generic structure:

P (ik)M
(nl)
(ik) = 0 ,

where M is a non-singular matrix, M = I + . . ., and “dots” stand for terms involving fields
and their derivatives. Hence, P (ik) = 0 on shell, i.e. the auxiliary field is non-propagating, as
in the standard N = 2 Maxwell theory.

5 Conclusion

In this paper we proposed a systematic way of constructing a N = 2 superfield BI action
with a hidden second N = 2 supersymmetry. It is based on extending the N = 2 vector
multiplet to an infinite-dimensional linear off-shell multiplet of the central-charge modified
N = 4 supersymmetry and imposing an infinite set of covariant constraints which give rise to a
nonlinear realization of the N = 4 supersymmetry in terms of the N = 2 Maxwell (Goldstone-
Maxwell) superfield strengths W, W̄ . Solving these constraints by iterations, we have restored
the N = 4 supersymmetric BI action to 10th order in W, W̄ . In order to construct the full
action, we need to know the general solution of the constraints. For this purpose it seems
necessary to work out another, technically more feasible way of tackling the infinite set of these
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constraints, perhaps in a z, z̄ extended N = 4 superspace, rather than in the N = 2 one. We
hope to report soon on a progress in this direction. Another project for a future study is to
apply our approach to construct a genuine non-abelian version of the N = 4 → N = 2 BI
action as a proper modification of the action proposed in [17].

In the course of writing this paper we learned that a construction conceptually closed to
ours was independently worked out by A. Galperin [18].

Acknowledgements. This work was supported in part by the Fondo Affari Internazionali
Convenzione Particellare INFN-JINR, grants RFBR-CNRS 98-02-22034, RFBR-DFG-99-02-
04022, RFBR 99-02-18417 and NATO Grant PST.CLG 974874.

Appendix

Let us consider the following constraint

ϕ1 = A1

(

1 −
1

2
D̄4Ā0

)

−
2

3
WA0 −

∑

k=1

(−1)k

8k

(

k

3
+

1

2

)

Ak+12
kD̄4Āk = 0 . (A.1)

Using (3.11),(3.12),(3.13) and the following useful relation:

∂

∂z

(

∑

k=1

(−1)k

8k
akAk+m2

k+pD̄4Āk+n

)

=
1

4

∑

k=0

(−1)k

8k
(ak − ak+1)Ak+m2

k+p+1D̄4Āk+n+1 (A.2)

(a0 ≡ 0), one can easily check that
∂

∂z
ϕ1 =

4

3
φ0 . (A.3)

In other words, (A.1) is the result of “integrating” the basic constraint (4.2), with respect to
z. The same “integration” procedure can be continued further to get the successive set of the
algebraic constraints

ϕ2 = A2

(

1 −
1

2
D̄4Ā0

)

−
1

2
WA1 −

∑

k=1

(−1)k

8k

(

k2

8
+

k

2
+

1

2

)

Ak+22
kD̄4Āk = 0 , (A.4)

∂

∂z
ϕ2 =

3

2
ϕ1 ,

ϕ3 = A3

(

1 −
1

2
D̄4Ā0

)

−
2

5
WA2−

∑

k=1

(−1)k

8k

(

k3

30
+

k2

4
+

37k

60
+

1

2

)

Ak+32
kD̄4Āk = 0 , (A.5)

∂

∂z
ϕ3 =

8

5
ϕ2 ,

and so on.
We have checked that the iteration solution of the constraints (A.1), (A.4), (A.5), up to

the 8th order, exactly coincides with (4.13), but we still have no general proof that this set of
constraints is indeed fundamental. It is, by construction, covariant under the c- transformations
and η-supersymmetry, but its covariance under the f̄ transformations remains to be proved.
Note the interesting relations betweeen the constraints (4.4) - (4.6) and (A.1), (A.4), (A.5)

φ1 =
∂

∂z̄
φ0 =

4

3

∂2

∂z∂z̄
ϕ1 , φ2 =

32

9

(

∂2

∂z∂z̄

)2

ϕ2 , φ3 =
80

9

(

∂2

∂z∂z̄

)3

ϕ3 , . . . . (A.6)
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