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Abstract

We present a recent analysis ©fe in the 1/N. expansion. We show that thig N,
corrections to the matrix element ¢f; are large and positive, indicating&a/ = 1/2
enhancement similar to the one@f and@. which dominate the CP conserving ampli-
tude. This enhances the CP ratio and can bring the standard model prediction close to the

measured value for central values of the parameters. Several comments on the theoretical
status of’ /¢ and the errors in its calculation are given.
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1 INTRODUCTION

Direct CP violation ink’ — 7w decays was recently observed by the KTeV and NA48
collaborations [1,2]. The present world average [2] for the paraméteis Re:'/c =

(19.3 £2.4)-10~*. In the standard model CP violation originates in the CKM phase, and
direct CP violation is governed by loop diagrams of the penguin type. The main source
of uncertainty in the calculation af /¢ is the QCD non-perturbative contribution related

to the hadronic nature of th€ — 77 decay. Using thé\S = 1 effective hamiltonian,
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the non-perturbative contribution, contained in the hadronic matrix elements of the four-
quark operators);, can be separated from the perturbative Wilson coefficiefis =
zi(p) + 7yi(p) (With 7 = =X /A, andA, =V V.- Introducing(@;); = ((7m)]|Q:| K),
the CP ratio can be written as
(1-5.)
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w =ReAdq/ReA, = 22.2 is the ratio of the CP conserving — == isospin amplitudes;

(s parameterizes isospin breaking corrections {3} is dominated by (Qs)o and(Qs)-

which cannot be fixed from the CP conserving data [4,5]. Beside the theoretical uncer-
tainties coming from the calculation of ti€,); and ofQ), the analysis of the CP ratio
suffers from the uncertainties on the values of various input parameters, in particular of
the CKM phase in Im;, of Agep = AY and of the strange quark mass.
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2 ONTHE COUNTINGIN1/N.AND THE USE OF THE LARGE-N, VALUES
FOR THE MATRIX ELEMENTS

To calculate the hadronic matrix elements we start from the effective chiral lagrangian for
pseudoscalar mesons which involves an expansion in momenta where terms8 p)to

are included [6]. Keeping only terms 6%(p*) which contribute, at the order we calculate,

to the ' — =7 amplitudes, for the lagrangian we obtain:

Legp =
L(DUTDAU) + 22-(In Ut — InU)?



+(xUT + UXT)) + Ls(xUXTU + xUTxUT)
+Ls(DUTD*U(XTU + Uty)), 3)

with (A) denoting the trace oft, o = m? 4+ m2, — 2m%, x = *M, and M =
diagm,, mq,ms). f andr are parameters related to the pion decay constardnd

to the quark condensate, with= —2(gq)/f*. The complex matriX/ is a non-linear
representation of the pseudoscalar meson nonet. The conventions and definitions we use
are the same as those in [7-9]. The method we use i$/tNeexpansion [10]. In this
approach, we expand the matrix elements in powers of the momenta ahyl.ofFor the

1/N. corrections we calculated chiral loops as described in refs. [8,9]. Especially impor-
tant to this analysis are the non-factorizable corrections, which are UV divergent and must
be matched to the short-distance part. They are regularized by a finite guteffich is
identified with the short-distance renormalization scale. The definition of the momenta in
the loop diagrams, which are not momentum translation invariant, is discussed in detail
in ref. [8]. Other recent work on matrix elements in theV. approach can be found in

refs. [11-13].

For the Wilson coefficients we use the leading logarithmic and the next-to-leading
logarithmic values [4]. The absence of any reference to the renormalization scheme in the
low-energy calculation, at this stage, prevents a complete matching at the next-to-leading
order [14]. Nevertheless, a comparison of the numerical results obtained from the LO and
NLO coefficients is useful as regards estimating the uncertainties and testing the validity
of perturbation theory.

As it is well known the largeV, approximation fails completely in explaining the
Al = 1/2 rule. By taking the largeV. values for the two dominant operataps and
(), one obtains a\/ = 1/2 CP-conserving amplitude which underestimates the data by
roughly a factor of three. However, as pointed out in ref. [10], show an important
specificity; they are expected to be largely affected by non-chirally suppressed corrections
beyond the largeY. limit. In the counting inp* and1/N,, this property is attributed to
the fact that the tree level mesonic representatioof from the leadingD(p?) chiral
lagrangian introduce®(p?) terms with two derivatives. As a result the one-loop contri-
butions over these terms, which af&p*/N.), are quadratically divergent, i.e. possibly
very large because these corrections are not protected by any symmetry like the chiral one.
Calculating the terms dP(p*/N..) one obtains a large enhancement ofthe= 1/2 am-
plitude [10] in the range required to reproduce the experiment [9]. This illustrates how
important are the non-chirally suppressedv. corrections for an understanding of the
K — 7 amplitudes.

