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Abstract

After introducing the concepts of longitudinal wakefield and coupling impedance, we
review the theory of longitudinal single-bunch collective effects in storage rings. From
the Fokker-Planck equation we first derive the stationary solution describing the natural
single-bunch regime, and then treat the problem of microwave instability, showing the
different approaches used for estimating the threshold current. We end the lecture with
the semi-empirical laws that allow us to obtain the single-bunch behavior above threshold,
and with a description of the simulation codes that are now reliable tools for investigating
all these effects.
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Figure 1: Qualitative behavior of �" and �z as a function of current for a generic machine.

1 Observations

If we measure in a circular accelerator the RMS energy spread �" and the RMS bunch

length �z as a function of the current, parameters of great importance for the machine

performance, we obtain qualitatively the behavior plotted in Figure 1.

The energy spread is almost constant up to a threshold current, called the microwave

instability threshold, after which it starts to increase with the current according to a given

power law (in most cases 1/3 power). The bunch length instead starts to increase from the

very beginning, and, after the same threshold current, it grows with the same power law.

Furthermore, it may happen that above the threshold, depending on the wakefields

and on the machine parameters, a sawtooth-like behavior is excited (Figure 2).

Although these effects can limit the machine performance, they make the single-

bunch dynamics quite attractive from the dynamical point of view. Several physical ef-

fects are involved: RF capture, quantum fluctuations, radiation, self-fields interaction, etc.

Moreover, this scenario is complicated when nonlinear effects become significant.

In the following sections we will give the basic equations and some models useful

for describing the single-bunch dynamics, although a general theory able to predict single-

bunch behavior in all its manifestations is still missing.

2 Wakefield and Impedance

2.1 Longitudinal Wake Function

The interaction of a beam with its surroundings[1] is of great importance for the study

of beam dynamics since it is responsible of all the collective instabilities. The fields
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Figure 2: Energy spread vs number of turns for a pure inductive impedance obtained with
a simulation code.

produced by the beam (wakefields) interact with the beam itself as in a loop system. To

introduce wake fields, we consider the coordinate system of Figure 3 and call q1 (z1; r1) a

charge traveling with constant velocity v = c along a trajectory parallel to the axis of the

vacuum chamber. The longitudinal Lorentz force generated by q1 acting on a test charge

q (z; r) following q1 at a distance �z = z1�z produces on this charge an energy variation

given by

Ujj (r; r1; �z) = �
Z

Str
Fjj (z; r; z1; r1; t) dz t = (z1 +�z) =c: (1)

The quantity Ujj represents the energy lost (> 0) or gained (< 0) by a charge pass-

ing through a machine device, due to electromagnetic forces parallel to the particle mo-

tion. We assume that the relative energy change is so small that it does not produce any

appreciable variation of the relativistic factor �.

We define the longitudinal wake function as the energy variation of a test charge q

per unit charge q and q1

wjj (r; r1; �z) =
Ujj (r; r1; �z)

qq1
: (2)

It can be thought of as the Green function that describes the longitudinal response

of the structure to an impulsive source. It depends only on the geometrical and electro-
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magnetic properties of the device. For � = 1, according to the causality principle, the

wake function is zero for �z < 0, i. e. for a test charge ahead of the leading one.

In general, the beam pipe is composed of structures having symmetric shapes. In the

case of cylindrical symmetry it is convenient to expand the wake function in multi-polar

terms. For the longitudinal case, around the vacuum chamber axis, the first monopole

term is dominant and the longitudinal wakefield becomes a function only of �z.

For a longitudinal bunch distribution � (z) that satisfies the normalization conditionZ 1

�1

� (z) dz = 1 (3)

the energy variation of a test charge at position z inside the bunch is

Ujj (z) = e
2
Np

Z 1

�1

� (z0)wjj (z
0 � z) dz0 (4)

where Np is the total number of particles in the bunch. We often call the bunch- wake-

potential the energy lost Ujj (z) normalized to e2Np.

2.2 Coupling Impedance

We define the longitudinal coupling impedance[2] as the Fourier transform of the wake

function

Zjj (r; r1;!) =
1

c

Z 1

�1

wjj (r; r1; �z) exp

�
�i!

�z

c

�
d (�z) : (5)

4



-1.5 1014

-1 1014

-5 1013

0

5 1013

1 1014

1.5 1014

0 0.01 0.02 0.03 0.04

[V/C]

[m]

Figure 4: DA�NE wake potential.

A real accelerator is composed of many devices connected by a vacuum cham-

ber. For such a complicated structure, it is impossible to obtain analytical solutions of

Maxwell’s equations. Usually, numerical codes for the finite differences, which solve

Maxwell’s equations in the time domain, are used. Because of the CPU time limitations,

we can analyze only a single device, or a few of them connected to an infinite pipe. Then

the contributions of all the pieces are summed up to get the whole wake function. It is

worth noting that this procedure might fail at high frequencies where the fields propa-

gate in the vacuum chamber from one device to another, producing interference effects.

Furthermore, numerical codes allow us to obtain only the wake potential of a distribution

rather then the impulsive wake function. In Figure 4 we show as an example the wake po-

tential of the DA�NE machine[3] at INFN - LNF for a 2.5-mm Gaussian bunch obtained

with the codes MAFIA[4] and ABCI[5].

For the study of collective effects it is convenient to distinguish between single-

bunch dynamics, where the particles experience the wakefields produced by the other

particles of the same bunch, and multibunch or multiturn dynamics, where the electro-

magnetic fields trapped in resonant structures influence other bunches or the same bunch

in successive passages. Such a distinction applies also to the wakefields, called respec-

tively short-range and long-range wakefields.
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2.3 Short-Range Wakefields

Electromagnetic fields that vanish after a distance of a few bunch lengths are usually

called short-range wakefields. With short-range wakefields we have a low frequency res-

olution of the Fourier transform, and therefore of the impedance. Even though impedance

is a complicated function of frequency, with many sharp peaks, in the study of single-

bunch dynamics influenced by short-range wakefields, the bunch can not resolve the de-

tails of the sharp resonances, and it rather experiences an average effect. The correspond-

ing impedance is then smoother and broader than the actual machine impedance, and is

called broad-band impedance.

