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Abstract

A prediction for the contributions of chiral loops and the LσM model to the radiative
φ → π0ηγ decay mode is presented. The LσM is used as an appropriate framework for
describing the pole effects of thea0(980) scalar resonance. As a result, a better agree-
ment with present available data is achieved for the higher part of theπ0η invariant mass
spectrum. For the branching ratio, a value ofB(φ → π0ηγ) = (0.75–0.95) × 10−4 is
found.
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1 Introduction

As exposed in detail by Dr. Denig in his very nice and introductory talk on the KLOE

status and first results (see A. G. Denig’s talk in these proceedings),φ radiative decays

into two pseudoscalar mesons and a photon are very interesting processes to be measured.

Their accurate measurements could offer us the possibility of shedding some light on the

presently unclear nature of scalars (in particular, in those channels involving thef0(980)

anda0(980) resonances). These decays, and in general all the associatedV → P 0P 0γ

radiative decays withV = ρ, ω, φ andP 0 = π0, K0, η, are not only a challenge for

experimentalists but also for theorists. The reason for that is at least twofold. First,

the center of mass energy of these processes is around 1 GeV, an energy region that is,

on the one side, too low for perturbative QCD to be applicable and, on the other, too

high for Chiral Perturbation Theory (ChPT) predictions to be reliable. Accordingly, these

processes provide us with an excellent laboratory for testing our knowledge of hadron

physics in the 1 GeV energy domain. Second, due to the quantum numbers of the initial

vector and of the final photon, both withJPC = 1−−, the remaining two pseudoscalar

meson system is in aJPC = 0++ configuration1, whose quantum numbers correspond

precisely to those of a scalar state. So then, these vector radiative decays may help us

to establish the nature of these scalar resonances, nowadays very controversial2 [2], and

their poorly known properties (masses and decay widths) [1], thus adding further interest

but also complexity to this 1 GeV energy region.

In this presentation, we propose the linear sigma model (LσM) as an appropriate

framework for incorporating the lightest scalar resonances and their pole effects into a

ChPT inspired context. This will allow us to benefit from the common origin of ChPT

and the LσM to improve the chiral loop predictions for theV → P 0P 0γ decays exploiting

the complementarity of both approaches. As well known, ChPT is the established theory

of the pseudoscalar interactions at low energy. However, it is not reliable at energies of

a typical vector meson mass and scalar resonance poles are not explicitly included. As

a result, ChPT inspired loop models can give rough estimates forB(V → P 0P 0γ) but

will hardly be able to reproduce the observed enhancements in the invariant mass spectra.

The LσM is a much simpler model dealing similarly with pseudoscalar interactions but

taking into account scalar resonances in a systematic and definite way. Consequently, the

LσM should be able to reproduce the resonance peaks in the spectra associated to the0++

states and, although it does not provide a complete framework for the pseudoscalar meson
1Rescattering effects from2++ states are very suppressed because the nearest tensorial resonances,

f2(1270) anda2(1320), are well above the lightest vector masses [1].
2Indeed, several proposals have been suggested along the years concerning the constitution of these

scalars as multiquark states [3],KK̄ molecules [4] or ordinaryqq̄ mesons [5].
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physics, this model might be of relevance in describing the scalar resonance effects when

linked to a well established ChPT context.

The Novosibirsk CMD-2 and SND Collaborations have reported very recently the

branching ratio and theπ0η invariant mass distribution for theφ → π0ηγ decay. For

the branching ratio, the CMD-2 Collaboration reportsB(φ → π0ηγ) = (0.90 ± 0.24 ±
0.10) × 10−4 [6], while the SND result is, consistently,B(φ → π0ηγ) = (0.88 ± 0.14 ±
0.09) × 10−4 [7]. The observed invariant mass distribution shows a significant enhance-

ment at largeπ0η invariant mass that, according to Refs. [6,7], could be interpreted as a

manifestation of a sizeable contribution of thea0(980)γ intermediate state. The last is-

sue of the Review of Particle Physics, including the previous CMD-2 value together with

an older SND measurement [8] announcesB(φ → π0ηγ) = (0.86 ± 0.18) × 10−4 [1],

while the preliminary result presented in this conference by the KLOE Collaboration is

B(φ → π0ηγ) = (0.77 ± 0.15 ± 0.10) × 10−4 (see A.G. Denig’s contribution). This and

other radiativeφ decays are intensively investigated at the Frascatiφ-factory DAΦNE [9].

