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Abstract

We update the theoretical analysis of the CP-violating asymmetry in the decay K
L
!

�
+
�
�

e
+
e
�, relying on chiral perturbation theory and on the most recent phenomenolog-

ical information. With the experimentally determined magnetic amplitude and branching
ratio as input, the asymmetry can be calculated with good accuracy. The theoretical inter-
pretation of the sign of the asymmetry is discussed.
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1. A large CP-violating asymmetry in the decay KL → π+π−e+e− was originally pre-
dicted by Sehgal and Wanninger [1]. The effect is almost entirely due to indirect CP
violation in K0 − K̄0 mixing. The predicted asymmetry in the angle between the π+π−

and the e+e− planes has been confirmed experimentally [2, 3]. The purpose of this note
is to update the theoretical analysis of the asymmetry [1, 4, 5, 6, 7, 8] using the most re-
cent phenomenological input available and employing the methods of chiral perturbation
theory. The latter will mainly be invoked to estimate higher-order corrections but also to
interpret the observed sign of the asymmetry.

2. The amplitude for the decay KL(p) → π+(p1)π
−(p2)e

+(k+)e−(k−) is expressed in
terms of three invariant form factors E1, E2 (electric) and M (magnetic):

A(KL → π+π−e+e−) =
e

q2
u(k−)γµv(k+) Vµ

Vµ = iE1p1µ + iE2p2µ + Mεµνρσp
ν
1p

ρ
2q

σ (1)

q = k+ + k− .

We use the set of variables originally introduced by Cabibbo and Maksymovicz [9] for
Ke4 decays. With this choice, the form factors E1, E2,M depend on sπ (invariant mass
squared of the two pions), q2 (invariant mass squared of the leptons) and θπ (angle of
the π+ in the π+π− center-of-mass system with respect to the dipion line of flight in the
kaon rest frame). The two remaining Dalitz variables are θl, the corresponding angle for
the positron, and Φ, the angle between the dipion and dilepton planes in the kaon rest
frame.

After integration over four of these variables, the differential decay rate with respect
to Φ assumes the general form1 [10, 11]

dΓ

dΦ
= I1 + I2 cos Φ + I3 sin Φ + I4 cos 2Φ + I5 sin 2Φ . (2)

Under a CP transformation

cos Φ −→ cos Φ

sin Φ −→ − sin Φ (3)

so that non-zero I3, I5 signify CP violation. It turns out that I3 is very small in the
standard model, being sensitive to direct CP violation only [4]. The quantity of interest
here is I5 that is almost exclusively due to indirect CP violation [4]. A convenient measure
of this term is the asymmetry

ACP = 〈sgn(sin Φ cos Φ)〉 =
4I5

Γ(KL → π+π−e+e−)
. (4)

1We use the conventions of Ref. [11], in particular ε0123 = 1 and the metric (+ −−−).
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In terms of the invariant form factors defined in (1), the asymmetry is given by [10, 11]

ACP =
e2

128π8MK0Γ(KL → π+π−e+e−)
(5)

∫
dLIPSεµνρσp

µ
1p

ν
2k

ρ
+k

σ
−

(p1 − p2) · (k+ − k−)

q4
sgn(sin Φ cos Φ)Im[(E1 − E2)M∗]

where dLIPS is the invariant phase space integration measure. We will also consider the
asymmetry for certain cuts (in q2). In this case, both the phase space integration in
the numerator of (5) and Γ(KL → π+π−e+e−) in the denominator must be modified
accordingly.

When CP is conserved we have E2(p1, p2, q) = E1(p2, p1, q). Therefore, only CP-
violating contributions to E1, E2 matter for the numerator in (5).

The most recent published result for the asymmetry comes from the KTeV-
Collaboration [2]:

ACP = 13.6 ± 2.5 (stat) ± 1.2 (syst) % . (6)

The preliminary result from NA48 [3] is fully compatible with this value.
Before delving into the theoretical analysis, we comment on the observed sign of the

asymmetry (6). With our conventions [11] and with the assumption that Im[(E1−E2)M∗]
has a unique sign all over phase space, the theoretical expression (5) implies

sgn ACP = sgn Im[(E1 −E2)M∗] . (7)

As we shall show in the sequel, Im[(E1 − E2)M
∗] does in fact have a unique sign and

must therefore be positive according to Eqs. (6) and (7).