For an approach to single-bunch collective effects, we can obtain the machine broad-

band impedance with numerical codes. Usually the frequency behavior is simplified by

using some impedance models. Such models, characterized by a small number of pa-

rameters, are useful also in the design study of the machine, when not all the devices are

defined and known.

The first model historically introduced in the study of single-bunch longitudinal

dynamics[6] is the so-called broad-band resonator:

Zjj (!) =
Rs

1 + iQ

�
!

!r

�
!r

!

� : (6)

Only three parameters are needed to determine its frequency behavior: the shunt

resistance Rs, the quality factor Q, and the resonant frequency !r. Usually Q ' 1, !r is

the frequency cut-off of the beam pipe, and Rs accounts for the parasitic energy loss.

The corresponding longitudinal wake function is given by the inverse Fourier trans-

form of Eq. (5), with Zjj (!) expressed by Eq. (6):

wjj (�z) =
!rRs

Q
exp

�
�
��z

c

��
cos

�
!n�z

c

�
�

!r

2Q!n

sin

�
!n�z

c

��
H (�z) (7)

where

� =
!r

2Q
!
2
n
= !

2
r
� �2 (8)

and H (�z) is the step function.

It is worth noting that because of the low value of the quality factor, the short-range

wake function vanishes rapidly with �z.

Other impedance models have been proposed[7]. Among them we present one

based on a phenomenological approach[8], which describes the impedance as an expan-

sion in terms of
p
! of the kind

Zjj (!) = i!L+R + [1 + isgn (!)]
p
j!jB +

1� isgn (!)p
j!j

Zc + : : : : (9)
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Every term of the expansion has a clear physical interpretation. The first term rep-

resents the inductive impedance at low frequencies typical of small discontinuities. Often

it is the main contribution to the total impedance, producing a symmetric distortion of the

bunch. The second term is due mainly to the RF cavities or resonant devices, and produces

a shift of the bunch center of mass and a distortion of its shape. The third term represents

the resistive wall impedance due to the finite conductivity of the beam pipe material, and

the fourth has the same dependence on ! as the impedance of a cavity with attached

tubes at high frequencies. For long enough bunches the first two terms of Eq. (9) give the

main contribution to the total broad-band impedance, and are sufficient to describe the

single-bunch behavior. Moreover we can obtain the values of the two parameters R and

L from measurements of bunch length and synchronous phase shift versus current. The

longitudinal wake function corresponding to this model with just R and L is given by

wjj (�z) = c
2
LÆ

0 (�z) + cRÆ (�z) (10)

where Æ and Æ0 are respectively the symbolic Dirac delta function and its derivative. Such

a wake function can be easily handled analytically.

3 Equations of Motion

3.1 Single-Particle Motion

The single-particle equations of motion are

_z =
�z

T0
=
z (t)� z (t� T0)

T0
= �c�c"; (11)

_" =
�"

T0
=
" (t)� " (t� T0)

T0
=
eV (z)� U0

T0E0

�
D

T0
"�

R (T0)

T0E0

(12)

where z is the longitudinal displacement of a particle with respect to the synchronous

one (z > 0 means particle ahead), T0 the revolution period, c the speed of light, �c

the momentum compaction, " the energy variation with respect to the nominal energy

E0, V (z) the voltage seen by the particle in one turn, and U0 the energy lost per turn. A

particle radiates an energy per turn equal to U0+D"+R (T0) where R (T0) is a stochastic

variable that accounts for the quantum fluctuations. The damping coefficient D is equal

to 2T0 divided by the damping time �".

Since V (z) is the contribution of the RF cavities and of the longitudinal wake fields,

we can write Eq. (12) as

_" =
eVRF (z)� U0

T0E0

�
e
2
Np

T0E0

Z 1

�1

� (z0)wjj (z
0 � z) dz0 �

D

T0
"�

R (T0)

T0E0

: (13)
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Equations (11) and (13) describe the longitudinal dynamics of a single particle in a

circular accelerator. The potential well in which the particle motion is confined is given

by

' (z) =
�c

L0

Z
z

0

[eVRF (z0)� U0] dz
0�

�ce
2
Np

L0

Z
z

0

dz
0

Z 1

�1

� (z00)wjj (z
00 � z

0) dz00: (14)

For such a motion the Hamiltonian, defined as

H (z; ") =
1

2
c�c"

2 +
c

�cE0

' (z) ; (15)

satisfies the relations
@H

@"
= � _z;

@H

@z
= _"+

D

T0
"+

R (T0)

T0E0

(16)

where the last two terms in the second relation represent the non-conservative components

of the system.

Since the revolution period T0 is much smaller than the synchrotron period, we can

make a linear expansion of z (t) and " (t):

z (t) = z (t� T0) + _zT0;

" (t) = " (t� T0) + _"T0; (17)

and

[z + dz]
t
= [z + dz]

t�T0
+ _zj

z+dz;" T0;

["+ d"]
t
= ["+ d"]

t�T0
+ _"j

z;"+d" T0: (18)

By using now the relations (16) for _z and _", and by noting that the partial derivative

of the Hamiltonian with respect to z or " is a function of z or " only, we have

_zj
z+dz;" = �

@H

@"
;

_"j
z;"+d" =

@H

@z
�

D

T0
"�

D

T0
d"�

R (T0)

T0E0

: (19)

If we subtract Eq. (17) from Eq. (18), using the above relation and Eq. (16), we

obtain

dzj
t
= dzj

t�T0
;

d"j
t
= d"j

t�T0
(1�D) ; (20)
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which give the relation between an infinitesimal area in the phase space at time t and the

corresponding one at time t� T0.

Before continuing our analysis, we examine the quantity R (T0). It represents the

difference between the actual energy lost per turn by a particle and its average value. It

is a stochastic variable describing the quantum fluctuations, and its average value is zero.

We define the probability density P [R (T0)] such that P [R0 (T0)] dR
0 (T0) represents the

probability that a particle, during a revolution period, radiates an energy equal to U0 +

D"+R (T0) with R (T0) between R0 (T0) and R0 (T0) + dR
0 (T0).