On the theoretical side, theV → P 0P 0γ decays have been extensively studied

[2,10–13]. Specifically, it has been shown that the intermediate vector meson contribu-

tions toφ → π0ηγ lead to a smallB(φ → π0ηγ)VMD = 5.4 × 10−6 [14], whereas a

chiral loop model closely linked to standard ChPT predictsB(φ → π0ηγ)χ = 3.0× 10−5

[15]. Needless to say, the scalar resonance effects and, in particular, the resonance pole

associated to thea0(980) were not contemplated in these two schemes. The recent exper-

imental data from Novosibirsk and Frascati —for both the branching ratio and theπ0η

invariant mass spectrum— seem therefore to disfavour these predictions based on vector

meson exchange and/or a simple extrapolation of ChPT ideas. If we rely on the resonance

picture, it is clear that thea0(980) scalar meson —lying just below theφ mass and hav-

ing the appropriate quantum numbers— should play an important rˆole in theφ → π 0ηγ

decay. Several theoretical attempts to describe the effects of scalars inφ radiative decays

have appeared so far: the “no structure” model [16], theK+K− model [2,12], where

the φ → a0γ amplitude is generated through a loop of charged kaons, and the chiral

unitary approach(UχPT ) [13], where the decayφ → π0ηγ occurs through a loop of

charged kaons that subsequently annihilate intoπ0ηγ. In the two former cases the scalar

resonances are includedad hoc while in the latter they are generated dynamically by

unitarizing the one-loop amplitudes.

As an example of our work, we discuss theφ → π0ηγ decay mode. This process is

the easiest to calculate since it only involves thea0(980) scalar resonance whose proper-

ties are quite well known. This circumstance reduces to a minimum the uncertainties of

the calculation and will render our theoretical prediction more definite and solid.

This presentation is based on a more extensive analysis published in Ref. [17].
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2 Chiral loop prediction

The vector meson initiatedV → P 0P 0γ decays cannot be treated in strict ChPT. This

theory has to be extended to incorporate on-shell vector meson fields. At lowest order,

this may be easily achieved by means of theO(p2) ChPT Lagrangian

L2 =
f 2

4
〈DµU

†DµU + M(U + U †)〉 , (1)

wheref = fπ = 92.4 MeV at this order,U = exp(i
√

2P/f) with P being the usual

pseudoscalar nonet matrix, andM = diag(m2
π, m

2
π, 2m

2
K − m2

π) in the isospin limit.

The covariant derivative, now enlarged to include vector mesons, is defined asDµU =

∂µU − ieAµ[Q,U ] − ig[Vµ, U ], with Q = diag(2/3,−1/3,−1/3) being the quark charge

matrix andVµ the additional matrix containing the nonet of ideally mixed vector meson

fields. The diagonal elements ofV are(ρ0 + ω)/
√

2, (−ρ0 + ω)/
√

2 andφ.

There is no tree-level contribution from this Lagrangian to theφ → π0ηγ amplitude

and at the one-loop level one needs to compute the set of diagrams shown in Ref. [15].

A straightforward calculation leads to the following finite amplitude forφ(q∗, ε∗) →
π0(p)η(p′)γ(q, ε):

A(φ → π0ηγ)χ =
eg

2π2m2
K+

(ε∗ε q∗q − ε∗q εq∗)L(m2
π0η)A(K+K− → π0η)χ , (2)

whereL(m2
π0η) is the loop integral function andm2

π0η is the invariant mass of the final

pseudoscalar system (see Ref. [17] for further details). The coupling constantg is defined

through the strong amplitudeA(φ → K+K−) = gε∗(p+ − p−) and is the part beyond

standard ChPT which is fixed from phenomenology. The four-pseudoscalar amplitude is

instead a standard ChPT amplitude3 which is found to be

A(K+K− → π0η)χ =
1√
6f 2

π

(
m2

π0η −
10

9
m2

K +
1

9
m2

π

)
. (3)

In Eqs. (2, 3), a value ofθP = arcsin(−1/3) � −19.5◦ is taken for theη-η′ mixing angle.

This value, based on classical arguments of nonet symmetry, is in fairly agreement with

recent phenomenological estimates [18].

The invariant mass distribution for theφ → π0ηγ decay is then given by the spec-

trum (see Fig. 1)

dΓ(φ→π0ηγ)χ

dmπ0η
= α

192π5
g2

4π

m4
φ

m4
K+

mπ0η

mφ

(
1 − m2

π0η

m2
φ

)3
√

1 − 2
m2

π0+m2
η

m2
π0η

+
(

m2
η−m2

π0

m2
π0η

)2

× |L(m2
π0η)|2|A(K+K− → π0η)χ|2 .