3. At lowest order in the low-energy expansion, the electric amplitudes correspond to
pure Bremsstrahlung:

E1 =
−2ieAtree(KL → π+π−)

q2 + 2p1 · q =
−2

√
2eη+−Atree

0

q2 + 2p1 · q
E2 = −E1(p1 → p2) . (8)

From the dominant ∆I = 1/2 weak Hamiltonian, the I = 0 amplitude Atree
0 for KS → ππ

decays is given at tree level by

Atree
0 =

√
2G8F (M2

K −M2
π) , (9)

with G8 = 9.1 · 10−6 GeV−2 and F = Fπ = 92.4 MeV at tree level. The current values for
the CP-violating quantity η+− are [12]

|η+−| = (2.276 ± 0.017) · 10−3

Φ+− = arg η+− = (43.3 ± 0.5)◦ . (10)
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The magnetic tree-level amplitude starts at O(p4) where it is completely given in
terms of low-energy constants of the nonleptonic weak Lagrangian of O(p4) [13, 14]. In
the notation of Ref. [15], the leading-order magnetic amplitude is written as

M = − eG8

2π2F
(a2 + 2a4) (11)

with dimensionless coefficients a2, a4 of order one. As shown in Ref. [15], the chiral
anomaly induces positive contributions to these coefficients. If the anomaly-induced con-
tributions were the dominant ones, we would expect a2 + 2a4 to be positive.

It is easy to check for the tree-level amplitude that the CP-violating quantity
Im[(E1 − E2)M

∗] has a definite sign that equals the sign of a2 + 2a4. From (6) and
(7) we would therefore conclude that a2 + 2a4 is positive supporting the hypothesis that
the contributions from the chiral anomaly dominate the magnetic amplitude (11).

However, this cannot be the whole story. Assuming a constant magnetic amplitude,
one can extract this amplitude from the branching ratio for KL → π+π−γ. Following
Sehgal and Wanninger [1] (the same procedure is used in Refs. [4, 5]), one obtains in
their notation

M = −0.76e|fs|
M4

K

, (12)

with |fs| = 3.9 · 10−7 GeV denoting the absolute value of the KS → π+π− amplitude.
The resulting asymmetry at tree level is

Atree
CP = 7.7 % , (13)

much smaller than the experimental result (6). Clearly, higher-order corrections are nec-
essary to understand the asymmetry.

4. Chiral corrections to the tree-level amplitudes were already considered in Ref. [6].
Those authors included one-loop corrections to the absorptive parts of both electric and
magnetic form factors. Whereas the corrections are small for the magnetic amplitude they
are sizable for the electric form factors, mainly due to the large final state interactions
of two pions with I = 0 in an S-wave, as first pointed out by Sehgal and Wanninger [1].
To some extent, Elwood et al. [6] compensated the neglect of dispersive contributions by
using the tree-level value of the weak coupling constant G8 also in the loop amplitude.
On the other hand, this is partly double counting because G8 should be reduced by about
30 % [16, 17] when effects of O(p4) are included in the amplitude for K0

1 → π+π−.
We propose here a different procedure for the CP-violating electric amplitude. We

first decompose the electric form factors into a Bremsstrahlung part and a direct-emission
piece:

Ei = EB
i + EDE

i (i = 1, 2) . (14)

In the first part, we use the phenomenological KS → π+π− amplitude,

EB
1 = − 2

√
2eη+−

q2 + 2p1 · q
[
A0e

iδ0
0 +

1√
2
A2e

iδ2
0

]

EB
2 = −EB

1 (p1 → p2), (15)
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with isospin amplitudes A0 = 2.71 · 10−7 GeV, A2 = 0.12 · 10−7 GeV taken from exper-
iment. The pion-pion phase shifts δ0

0 , δ
2
0 at s = M2

K are taken from a new analysis of
pion-pion scattering combining dispersion theory (Roy equations) with chiral perturba-
tion theory [18, 19]:

δ0
0 = 39.1◦ , δ2

0 = −8.5◦ . (16)

For the CP-violating direct-emission part, we have calculated the amplitude of O(p4)
for K0

1 → π+π−γ∗, including both a local amplitude derived from the nonleptonic weak
Lagrangian of O(p4) [13, 14] and a loop amplitude restricted to the dominant pion loops.
Of course, one has to project out the Bremsstrahlung part of O(p4) that is already
included in EB

i in (15). Altogether, we have

EDE
1 = Eπ−loops

1 (µ = Mρ)

+
2eη+−G8

3F
q2 [N r

14(Mρ) −N r
15(Mρ) − 3(N r

16(Mρ) + N17)]

+
4eη+−G8

F
p2 · q [N r

14(Mρ) −N r
15(Mρ) −N r

16(Mρ) −N17]

EDE
2 = −EDE

1 (p1 ↔ p2) . (17)

The explicit form of the direct-emission pion-loop amplitude Eπ−loops
1 (µ = Mρ) can be

found in Ref. [20]. Because we have only included the dominant pion loops there is a
residual, but numerically unimportant scale dependence in (17). We have chosen the usual
renormalization scale µ = Mρ. The numerical values for the low-energy constants N r

i (Mρ)
(N17 is scale independent) are taken from a recent analysis [20, 21] of the branching ratio
B(KL → π+π−e+e−). Anticipating the numerical discussion, the direct-emission form
factors EDE

i are negligible for ACP , especially when integrated over the whole phase
space.

For the magnetic amplitude, we must be less ambitious for the time being. Already at
O(p4), we cannot claim to be able to calculate the coefficients in Eq. (11). Moreover, η−η′
mixing is known to produce a big contribution of O(p6) [22] that interferes destructively
with the amplitude induced by the chiral anomaly. In addition, there are two apparently
non-equivalent versions of implementing vector and axial-vector exchange in nonleptonic
weak transitions [23, 24].

On the other hand, there exists strong experimental evidence for higher-order effects
parametrized in terms of a ρ-dominated form factor [2, 25]. Including final state interac-
tions appropriate for P -wave ππ scattering, we therefore adopt the magnetic amplitude
measured by KTeV,

M =
e|fS|
M4

K

g̃M1e
iδ1

1(sπ)

[
1 +

a1/a2

M2
ρ −M2

K + 2MKE∗
γ

]
, (18)

with E∗
γ the total lepton energy in the kaon rest frame and with2 [2]

g̃M1 = 1.35
+0.20
−0.17

, a1/a2 = (−0.720 ± 0.028) GeV2 . (19)

2The quantity a2 in (18) must not be confused with the same expression in (11).
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The I = J = 1 phase shift is parametrized as

δ1
1(sπ) =

1

2
arcsin

[
4q3

π√
sπ

(a1
1 + b11q

2
π + c11q

4
π)

]
(20)

with
a1

1 = 0.038/M2
π+ , b11 = 0.0057/M4

π+ , c11 = 0.001/M6
π+ ,

qπ = (sπ/4 −M2
π+)1/2 .

(21)

The slope parameters a1
1, b

1
1 are taken from Refs. [18, 19] and the coefficient c11 is intro-

duced to reproduce the correct phase shift at s = M2
K .

With the sign convention of (15), the magnetic coupling g̃M1 must be positive in order
to reproduce the measured sign of the asymmetry. Unfortunately, there is at present no
unique way to infer from (18) and the experimental values (19) the sign of the lowest-order
combination a2+2a4 in (11). A recent analysis ofK → ππγ transitions by D’Ambrosio and
Gao [26] in the framework of the vector-field representation for (axial-)vector resonances
finds that both signs are possible depending on the coupling strength of spin-1 exchange.
A deeper understanding of higher-order effects in nonleptonic weak interactions will be
necessary before one could claim that the chiral anomaly is largely responsible for the
measured sign of the asymmetry.