3.2 Transport and Fokker-Planck Equations

In order to study the collective single-bunch effects, we need to move from the single-

particle equation of motion to an equation for an ensemble of particles. To this end

we consider the longitudinal single-bunch distribution function 	(z; "; t) defined such

that 	(z; "; t) dzd" represents the probability of finding at time t a particle in the area

(z; z + dz; "; "+ d") of the phase space. It satisfies the normalization conditionZ 1

�1

Z 1

�1

	(z; "; t) dzd" = 1: (21)

Its projection on the z axis gives the longitudinal bunch distribution � (z) introduced

in Eq. (4),

� (z; t) =

Z 1

�1

	(z; "; t) d": (22)

We aim to derive a differential equation that describes the time evolution of the

longitudinal distribution function[9].

The probability that a particle at time t has its representative point of the phase space

in the area dzd" with center (z; ") is, by definition, 	(z; "; t) dzd"j
t
. The same quantity

is also equal to the probability that the particle at time t�T0 was in any point of the phase

space such that

z (t� T0) = z (t)� _zT0 = z (t) +
@H

@"
T0;

" (t� T0) = " (t)� _"T0 = " (t)�
@H

@z
T0 +D"+

R (T0)

E0

; (23)

and, in a revolution period, it radiated an energy equal to U0 + D" + R (T0). Since the

probability of radiating such an energy is P [R (T0)] dR (T0), we can write

	 [z (t) ; " (t) ; t] dzd"j
t

=

Z 1

�1

	 [z (t� T0) ; " (t� T0) ; t� T0] dzd"jt�T0 P [R (T0)] dR (T0) (24)
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where R (T0) is a stochastic variable that can assume any value from �1 to +1 with a

given probability P [R (T0)].

The integral equation (24) is known as the transport equation, and it allows us to

follow the time evolution of the distribution function 	(z; "; t) once the Hamiltonian and

the probability function P [R (T0)] are known.

From the transport equation we can derive a differential equation by using the

Fokker-Planck method[10]. This consists of expanding Eq. (24) in time around t keeping

only linear terms. As shown in Appendix A, we obtain

@	

@t
=

@	

@z

@H

@"
�
@	

@"

@H

@z
+

D

T0

�
	+ "

@	

@"

�
+

1

2

@
2	

@"2

R2 (T0)

T0E
2
0

(25)

where R2 (T0) is the variance of the radiated energy defined as

R2 (T0) =

Z 1

�1

R
2 (T0)P [R (T0)] dR (T0) : (26)

In Eq. (25), known as the Fokker-Planck equation or diffusion equation, the first

two terms in the right side represent the conservative part of the system, and the other

two are related to the radiation process: damping and quantum fluctuations respectively.

These effects produce an equilibrium energy distribution with an RMS, known also as the

natural energy spread, equal to

�"0 =

s
R2 (T0)

2DE2
0

: (27)

All the fundamental elements that characterize single-bunch and multibunch collec-

tive phenomena are included in the equation. Unfortunately, there is no general solution

for it; however, it gives useful information about collective effects.

4 Bunch Distortion below Threshold

4.1 Stationary Solution

As a first application of the Fokker-Planck equation, we look for its stationary solution,

that is, a distribution function independent of time, for which

@	

@t
= 0 ) 	(z; "; t) = 	0 (z; ") : (28)

With such a condition it is possible to find a general solution of the Fokker-Planck

equation of the kind

	0 (z; ") = 	 exp

�
�
H0 (z; ")

H

�
(29)
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where the subscript zero to 	 and H means time independent, the constant 	 is given by

the normalization condition Eq. (21), and the constant H is

H =
c�cR

2 (T0)

2DE2
0

: (30)

Equation (29) is known as the Haissinski equation[11], and it gives the equilibrium

distribution of a bunch in the presence of self-induced wakefields and external RF voltage.

A first important observation is that the distribution function can be factorized, and

the energy distribution is independent of the wakefields and of the potential well where

the particles are confined. In fact, if we write explicitly the Hamiltonian of Eq. (29), and

use Eq. (30), we get

	0 (z; ") = 	 exp

"
�
DE

2
0"

2

R2 (T0)
�

c

�cE0H
' (z)

#
; (31)

from which it is easy to see that the term related to the energy always gives a Gaussian

distribution with an RMS that comes out of the balance between the damping coefficient

and the quantum fluctuation noise only [see Eq. (27)].

For the longitudinal distribution function, if we integrate Eq. (31) in ", and write

explicitly the potential as given by Eq. (14), we get

�0 (z) = � exp

�
�

1

L0E0�c�
2
"0

Z
z

0

[eVRF (z0)� U0] dz
0+

e
2
Np

L0E0�c�
2
"0

Z
z

0

dz
0

Z 1

�1

�0 (z
00)wjj (z

00 � z
0) dz00

�
: (32)

The above equation, which is sometimes referred to as the Haissinski equation in-

stead of Eq. (29), is an integral equation in the function � (z).

4.2 Natural Regime

Let us consider first the case without wakefields, i. e. the natural regime. The longitudinal

bunch distribution is given only by the RF voltage:

VRF (z) = V̂ cos

�
�s � 2�h

z

L0

�
(33)

where the synchronous phase �s = !RF ts is given by the condition

cos (�s) =
U0

eV̂
: (34)
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In the usual case 2�hz � L0, we can linearly expand VRF (z) around z = 0,

obtaining

VRF (z) = V̂ cos (�s) +
2�hV̂ sin (�s)

L0

z: (35)

If we insert Eq. (35) into Eq. (32) and use Eq. (34), we obtain

�0 (z) = � exp

�
�

!
2
s0z

2

2�2
c
c2�

2
"0

�
= � exp

�
�

z
2

2�2
z0

�
(36)

where we have used the natural angular synchrotron frequency

!
2
s0 =

c
2
�c2�heV̂ sin (�s)

L
2
0E0

: (37)

The longitudinal bunch distribution is then a Gaussian distribution with an RMS

given by

�z0 =
�cc�"0

!s0

(38)

and with a constant � obtained by the normalization condition Eq. (3),

� =
1

p
2��z0

: (39)

4.3 Wakefield Effects

4.3.1 Resistive Impedance

If we include the effects of the wakefield, we find that the bunch distribution is distorted.