(4)

3A(K+K− → π0η8)χ =
√

3
4f2

π

(
m2

π0η − 4
3m2

K

)
if only the η8 contribution is taken into account as in

Ref. [15].
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Figure 1:dB(φ → π0ηγ)/dmπ0η × 107 MeV−1 as a function of themπ0η invariant mass
in a chiral loop model. Experimental data are taken from Ref. [7].

Integrating Eq. (4) over the whole physical region one obtains for the branching ratio

B(φ → π0ηγ)χ = 0.47 × 10−4 . (5)

As expected, Fig. 1 shows that our chiral loop approach gives a reasonable prediction

for the lower part of the spectrum but fails to reproduce the observed enhancement in

its higher part, wherea0(980)-resonance effects should manifest. As a consequence, the

branching ratio is below the experimental value by about a factor of 2.

3 LσM improved prediction

To analyze the scalar resonance effects in theV → P 0P 0γ decay amplitudes, we use the

linear sigma model (LσM) [19] as an adequate framework for describing such effects. It

is a well-definedU(3) × U(3) chiral model which incorporatesab initio both the nonet

of pseudoscalar mesons together with its chiral partner, the scalar mesons nonet. Re-

cently, this model has shown to be rather phenomenologically successful in studying the

implications of chiral symmetry for the controversial scalar sector of QCD [20–22].

In this context, theV → P 0P 0γ decays proceed through a loop of charged pseu-

doscalar mesons emitted by the initial vector that, due to the additional emission of a

photon, can rescatter into pairs of neutral pseudoscalars with the quantum numbers of

a scalar state. The scalar resonances are then expected to play an essential rˆole in this
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rescattering process and the LσM will be shown particularly appropriate to fix the corre-

sponding amplitudes.

For the case ofφ → π0ηγ, the dominant contribution arises exclusively from a loop

of charged kaons4 that subsequently rescatters into the finalJPC = 0++ π0η state. In

the LσM, theK+K− → π0η rescattering amplitude is driven by a contact term, a term

with ana0 exchanged in thes-channel, and two terms with aκ (i.e. the strangeI = 1/2

scalar resonance) exchanged in thet- andu-channels. However, the latterκ-exchange

contributions are absent for anη-η′ mixing angleθP = arcsin(−1/3) � −19.5◦ since the

gκKη coupling constant appearing in one of theκ vertices vanishes5.

A straightforward calculation of theφ → π0ηγ decay amplitude leads to an expres-

sion identical to that in Eq. (2) but with the four-pseudoscalar amplitude now computed

in a LσM context. In this case, the amplitude is just

A(K+K− → π0η)LσM =
1√

6fKfπ

(m2
π0η − m2

K) × m2
η − m2

a0

Da0(m
2
π0η)

, (6)

whereDa0(m
2
π0η) is thea0 propagator.

It is worth mentioning a few remarks on the four-pseudoscalar LσM amplitude in

Eq. (6) and its ChPT counterpart in Eq. (3):i) for ma0 → ∞ and ignoringSU(3)-breaking

in the pseudoscalar masses and decay constants, the LσM amplitude reduces to the ChPT

one. This means that the large scalar mass limit of the LσM mimics perfectly (in the

SU(3) limit) the contributions from the derivative and massive terms of the ChPT La-

grangian (1). This, we believe, is the main virtue of our approach and makes the use of

the LσM reliable; ii) the reason for the LσM and ChPT yielding slightly different ampli-

tudes in thema0 → ∞ limit is because of the waySU(3)-symmetry is broken in the two

approaches. While in the LσM a nonSU(3) symmetric choice of the vacuum expectation

values makes simultaneouslym2
π �= m2

K andfπ �= fK [20,21], in ChPTm2
π �= m2

K is

already present at tree level whereasfπ �= fK is only achieved at next-to-leading order;

iii) the vicinity of thea0(980) mass to theπ0η production threshold makes unavoidable

the presence of thea0 propagator to take into account the pole effects. Its inclusion should

guarantee the proper behavior of the higher part of theπ0η invariant mass spectrum;iv)

concerning thea0 propagator, the opening of theKK̄ channel close to thea0(980) mass

generates some uncertainties about which precise form for that propagator should be used.