5. With electric form factors given in Eqs. (15) and (17) and with the magnetic ampli-
tude (18) we obtain for the total integrated asymmetry

ACP = 13.7 % (22)

if all input quantities are taken at their respective mean values.
This value agrees with previous theoretical estimates and with the experimental re-

sults from KTeV and NA48. The main issue we want to address here is the theoretical
uncertainty of this prediction. Electric and magnetic amplitudes are on quite a different
footing in this respect. Except for the P -wave phase shift δ1

1(sπ) that we will lump to-
gether with the phases occurring in EB

i , we cannot ascribe a meaningful theoretical error
to the magnetic amplitude. We will therefore scale the prediction (22) to the measured
magnetic coupling g̃M1 and include the experimental error of the ratio a1/a2 explicitly.
Accounting for the measured branching ratio in the same way, we arrive at

ACP =
3.63 · 10−7

B(KL → π+π−e+e−)
· g̃M1

1.35
(13.7 ± 1.3) % (23)

where the given error is due to the error of a1/a2 in (19) only. Future experimental
improvements and correlations between the measured values for B(KL → π+π−e+e−),
g̃M1 and a1/a2 can easily be incorporated in this formula.

In contrast, the uncertainty of ACP related to the electric form factors is fully under
control theoretically. For the total asymmetry under consideration here, the CP-violating
direct-emission amplitude (17) is completely negligible and does not affect ACP to the
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accuracy given. Of course, this is a consequence of the dominance of the Bremsstrahlung
form factors (15) at small q2.

Inclusion of the I = 2 amplitude A2 is itself a small effect contributing 0.25 % to ACP .
The relatively big errors of A2 and δ2

0 due to isospin violation [27] and electromagnetic
corrections [28] have therefore no impact on ACP . On the other hand, those corrections
are small for A0 and δ0

0 that do matter for the asymmetry. Assigning an uncertainty
±0.05 · 10−7 GeV to A0 induces ∆ACP = 0.25 %. Likewise, the error for |η+−| given in
(10) propagates into ∆ACP = 0.10 %.

Because of the dominance of Bremsstrahlung, the phases relevant for ACP enter effec-
tively in the combination δ0

0 − δ1
1(sπ) + Φ+−. From the recent analysis of pion-pion phase

shifts [18, 19] we extract an uncertainty of 0.6◦ for δ0
0 − δ1

1(sπ). Together with the error
of Φ+− displayed in (10), the conservative uncertainty ∆ (δ0

0 − δ1
1(sπ) + Φ+−) = 1◦ gives

rise to ∆ACP = 0.05 %.
Combining the uncertainties from A0, |η+−| and from the phases in quadrature, we

add the resulting theoretical error of 0.3 % to the previous one due to a1/a2 to obtain
our final result for the total asymmetry:

ACP =
3.63 · 10−7

B(KL → π+π−e+e−)
· g̃M1

1.35
(13.7 ± 1.3 ± 0.3) % . (24)

Given the magnetic amplitude and the branching ratio B(KL → π+π−e+e−), the CP-
violating asymmetry can be calculated to a relative accuracy of about 2 %.

6. Following the authors of Refs. [5, 6, 7], we consider the asymmetry also for different
cuts in q2, the invariant mass squared of the leptons. For this purpose, the chiral amplitude
of O(p4) [5, 21] is used to calculate the rate Γ(KL → π+π−e+e−) in the denominator of the
asymmetry for the cuts in question. As already mentioned, the low-energy constants N r

i

are taken from a recent analysis [20, 21] of the total branching ratio B(KL → π+π−e+e−).
Suppressing errors, the results are collected in Table 1. One immediate conclusion is

that the asymmetry is maximal for q2 >∼ (10 MeV)2.
Compared to the previous situation for the total asymmetry with q2 ≥ 4m2

e, there are
now additional uncertainties that increase with the lower limit on q2. In the numerator of
the asymmetry, the direct-emission form factors EDE

i in (17) become more important in
comparison with the Bremsstrahlung amplitude. Likewise, the rate in the denominator
becomes more sensitive to the inaccurately known weak low-energy constants N r

i as one
moves to larger q2.