This effect can be studied analytically in the case of a pure resistive impedance for which,

assuming the linear expansion of the RF voltage, Eq. (32) becomes

�0 (z) = � exp

�
�

z
2

2�2
z0

+
e
2
NpcR

L0E0�c�
2
"0

Z
z

0

�0 (z
0) dz0

�
: (40)

As shown in Appendix B, the analytical solution of the above equation is

�0 (z) =

exp

�
�

z
2

2�2
z0

�

�1�z0

r
�

2

�
coth

�
�1

2

�
� erf

�
z

p
2�z0

�� (41)

where the error function is

erf (x) =
2
p
�

Z
z

0

exp
�
�x2

�
dx (42)
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Figure 5: Bunch shapes at different Np for pure resistive impedance.

and

�1 =
e
2
NpcR

L0E0�c�
2
"0

: (43)

A pure resistive impedance distorts the bunch and shifts its center of mass ahead,

but does not change its RMS much. In Figure 5 we show an example of longitudinal

bunch distribution at different Np.

4.3.2 Inductive Impedance

In the case of pure inductive impedance, the bunch distribution is given by

�0 (z) = � exp

�
�

z
2

2�2
z0

�
e
2
Npc

2
L

L0E0�c�
2
"0

�0 (z)

�
(44)

which can be solved with numerical tools. From Figure 6, we see that the inductive

impedance does not influence the position of the bunch center of mass, but increases only

the bunch length. The distribution function is no longer Gaussian, but tends to become

parabolic, especially around the bunch center.

4.3.3 Broad-Band Resonator Impedance

With the broad-band resonator model, as well as with any general wake function, it is

convenient to transform Eq. (32) by introducing the wake potential of a unitary step dis-

tribution

S (z) =

Z
z

0

wjj (z
0) dz0 (45)
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Figure 6: Bunch shapes at different Np for pure inductive impedance.

with which we can express Eq. (32) as

�0 (z) = �1 exp

�
�

z
2

2�2
z0

�
e
2
Np

L0E0�c�
2
"0

Z 1

�1

�0 (z
0 + z)S (z0) dz0

�
: (46)

The solution of the above equation for the resonator impedance is given in Figure 7

for different values of Np.

5 Threshold Hunting

5.1 Perturbation Theory

Comparing the stationary distribution with the experimental observations in a real ma-

chine, we find that they agree only at low current, where the energy spread is constant,

and the longitudinal bunch distribution is distorted according to the potential well theory.

However, when Np is high, we can no longer explain the experimental observations in

terms of a stationary solution. We need to explore a new dynamical regime, where the

distribution function is a function of time.

In this section, we show a perturbation method generally used to obtain the behavior

of 	(z; "; t) around the stationary solution 	0 (z; ")[12,13].

We start by linearizing 	(z; "; t):

	(z; "; t) = 	0 (z; ") + 	1 (z; "; t) (47)

where 	1 (z; "; t) is a perturbation of 	0 (z; "). Similar expansions apply also to the

single-particle potential

' (z) = '0 (z) + '1 (z; t) (48)
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Figure 7: Bunch shapes at different Np for the broad band resonator.

and to the Hamiltonian

H (z; "; t) = H0 (z; ") +H1 (z; t) (49)

where

H1 (z; t) =
c

�cE0

'1 (z; t) = �
ce

2
Np

E0L0

Z
z

0

dz
0

Z 1

�1

�1 (z
00; t)wjj (z

00 � z
0) dz00 (50)

and

�1 (z; t) =

Z 1

�1

	1 (z; "; t) d": (51)

If we substitute Eqs. (47) and (49) into the Fokker-Planck equation, and observe

that 	0 (z; ") satisfies the stationary equation, we get

@	1

@t
=
@	1

@z

@H0

@"
�
@	0

@"

@H1

@z
�
@	1

@"

@H0

@z
�
@	1

@"

@H1

@z
+

D

T0

�
	1 + "

@	1

@"

�
+

1

2

@
2	1

@"2

R2 (T0)

T0E
2
0

: (52)

We now ignore the second-order terms and the effects of radiation damping and

fluctuation noise on the perturbation function 	1. By introducing the two action-angle

variables, J and �, as shown in Appendix C, we get

@	1

@t
= �!s (J)

@	1

@�
+

c
2
�ce

2
Np

E0L0!s (J)

@	0

@J
"

Z 1

�1

�1 (z
0; t)wjj (z

0 � z) dz0: (53)

In order to find the solution of Eq. (53), we note that 	1 (J; �; t) is periodic in �,

and it can then be expanded as a Fourier series, while for the time dependence, we apply

15



the modal analysis in the frequency domain, which allows us to write

	1 (J; �; t) = exp [i
t]
1X

m=�1

Rm (J) exp [�im�] (54)

which, introduced into Eq. (53), gives

i

1X

m=�1

Rm (J) exp [�im�] = i!s (J)
1X

n=�1

nRn (J) exp [�in�] +

c
2
�ce

2
Np

E0L0!s (J)

@	0

@J
"

1X
l=�1

Z 2�

0

d�
0

Z 1

0

Rl (J
0) exp [�il�0]wjj (z

0 � z) dJ 0: (55)

Since the value of m in Eq. (54) specifies the angular dependence of the mth term

of the Fourier expansion, m is also called the azimuthal number, and the corresponding

Rm (J) is called the radial function. We now exploit the symmetry of wjj (z
0 � z) with

respect to the angle variable �0 and the fact that " (J; �) is antisymmetric in �. Multiplying

by exp [im0
�] and integrating in � from 0 to 2�, we obtain

[
�m!s (J)]Rm (J) =
c
2
�ce

2
Np

2�E0L0!s (J)

@	0

@J

1X
l=�1

Z 2�

0

d�

�
Z 2�

0

d�
0

Z 1

0

" (J; �)Rl (J
0) sin (m�) cos (l�0)wjj (z

0 � z) dJ 0: (56)

In terms of the coupling impedance this becomes

[
�m!s (J)]Rm (J) =
c
2
�ce

2
Np

4�2E0L0!s (J)

@	0

@J

1X
l=�1

Z 2�

0

d�

Z 2�

0

d�
0

�
Z 1

�1

d!