In this context, for='/¢, it is very important to investigate the counting;ifh and



1/N. for the dominant operatorgs s and to compare it with the one fqr, ,. For()s the
mesonic representation from thi&p?) lagrangian i) (p°) and does not have any deriva-
tive (because)s is a density-density operator where@s, are of the current-current
type). As a result we do not expect any quadratic term but only chirally suppressed loga-
rithmic or finite terms. The large¥. limit, B{*? = 1, is therefore expected to be a much
better approximation than f@p, ,. Differentis the case of)s due to the fact that there

is no tree level contribution from the leadirg®(p*) lagrangian, and the larg¥: value

B = 1 refers to the tree level contribution from tki&p*) lagrangian which, as for

(1 2, carries two derivatives [i.e. i9(p*)]. Therefore, as fof), », we expect the largéy.
value of B{"? to be affected by largé(p? /N.) corrections f O(100 %)] resulting from

the loops over th&(p?) tree operator. This shows clearly that, in the same way as for
the A7 = 1/2 rule, no clear statement can be done on the expected sizé& afithout
calculating thesé/ V. non-factorizable corrections.

3 ANALYSISOF¢€'/e

Analytical formulas for all matrix elements, at next-to-leading order in the twofold ex-
pansion in powers of momenta andligfV,, are given in refs. [8,9]. In the pseudoscalar
approximation, the matching has to be done below 1 GeV. Varyinigetween 600 and
900 MeV, the bag factor!"/? and B{"/? take the values.2 — 14.2 and2.9 — 4.6;
quadratic terms ifiQ; )o and(Q2)o produce a large enhancement which bringsAtie=

1/2 amplitude in agreement with the data [9]. Corrections beyond the chiral limit were
found to be small.

For (s)o and(Qs)- the leading non-factorizable loop corrections, which are of
O(p°/N,), are only logarithmically divergent [8]. Including terms@fp°), O(p*), and
O(p°/N.), B? and B{*'? take the values.10 — 0.72 and0.64 — 0.42. As a result,
as with largeA . values,s’/¢= is obtained generally much smaller than the data, except
for input parameters taken close to the extreme of the ranges we considered. However,
as stated above, since the leadif@"”) contribution vanishes fof)s, corrections from
higher order terms beyond th&(p*) and O(p°/N,) are expected to be large. In ref. [7]
we investigated th&(p*/N.) contribution, i.e., thd /N, correction at the next order in
the chiral expansion, because it brings about, for the first time, quadratic corrections on
the cutoff. From counting arguments and more generally from the fact that the chiral
limit is assumed to be reliable, the quadratic terms (which are not chirally suppressed)
are expected to be dominant. It is still desirable to check that explicitly by calculating the
corrections beyond the chiral limit, from logarithms and finite terms, as dorng,fand
(2. Numerically, we observe a large positive correction from the quadratic tef@xin.



Table 1: Numerical values faf/z (in units of 10~*) as explained in the text.

LO 148 < &'/e < 194

NDR 125 < ¢/e < 183  central
HV 7.0 < fe < 149

LO 6.1 < &/e < 48.5

NDR 52 < £'/e < 49.8  scanning
HV 2.2 < &'/e < 385

This point was already emphasized in ref. [15]. The slope of the correction is qualitatively
consistent and welcome since it compensates for the logarithmic decre@sg’ av. ).
Varying A, between 600 and 900 MeV, th#l'/? factor takes the valueis50 — 1.62. Qs

isaAl = 1/2 operator, and the enhancement @§), indicates that at the level of the

1/N. corrections the dynamics of the/ = 1/2 rule applies ta)s as toQ); and@),. The

size of the enhancement f@ém) appears however to be smaller 9 than for@), ,

due to a smaller coefficient of the quadratic term. This coefficient is nevertheless large
enough to increas€/e by almost a factor of two.

Using the quoted values foﬁ'ém) together with the full leading plus next-to-leading

order B factors for the remaining operators [7] the results we obtain'farare given in

tab. 1 for the three sets of Wilson coefficients LO, NDR, and HV and\fobetween

600 and900 MeV. The numbers are close to the measured value for central values of
the parameters (upper set). They are obtained by assuming zero phases from final state
interactions. This approximation is very close to the results we would get if we used the
small imaginary part obtained at the one-loop level [7].