For large q2, both the asymmetry and the rate decrease rapidly. For illustration, we
therefore choose a realistic cut of q2 > (40 MeV)2. The CP-conserving amplitude of O(p4)
depends on the combination Z(µ) = N r

14(µ)−N r
15(µ)−3(N r

16(µ)−N17) of weak low-energy
constants. With the mean value Z(Mρ) = 0.023 extracted from the total branching ratio
[21], about 13 % of all events (almost 16 % of those with q2 > (2 MeV)2 as in the KTeV
experiment [2]) satisfy q2 > (40 MeV)2.

However, these numbers are rather sensitive to the precise value of Z(Mρ). In Table
2, the dependence of the rate on the electric amplitude is exhibited for q2 > (40 MeV)2.
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Table 1: The asymmetry ACP for different cuts in q2, the invariant mass squared of the
lepton pair.

q2 > [MeV2] ACP in %

entire phase space 13.7

22 15.2
102 15.7
202 14.0
302 12.1
402 10.2
602 7.2
802 4.8
1002 3.2
1202 2.0
1802 0.4

About 25% of the rate is due to Z(Mρ) being different from zero. This also documents
that Z(Mρ) can in principle be extracted with much higher precision from the partial rate
than from the total branching ratio. In the sample accumulated by KTeV [29], several
hundred events are expected to satisfy q2 > (40 MeV)2.

As already mentioned, the direct-emission amplitude of O(p4) also enters the numera-
tor of the asymmetry. In contrast to the rate where the CP-conserving electric amplitude
of O(p4) overtakes the CP-violating Bremsstrahlung amplitude (8) of O(p2) already at
fairly small q2 [21], only the CP-violating part of direct emission matters in the numer-
ator. For the considered cut q2 > (40 MeV)2 this is still only a small correction to the
leading-order Bremsstrahlung. Numerically, the correction is smaller than the uncertainty
due to A0 and it will be included in the theoretical error.

Consequently, for reasonable cuts in q2 the asymmetry can still be predicted rather
precisely in terms of the magnetic amplitude and the branching ratio. For q2 > (40 MeV)2,
we obtain

ACP =
4.75 · 10−8

B(KL → π+π−e+e−; q2 > (40 MeV)2)
· g̃M1

1.35
(10.2 ± 1.1 ± 0.3) % (25)

where the first error is again due to the error of a1/a2 in (19), the second one being the
genuine theoretical error.

7. The electric direct-emission amplitude for the decay KL → π+π−e+e− has been
calculated in chiral perturbation theory. The CP-conserving part is important for the
rate because it dominates the CP-violating Bremsstrahlung amplitude already for rather
low invariant masses of the lepton pair. With appropriate cuts in q2, it will be possible to

8



Table 2: Dependence of the rate Γcut(KL → π+π−e+e−) on the electric amplitude [21] for

q2 > (40 MeV)2. E
O(p4)
i denotes the complete electric amplitude to O(p4) that depends on

the combination Z(µ) = N r
14(µ)−N r

15(µ)−3(N r
16(µ)−N17) of weak low-energy constants.

The magnetic amplitude is given in (18).

Γcut/Γcut(O(p4))

EB
i 0.60

E
O(p4)
i with Z(Mρ) = 0.023 1.

E
O(p4)
i with Z(Mρ) = 0 0.75

extract the relevant combination of low-energy constants in the CP-conserving amplitude
of O(p4) with good precision.

In contrast, the CP-violating asymmetry is quite insensitive to electric direct emission.
This allows for an accurate calculation of the asymmetry once the magnetic amplitude
and branching ratio have been determined experimentally. For realistic cuts in q2, the
asymmetry can be predicted with a relative accuracy of 2 ÷ 3%.

The contribution of the chiral anomaly to the magnetic amplitude ofO(p4) leads to the
observed sign of the asymmetry. However, higher-order terms in the magnetic amplitude,
clearly required by experiment but not reliably calculable in chiral perturbation theory,
make this connection less conclusive.

We thank T. Barker, B. Cox, G. D’Ambrosio, M. Jeitler, S. Ledovskoy and L.M. Sehgal
for helpful correspondence.
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