Z 1

0

" (J; �)Rl (J
0) sin (m�) cos (l�0) exp

h
i
!

c
(z0 � z)

i
Zjj (!) dJ

0
: (57)

Equations (56) and (57) represent a generic term of the infinite set of integral ho-

mogeneous equations for Rm (J). If we treat the whole set of equations as an eigenvalue

problem in 
, we get that the number of eigenvalues is the same as those of m, i. e. in-

finite. Each 
(m) is called a coherent frequency of the azimuthal oscillation mode m. In

the limit of Np ! 0, we easily obtain

!s (J)! !s0;


(m) = m!s0: (58)

In the next sections we show two methods used to solve Eq. (57).
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5.2 Sacherer Equation

An attempt to evaluate the threshold of microwave instability through mode coupling is

based on the simplifying hypothesis that single-particle motion is governed by a quadratic

form of the Hamiltonian, of the kind

H (z; ") =
1

2
c�c"

2 +
1

2

!
2
s

c�c

z
2
; (59)

which corresponds to a linear RF voltage. The hypotheses behind Eq. (59) are 	0 station-

ary and symmetric and !s independent of the amplitude J .

The equations of motion of a single particle, ignoring the effects of radiation damp-

ing and quantum fluctuations, can be expressed as

z =

r
2c�cJ

!s

cos [� (t)] ;

" =

r
2!sJ

c�c

sin [� (t)] : (60)

If we substitute Eqs. (60) into Eq. (57) and use the relationsZ 2�

0

sin (�) sin (m�) exp [�ia cos (�)] d� = i2�i�m
m

a
Jm (a) (61)

and Z 2�

0

cos (l�) exp [ia cos (�)] d� = 2�ilJl (a) (62)

where Jm (x) is a Bessel function of first kind and mth order, we get

[
�m!s]Rm (J) = i
mc

2
e
2
Np

E0L0

@	0

@J

1X
l=�1

i
l�m

�
Z 1

�1

Zjj (!)

!
Jm

 
!

r
2�cJ

c!s

!
d!

Z 1

0

Rl (J
0)Jl

 
!

r
2�cJ

0

c!s

!
dJ

0 (63)

where we have considered ! (J) = !s. In order to express the eigenvalue problem in a

simple form, we introduce the two functions

Gml (J; J
0) = i

mc
2
e
2
Np	

!sE0L0

Z 1

�1

Zjj (!)

!
Jm

 
!

r
2�cJ

c!s

!
Jl

 
!

r
2�cJ

0

c!s

!
d! (64)

and

w (J) = �
1

	

@	0

@J
(65)
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with 	 already defined in Eq. (29), and write Eq. (63) as�



!s

�m

�
Rm (J) = �w (J)

1X
l=�1

i
l�m

Z 1

0

Gml (J; J
0)Rl (J

0) dJ 0; (66)

known as the Sacherer integral equation for longitudinal instabilities.

5.3 A Method of Solving the Sacherer Equation

Different methods have been proposed for solving Eq. (66) [14]. Here we show the one

that uses the expansion of the radial function Rm (J) in orthogonal polynomials:

Rm (J) = w (J)
1X
k=0

amkfjmjk (J) : (67)

The absolute value of m in the polynomials fjmjk (J) is due to the property that

the radial distributions of the terms �m are equal. The functions fjmjk (J) satisfy the

normalization condition Z 1

0

w (J) fjmjk (J) fjmjl (J) dJ = Ækl (68)

where w (J) is a weight function and Ækl is the Kronecher symbol.

Introducing Eq. (67) into Eq. (66), multiplying by f jmjp (J), and integrating in J

from 0 to1, we obtain �



!s

�m

�
amp =

1X
l=�1

1X
k=0

M
ml

pk
alk (69)

with

M
ml

pk
= �il�m

Z 1

0

w (J) fjmjp (J) dJ

Z 1

0

Gml (J; J
0)w (J 0) fjljk (J

0) dJ 0: (70)

Equation (69) is the generic term of a homogeneous system of equations, with m

ranging from �1 to 1 and p from 0 to 1. If we consider the system as an eigenvalue

problem, amp being the eigenvectors, the eigenvalues 
(m;p) can be evaluated once the or-

thogonal polynomials fjmjp (J) are known. These last depend only on the weight function

w (J), which, in turn, depends on the stationary distribution function 	0 (J).

For the Gaussian distribution function given by Eq. (29), as shown in Appendix D,

we get

M
ml

pk
= �i

c
2
e
2
Np

2�!sE0L0�z�"0
i
jlj�jmj mp

p! (jmj+ p)!k! (jlj+ k)!

�
Z 1

�1

Zjj (!)

!

�
!�zp
2c

�jmj+jlj+2p+2k

exp

�
�
!
2
�
2
z

c2

�
d!: (71)
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For the RL impedance, the integral in ! can be solved, giving

M
ml

pk
= �i

c
2
e
2
Np

2�!sE0L0�z�"0

i
jlj�jmj

m2�(
jmj+jlj

2
+p+k)p

p! (jmj+ p)!k! (jlj+ k)!

�

8>><
>>:
icL

�z
�

�
jmj+ jlj+ 2p+ 2k + 1

2

�
m + l even

R�

�
jmj+ jlj+ 2p+ 2k

2

�
m + l odd

(72)

where � (x) is the gamma function.

5.4 Azimuthal and Radial Mode Coupling

The eigenvalues obtained with Eq. (69) are characterized by two indices, m and p, de-

scribing respectively the azimuthal and radial structure of the oscillation mode. In this

case, in the limit Np ! 0, the coherent frequencies are still given by Eq. (58), and all

the modes with the same m but different p have the same frequency. As we increase Np

slightly, the frequencies shift away from the unperturbed values and the modes shift ac-

cordingly. The frequency shifts are initially much smaller than !s. Therefore, in this case,

radial modes can couple only if they belong to the same azimuthal family with a given m.