Performing a scanning of the parametergsMeV < m,(1GeV) < 175 MeV,

0.15 < N <0.35,1.04-107* < Im); < 1.63-107%, and245 MeV < Agep < 405 MeV]

we obtain the numbers in lower set of tab. 1. They can be compared with the results of
refs. [5,12,16—18]. The values &£** can also be compared with refs. [13,19]. Other
recent calculations are reported in refs. [20—22]. The wide ranges reported in the table
can be traced back, to a large extent, to the large ranges of the input parameters. This can
be seen by comparing them with the relatively narrow ranges obtained for central values
of the parameters. The parameters, to a large extent, act multiplicatively, and the large
range for=’ /e is due to the fact that the central value(s) for the ratio are enhanced roughly
by a factor of two compared to the results obtained vidtfactors for()s and@)s close to



Table 2: Same as in Tab. 1, but now with the phenomenological values for the phases.

LO 19.5 < &'fe < 24.7
NDR 16.1 < £'/e < 234  central
HV 93 < &'/e < 193
LO 8.0 < £'/e < 62.1
NDR 6.8 < &/e < 63.9 scanning
HV 28 < ¢'/e < 498

the VSA. More accurate information on the parameters, from theory and experiment, will
restrict the values fot'/ <.

To estimate the uncertainties due to higher order final state interactions we also cal-
culated:’/s using the real part of the matrix elements and the phenomenological values of
the phases [23}, = (34.2+£2.2)° andd, = (—6.9£0.2)°, i.e., we replacet]y . v;(Q:)1|
in Eq. (2) by)_. yv;Re(Q;)1/ cos §;. The corresponding results are given in tab. 2. They
are enhanced by 25 % compared to the numbers in tab. 1. To reduce the FSI uncertain-
ties in thel/N. approach it would be interesting to investigate the two-loop imaginary
part. By doing so we expect to get phases very close to the ones of ref. [24] which have
been obtained in Chiral Perturbation Theory at the same order and reproduce relatively
well the data. In this sense we expect to get results close to the ones of tab. 2. A compar-
ison of tabs. 1 and 2 will be however still useful to estimate higher order corrections (e.qg.
for the real part). In our analysis part of the uncertainty from higher order corrections
is also included in the range due to the (moderate) residual dependence on the matching
scale. In order to reduce the scheme dependence in the result, appropriate subtractions
would be necessary [11,12,25]. Finally, it is reasonable to assume that the effect of the

pseudoscalar mesons is the most important one. Nevertheless, the incorporation of vector
mesons and higher resonances would be desirable in order to improve the treatment of the
intermediate region around the rho mass and to show explicitly that the large enhance-
ment we find at low energy at the level of the pseudoscalars remains up to the seale

where the matching with the short-distance part can be done more safely.

4 ONTHE SIZE OF THE ERRORSIN THE ANALYSISof ¢ /e

As shown in tabs. 1 and 2 the errors we obtain:for are large. We believe however that
the uncertainties are not largely overestimated and reflect well our present knowledge on



elfe.

Note that we performed a scanning of the parameters. Refs. [5,16—18] used in ad-
dition to the scanning method also a Monte Carlo procedure with gaussian distributions
for the experimental input and flat distributions for the theoretical parameters. In this way
a probability distribution is obtained faf /¢, and the authors gave the median and the
68 % confidence level interval. We would like to emphasize that the use of this C.L. inter-
val removes part of the hadronic uncertainties and leads to a ranggdavrhich is two
times smaller than the one obtained from a full scanning over the ranges of the theoreti-
cal (mostly hadronic) parameters. In our opinion the Monte Carlo analysis is misleading
because there is no justification for assumang probability distribution for theoretical
parameters, and it leads to an underestimate of the uncertainties in the calculation. To
illustrate this point one might note that values £6f= above thes8 % C.L. range given
e.g. inref. [16] can be obtained for central values of the experimental parameters and for
quite reasonable values of the theoretical ones within the ranges considered in this refer-
ence. Therefore we think that a full scanning of the theoretical parameters, with gaussian
distribution or full scanning for the experimental paramétegs/es a better idea of the
uncertainties in the CP ratio. A similar comment applies to the range for $ince the
determination of the CKM phase involves many non-perturbative theoretical parameters
(as e.g.Bx).