A first possibility consists in using a Breit-Wigner propagator with an energy dependent

width to incorporate the known kinematic corrections:Da0(s) = s − m2
a0

+ i
√

sΓa0(s),
4A loop of charged pions is highly suppressed because it involves the isospin violating and OZI–rule

forbiddenφππ coupling.
5See Ref. [17] for a detailed discussion on the effect of neglecting theseκ contributions.
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whereΓa0(s) =
∑

ab Γab
a0

(s) and

Γab
a0

(s) =
g2

a0ab

16π
√

s

√√√√[
1 − (ma + mb)2

s

] [
1 − (ma − mb)2

s

]
θ(
√

s− (ma + mb)) , (7)

for ab = π0η,K+K−, K0K̄0 (see Ref. [17] for the coupling constantsga0ab). Another

interesting and widely accepted option was proposed by Flatt´e time ago specifically to

the two-channela0 resonance [23]:Da0(s) = s − m2
a0

+ ima0 Γa0(s), whereΓa0(s) =

Γπ0η
a0

(s) + ΓKK̄
a0

(s) and

ΓKK̄
a0

(s) =
g2

a0KK̄

16π
√

s
×




√
1 − 4m2

K

s
for

√
s ≥ 2mK

i

√
4m2

K

s
− 1 for

√
s < 2mK

(8)

for KK̄ = K+K−, K0K̄0. The relative narrowness of the observedπη peak around 980

MeV is then explained by the action of unitarity and analyticity at theKK̄ threshold.

Due to these distinct possibilities to deal with thea0 propagator, as well as other dif-

ferences introduced when implementing and fitting the basic LσM Lagrangian by several

authors, a set of predictions can be obtained for the four-pseudoscalar amplitude (6). In

turn, these various amplitudes have to substitute the four-pseudoscalar ChPT amplitude in

Eq. (4) to finally obtain the corresponding invariant mass distributions of theφ → π 0ηγ

decay mode.

We start our discussion along the lines of Ref. [20] taking for thea0 propagator

the simple Breit-Wigner prescription. The use of this propagator for the LσM amplitude

Eq. (6) and its insertion in Eq. (4) predicts themπ0η invariant mass spectrum shown by

the dotted line in Fig. 2. Integrating over the whole physical region leads to the branching

ratio

B(φ → π0ηγ)LσM[20] = 0.80 × 10−4 , (9)

in agreement with the experimental branching ratio. However, since the simple expression

used for thea0 propagator implies a largea0-width (Γa0→πη � 460 MeV [20]), the desired

enhancement in the invariant mass spectrum appears in its central part rather than around

thea0 peak.

This unpleasant feature is partially corrected when turning to the proposal by T¨ornq-

vist [21], where a Gaussian form factor related to the finite size of physical mesons and

depending on the final CM-momentum is introduced to describe the decays of scalar

resonances in this approach. As a result, the decay width ofa0(980) intoπ0η is reduced

(Γa0→πη � 273 MeV [21]) without affecting that ofa0(980) intoKK̄. This fact produces
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Figure 2:dB(φ → π0ηγ)/dmπ0η × 107 MeV−1 as a function of themπ0η invariant mass
in the LσM. The dotted, dashed and solid lines correspond to the versions of the LσM
proposed by Refs. [20,21,24] respectively. Experimental data are taken from Ref. [7].

an enhancement in the spectrum for the higher values of themπ0η invariant mass, as shown

by the dashed line in Fig. 2. The integrated branching ratio is then predicted to be

B(φ → π0ηγ)LσM[21] = 0.90 × 10−4 . (10)

None of these drawbacks are encountered in the treatment proposed by Shabalin

[24], where the Flatt´e corrections (indeed, a more precise form of them) are introduced in

thea0 propagator. Thea0 width is then drastically reduced to a more acceptable visible

width of Γa0 � 65 MeV. Within this approach, our prediction for themπ0η invariant mass

is shown by the solid line in Fig. 2 and the integrated branching ratio is

B(φ → π0ηγ)LσM[24] = 0.93 × 10−4 . (11)

Both the spectrum and the branching ratio are in nice agreement with the experimental

data [7]. The fact that Shabalin’s treatment incorporates the Flatt´e corrections to thea0

resonant shape has played a major rˆole in this achievement.

4 Conclusions

In this presentation, I have discussed a new amplitude for theφ → π0ηγ process that

includes the effects of thea0(980) scalar resonance. The LσM has shown to be a very
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suitable framework for including thea0 pole effects in a systematic and definite way.

An explanation of the higher part of theπ0η invariant mass spectrum is then achieved.

In the low invariant mass region, the result coincides with that coming from a chiral

loop model calculation, thus making our whole approach reliable. As a result of our

analysis, it is safely concluded that theφ → π0ηγ branching ratio is in the rangeB(φ →
π0ηγ) = (0.75–0.95)×10−4, a prediction that is compatible with the present experimental

data. Nevertheless, the uncertainties affecting these predictions suggest that more refined

analyses are needed, particularly when the higher accuracy data from DAΦNE will be

available.
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