Therefore, if we focus our attention on the radial modes, for a given m, we can leave only

the term l = m, thus obtaining

�



!s

�m

�
amp =

1X
k=0

M
mm

pk
amk: (73)

Since the real part of Zjj (!) is an even function of ! and its imaginary part is un-

even, we have that Mmm

pk
is real and Mmm

pk
= M

mm

kp
. The matrix Mmm

pk
is then Hermitian.

As a consequence, the eigenvalues, i. e. the coherent frequencies, are always real, and

radial modes do not couple. If we further increase Np however, the frequency shifts be-

come comparable to !s, so that coupling of azimuthal modes can occur. To simplify the

analysis, generally only one radial mode is considered for every azimuthal family. As an

example, if we retain only the radial modes with p = 0, assumed to be the most prominent,

we get �



!s

�m

�
am0 =

1X
l=�1

M
ml

00 al0 (74)

where the matrix element Mml

00 is no longer symmetric. In this case we obtain that, above

a given value of Np, two azimuthal modes can couple producing a complex 
(m;0) and

then an instability. As an example, in Figure 8 we show the coherent frequencies of the
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Figure 8: Longitudinal mode frequency 
=!s versus Np for a pure RL impedance.

first positive modes versus Np for a pure RL impedance. When Np reaches the threshold,

the modes m = 5 and m = 6 of the example couple, producing an imaginary component

of 
 with values either positive and negative. According to Eq. (54), the negative term is

responsible for the instability.

It is worth noting that the threshold obtained with such a method can be much higher

than the measured one. The reason is that radial modes with the same azimuthal number

can actually couple before a frequency shift of the order of !s. Equation (73) cannot

predict such behavior because of the symmetry of the bunch distribution. In fact, as we

will discuss in the next section, for asymmetric bunches radial mode coupling can occur

even if they belong to the same azimuthal family.

5.5 Numerical Solution of the Fokker-Planck Equation

The complete problem of simultaneous accounting for azimuthal and radial modes with a

perturbed stationary distribution function is very difficult to treat. There are methods that

simplify the approach by using particular bunch distributions, such as the double water

bag[15]. With this model we can solve analytically the eigenvalue problem of mode

coupling also with an asymmetric bunch shape. For every azimuthal mode there are two

radial modes, and it can be demonstrated that the distorted bunch distribution can produce

radial mode coupling.

20



A more general method[16] divides the action variable into n intervals such that

0 = J0 < J1 < � � � < Jn, and, considers J constant, equal to its average value J p, in an

interval �Jp = Jp+1�Jp. Then Eq. (56) gives n equations of the kind (p = 0; : : : ; n� 1)

�

�m!s

�
Jp

��
Rm

�
Jp

�
=

c
2
�ce

2
Np

2�E0L0!s

�
Jp

� @	0

@J

����
Jp

�
1X

l=�1

nX
k=0

Rl

�
Jk

�
�Jk

Z 2�

0

"
�
Jp; �

�
sin (m�) d�

�
Z 2�

0

cos (l�0)wjj

�
z
�
Jk; �

0
�
� z

�
Jp; �

��
d�

0
: (75)

If we multiply by �Jp we get

�

�m!s

�
Jp

��
Rmp =

1X
l=0

nX
k=0

M
ml

pk
Rlk (76)

with

M
ml

pk
=

c
2
�ce

2
Np�Jp

2�E0L0!s

�
Jp

� @	0

@J

����
Jp

Z 2�

0

"
�
Jp; �

�
sin (m�) d�

�
Z 2�

0

cos (l�0)wjj

�
z
�
Jk; �

0
�
� z

�
Jp; �

��
d�

0 (77)

Equation (76) can produce imaginary values of 
, and thus coupling, even in the

case of each azimuthal number m separately analyzed. This method can predict the

threshold with better accuracy.

6 Above threshold

6.1 Boussard Criterion

A simple method generally used to obtain a first estimate of the microwave instability

threshold is known as the Boussard criterion, and it is derived from the coasting-beam

theory applied to the single-bunch case[17]. To justify such an assumption, it can be

observed that at high frequencies, in the microwave regime, a bunch can be thought of

as a coasting beam, with an average current equal to the single-bunch peak current. With

this hypothesis, the criterion fixes the instability of the bunch above the limit

ce
2
Np

��Zjj (n) =n
��

(2�)3=2E0�c�z�
2
"

� 1 (78)
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where n is a harmonic of the revolution frequency. If Np is sufficiently high that the

left side of Eq. (78) is greater than 1, then the bunch length �z and the energy spread �"

increase to restore it back to 1.

Equation (78) was derived assuming a bunch with a Gaussian longitudinal distribu-

tion. Together with Eq. (38), it allows us to obtain �z or �" as a function of Np above the

instability threshold.

The harmonic of the revolution frequency n is generally chosen as

n =
L0

2��z
: (79)

Long bunches usually interact with the vacuum chamber at low frequencies (below

cut-off) where the impedance is pure inductive. In this case we have

Zjj (n)

n
= i!0L (80)

which does not depend on n.

6.2 Chao-Gareyete Scaling Law

A more general scaling law for bunch lengthening above threshold was suggested by Chao

and Gareyete[18]. According to their model, the bunch lengthening �z is a function of a

single parameter �, which in turn depends on other machine parameters:

� =
I�c

�2
s
E0=e

: (81)

If we assume a simple power-law behavior for the longitudinal impedance:����Zn
���� = Z0!

a�1
; (82)

then

�z /
�
�Z0R

3
�1=(2+a)

: (83)

For instance for the SPEAR case this results in �0 / �
1=1:32

a = 0:68, which means

a = �0:68 corresponding to an impedance decreasing with frequency.

The Boussard model is a particular case of the Chao-Gareyete scaling law for a = 1.