Moreover, as we explained above, non-chirally suppressed corrections beyond the
large N. limit are essential for3\"/?. Therefore, in our opinion larger errors f&"/?
should have been taken in ref. [16] since the authors did not calculate this parameter (in
this case, from the counting ¥ and1/N., the errors could be taken as largel 88 %).

The same comment applies to ref. [18] where a similar rangédgf, was adopted

[B{"/? was varied around its larg®- value taking an error of00 %, butm, was fixed
adopting the valuémn, + m,)(2 GeV) = 130 MeV without considering any error on it].

A similar statement applies to the dispersive analysis of ref. [26] which does not give
access to any of the scale dependent non-factorizable terms (the non-chirally suppressed
guadratic corrections in particular). The calculation of the scale dependent terms is not
easier for lower values of the squared momentum of the kaon, and dispersive techniques
do not help in their calculation. To neglect these terms leads to a failure in reproducing the
ATl = 1/2 rule and is also not justified fd@ps.> As pointed out in ref. [18], in the Chiral

Quark Model [17] the correlation between thd = 1/2 amplitude and’/= (used to fix

!Since the ranges in tabs. 1 and 2 are predominantly due to the theoretical uncertainties, the difference
between these two procedures is moderate.

2Further comments on the dispersive analysis of the FSI effects in the calculatigia oan be found
in ref. [27].



the parameters necessary to estimate the matrix elemeépn) @ subject to potentially
large uncertainties. As fd,s, a minimum error of~ 0.10 seems to be required for
a careful estimate of’/=. The valueQ; = 0.16 + 0.03 in ref. [3] (which has been
used in ref. [18]) was obtained by investigating the- n contribution to this parameter
(includingn — " mixing). However, corrections beyond this term could be non-negligible
as suggested by the numerical results of refs. [28,29].

We would like to emphasize also that the 25 % error obtained by comparing
tabs. 1 and 2 should be included by any analysis which either does not include final state
interactions or does not reproduce well the numerical values of the phases. This estimate
of part of the neglected higher order corrections is usually not taken into account.

We conclude that at present there is no method which can peédiatith an error
much smaller than the one presented in tabs. 1 and 2 which give a good idea of the uncer-
tainties involved in the calculation of the CP ratio. The statement, that the experimental
data can be accommodated (only) if all the hadronic parameters are taking values at the
extreme of their reasonable ranges (see e.g. ref. [30]), which is based on the use of the
68 % C.L. intervals of refs. [5,16,18], has only weak theoretical foundations.

5 COMMENTSONZE /e

Following our analysis, described above, a series of comments can be made:

e The use of the large¥. value or values close to it is not justified f@g in '/< in
the same way as f@p, , inthe A7 = 1/2 rule.

¢ The related claim that we expect in general in the standard model a vaite of
smaller than the data is therefore not justified. One should note that the main meth-
ods used to calculate théN. corrections [7,12,17] all find them large and positive.

¢ Dispersive techniques as proposed in ref. [26] do not help in the calculation of many
of these corrections (i.e. of the scale dependent terms).

e Errors are large. A value betweenfew - 10~ and~ 5 - 1072 appears perfectly
plausible without going beyond the reasonable ranges of the parameters.

e Therefore='/s cannot be used at present to investigate new physics. Evenif Im
was found as small ds6-10~* as could be suggested by recent measurements [31],
we could still not exclude that the standard model reproduces the data.

e Atlow energy there is a significant enhancemenBﬁfz) [7]. Itis quite reasonable
that below500 — 600 MeV the model independent lagrangian of Eq. (3) gives



the bulk of the result. This is an important indication for a large value’ of
in accordance with the data. The results of refs. [12,17] also point towards this
direction.

e The effects of dimension-eight operators could possibly change the results largely
[32] and should certainly be investigated.

¢ Despite the recent progress in the calculatiorf2gf[3,28,29] the problem of an
accurate calculation of this parameter is still relevant in the same way &'f6.

Questions (E. Pallante, Univ. Barcelona):

1) Can you comment on the one-loop estimate of B{** in ref. [19]? The results of

ref. [19] (which have been obtained in the chiral limit) and our results?@f” are not
incompatible within their respective errors especially for moderate valués of

2) The value of 2 = 0.16 £ 0.03 is actually not a pure large- V. calculation. There

iS no reason to expect large 1/N. corrections in this case. There is a priori no reason

for the 1 /N, corrections from irreducible one-loop diagrams beyond the reducible ones
calculated in ref. [3] to be negligible (see also refs. [28,29]).
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