This corresponds to a constant longitudinal impedance, typical of storage rings with long

bunches.
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6.3 Numerical Simulations

Numerical simulations are a valid and reliable tool for investigating single-bunch insta-

bility. Usually a simulation code models the single bunch as an ensemble of particles

obeying the turn-by-turn equations of motion. Assuming a sinusoidal time-dependent RF

voltage linearized around the synchrotron particle, we have

z
n

i
= z

n�1
i

� L0�c

"
n�1
i

E0

;

"
n

i
= "

n�1
i

+
2�heV̂ sin (�s)

L0

z
n

i
+ Vw (zn

i
)�D"

n�1
i

+ �"0R

p
2D; (84)

where i refers to the ith particle, and n to the nth turn, L0 is the machine circumference,

�"0 the natural energy spread, R a random number from a normal distribution with aver-

age 0 and variance 1, and Vw (zn
i
) the voltage produced by the self-induced short-range

wakefields.

Since it is impossible to simulate the motion of 1010 to 1012 particles for hundreds

of thousands of turns, a smaller number of macro-particles, each one representing 106 or

more particles, is used in the simulations. The number of macro-particles Nm must be

high enough to limit the numerical noise, which scales as 1=
p
Nm.

The voltage of the self-induced wakefields depends on the single-bunch distribution

function according to the relation

Vw(z) = eNp

Z 1

�1

wjj (z
0 � z) dz0

Z 1

�1

	(z0; ")d" (85)

where Np is the number of particles per bunch. In our discrete model, we consider the Nm

macro-particles distributed in Nbin bins, and therefore the induced voltage can be written

as

Vw (zn
i
) = e

Np

Nm

k=1;NbinX
zk>z

n

i

Nb (zk)wjj (zk � z
n

i
) (86)

with zk the coordinate of the kth bin center, and Nb (zk) the number of macro-particles in

the bin.

This method of tracking the bunch particles has been successfully used in bunch

lengthening simulations[19] for the SLC[20] damping rings, SPEAR[21], LEP[22], and

DA�NE[23]. In Figure 9 we show an example of the results obtained with the numerical

simulations: two distributions of an unstable bunch and the bunch length as function of

current.
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Figure 9: Example of numerical simulations.
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APPENDIX A

Derivation of Fokker-Planck Equation

To obtain the Fokker-Planck equation, we first substitute Eq. (23) into the distribution

function 	 [z (t� T0) ; " (t� T0) ; t� T0] and then take a time linear expansion of such a

function:

	

�
z (t) +

@H

@"
T0; " (t)�

@H

@z
T0 +D"+

R (T0)

E0

; t� T0

�

= 	

�
z (t) +

@H

@"
T0; " (t)�

@H

@z
T0 +D"+

R (T0)

E0

; t

�
�
@	

@t
T0 (87)

where the time derivative of 	 is evaluated at point z (t) ; " (t).

If we now expand the first term in the right side of Eq. (87), we obtain

	

�
z (t) +

@H
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T0; " (t)�

@H

@z
T0 +D"+

R (T0)
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; t
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= 	

�
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�
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R (T0)
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+
1
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@
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@"2

R
2 (T0)

E2
0

+
1X
n=3

1

n!

@
n	

@"n

R
n (T0)

En

0

: (88)

Before integrating the right side of Eq. (24), we writeZ 1

�1

R
n (T0)P [R (T0)] dR (T0) = Rn (T0): (89)
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Because of the definition of probability density, we have R0 (T0) = 1, and, since

R (T0) has a zero average value, then R1 (T0) = 0. We can now integrate the right side of

Eq. (24) by using Eqs. (87) and (88), thus obtaining

	 [z (t) ; " (t) ; t] dzd"j =
�
	

�
z (t) +

@H

@"
T0; " (t)�

@H

@z
T0 +D"; t
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2
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+
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1
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@
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Rn (T0)

E
n

0

)
dzd"j

t�T0
: (90)

The next step is to expand the distribution function in the right side of Eq. (90)

around the point (z; "), again keeping only first-order terms in time:

	

�
z (t) +

@H

@"
T0; " (t)�

@H
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T0 +D"; t
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�
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T0 +D"

�
: (91)

By introducing Eq. (91) into Eq. (90) and by using the relations (20), still ignoring

second-order terms in time, we finally get
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2
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(92)

where we have neglected the higher-order terms:

1X
n=3

1

n!

@
n	

@"n

Rn (T0)

T0E
n

0

: (93)

APPENDIX B

Solution of Haissinski Equation for Pure Resistive Impedance

Applying the logarithm derivative on both sides of Eq. (40), we get

�
0
0 (z)

�0 (z)
= �

z

�
2
z0

+
e
2
NpcR

L0E0�c�
2
"0

�0 (z) (94)

which is a Bernoulli differential equation, the general solution of which is

�0 (z) =
exp [�U0 (z)]

k � �1

R
z

0
exp [�U0 (x)] dx

(95)

with

U0 (z) =

Z
z

0

x

�2
z0

dx =
z
2

2�2
z0

(96)
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and

�1 =
e
2
NpcR

L0E0�c�
2
"0

: (97)

The constant k is obtained by the normalization condition (3). If we use an auxiliary

function f (z) such that

f (z) = k � �1

Z
z

0

exp [�U0 (x)] dx (98)

then

exp [�U0 (z)] = �
f
0 (z)

�1
: (99)

The normalization condition with such a function givesZ 1

�1

f
0 (z)

f (z)
dz = ��1 (100)

which we can integrate, obtaining

ln [f (z)]j1�1 = ln

"
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R1
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#
= ��1: (101)

By solving the above equation with respect to k we get
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(102)

and then we can write the distribution function as
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for which we have used the definition of error function

erf (x) =
2
p
�

Z
z

0

exp
�
�x2

�
dx: (104)

APPENDIX C

Derivation of Linearized Vlasov Equation

If we ignore the second-order infinitesimal

@	1

@"

@H1

@z

�= 0 (105)
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and the effects of radiation damping and fluctuation noise on the perturbation function

	1, we get
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: (106)

It is convenient, at this point, to introduce the two action angle variables, J and �,

defined as

J (H) =
1

2�

I
�motion

"dz =
1

�

Z
zmax

zmin

�
2H

c�c

�
2' (z)

�2
c
E0

� 1

2

dz;

_� = !s (J) =
@H

@J
; (107)

where the line integral is extended to a whole period of motion, and is opposite to the

direction described by a particle in the phase space, in order to have a positive value of

the action variable J . The values of zmin and zmax depend on the Hamiltonian H . One

property of J is that it is a function only of the Hamiltonian, and it is proportional to the

region, in the phase space, enclosed by the trajectory. It is therefore a constant of the

motion for a conservative system. Furthermore, the stationary distribution 	0 depends

only on J and not on �.

With the introduction of the generating functions related to the Legendre transfor-

mations, it is possible to demonstrate that

@J

@z
=

@"

@�
;

@J

@"
= �

@z

@�
: (108)

The above definitions allow us to write Eq. (106) in a more compact form. In fact

we have

@H0

@"
=

@H0

@J

@J

@"
= �!s (J)

@z

@�
;

@H0

@z
=

@H0

@J

@J

@z
= !s (J)

@"

@�
; (109)

and then Eq. (106) becomes

@	1

@t
= �

@	0

@"

@H1

@z
� !s (J)

�
@	1

@z

@z

@�
+
@	1

@"

@"

@�

�
: (110)

The term in parentheses is just the derivative of 	1 with respect to �, and the first

term on the right side can be written as

@	0

@"

@H1

@z
=

@	0

@J

@J

@"

@H1

@z
=

1

!s (J)

@H0

@"

@	0

@J

@H1

@z
(111)
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since 	0 is independent of �. If we now use the definition of Hamiltonian (15) and

Eq. (50), we have

@	0

@"

@H1

@z
= �

c
2
�ce

2
Np"

E0L0!s (J)

@	0

@J

Z 1

�1

�1 (z
0; t)wjj (z

0 � z) dz0 (112)

which, introduced in Eq. (110), gives finally

@	1

@t
= �!s (J)

@	1

@�
+

c
2
�ce

2
Np

E0L0!s (J)

@	0

@J
"

Z 1

�1

�1 (z
0; t)wjj (z

0 � z) dz0: (113)

APPENDIX D

Matrix Elements for Gaussian and Parabolic Distributions

In terms of action-angle variables, the stationary Gaussian distribution function Eq. (29)

can be written as

	0 (J) = 	exp

�
�
!sJ

H

�
: (114)

The constant 	, obtained with the normalization condition (21), is

	 =
!s

2�H
(115)

and then

	0 (J) = 	exp
�
�2�	J

�
(116)

with which the weight function becomes

w (J) = 2�	exp
�
�2�	J

�
: (117)

The normalization condition on the polynomials is therefore

2�	

Z 1

0

exp
�
�2�	J

�
fjmjk (J) fjmjl (J) dJ = Ækl: (118)

The polynomials that satisfy such a relation are the generalized Laguerre polyno-

mials L(jmj)
l

for which we haves
l!k!

(jmj+ l)! (jmj+ k)!

Z 1

0

x
jmj
L
(jmj)
l

(x)L
(jmj)
k

(x) e�xdx = Ækl; (119)

which, compared with Eq. (118), allows us to conclude that

fjmjl (J) =

s
l!

(jmj + l)!

�
2�	J

� jmj
2
L
(jmj)
l

�
2�	J

�
(120)
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and, therefore, the matrix elements (70) become

M
ml

pk
= �i

mc
2
e
2
Np	

!sE0L0

i
l�m

s
p!k!

(jmj+ p)! (jlj+ k)!

Z 1

�1

Zjj (!)

!
d!

�
Z 1

0

x
jmj
2 e

�x
L
(jmj)
p

(x) Jm

�
!

r
�cx

�	c!s

�
dx

�
Z 1

0

y
jlj
2 e

�y
L
(jlj)
k

(y)Jl

�
!

r
�cy

�	c!s

�
dy: (121)

The last two integrals can be solved; in fact we haveZ 1

0

x
jmj
2 e

�x
L
(jmj)
p

(x) Jm
�
a
p
x
�
dx = S (m)

1

p!

�
a

2

�jmj+2p

exp

�
�
a
2

4

�
(122)

where

S (m) =

(
(�1)m if m < 0

1 if m � 0
(123)

and then

M
ml

pk
= �i

c
2
e
2
Np	

!sE0L0

i
jlj�jmj mp

p! (jmj + p)!k! (jlj+ k)!

�
Z 1

�1

Zjj (!)

!

�
!

2

r
�c

�	c!s

�jmj+jlj+2p+2k

exp

�
�

!
2
�c

2�	c!s

�
d!; (124)

which, in terms of bunch length �z and natural energy spread �"0, due to the relation

2�	 =
1

�z�"0
; (125)

can also be written as

M
ml

pk
= �i

c
2
e
2
Np

2�!sE0L0�z�"0
i
jlj�jmj mp

p! (jmj+ p)!k! (jlj+ k)!

�
Z 1

�1

Zjj (!)

!

�
!�zp
2c

�jmj+jlj+2p+2k

exp

�
�
!
2
�
2
z

c2

�
d!: (126)

The same procedure for the case of a parabolic bunch distribution leads to

fjmjl (J) =

s
2 (m + 2l + 1=2) l!� (m + l + 1=2)

(m+ l)!� (l + 1=2)

�
�

J

Jmax

�m=2

P
m;�1=2
l

�
1� 2

J

Jmax

�
(127)
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with Pm;�1=2
l

the Jacobi polynomials and

M
ml

pk
= �i

3c2e2Np

2�!sE0L0z
2
max

i
jlj�jmj

m

s
(m + 2p+ 1=2) � (m + p+ 1=2) � (p+ 1=2)

p! (m+ p)!

�

s
(l + 2k + 1=2) � (l + k + 1=2) � (k + 1=2)

k! (l + k)!

�
Z 1

�1

Zjj (!)

!

Jm+2p+1=2

�
!

c
zmax

�
Jl+2k+1=2

�
!

c
zmax

�
!

c
zmax

d!: (128)

31


