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Abstract

We present a recent analysis of"0=" in the 1=Nc expansion. We show that the1=Nc

corrections to the matrix element ofQ6 are large and positive, indicating a�I = 1=2
enhancement similar to the one ofQ1 andQ2 which dominate the CP conserving ampli-
tude. This enhances the CP ratio and can bring the standard model prediction close to the
measured value for central values of the parameters. Several comments on the theoretical
status of"0=" and the errors in its calculation are given.
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1 INTRODUCTION

Direct CP violation inK ! �� decays was recently observed by the KTeV and NA48

collaborations [1,2]. The present world average [2] for the parameter"0=" is Re"0=" =

(19:3� 2:4) � 10�4. In the standard model CP violation originates in the CKM phase, and

direct CP violation is governed by loop diagrams of the penguin type. The main source

of uncertainty in the calculation of"0=" is the QCD non-perturbative contribution related

to the hadronic nature of theK ! �� decay. Using the�S = 1 effective hamiltonian,

H�S=1

eff
=
GFp
2
�u

8X
i=1

ci(�)Qi(�) (� < mc) ; (1)

the non-perturbative contribution, contained in the hadronic matrix elements of the four-

quark operatorsQi, can be separated from the perturbative Wilson coefficientsci(�) =

zi(�)+ �yi(�) (with � = ��t=�u and�q = V �

qs
V
qd

). IntroducinghQiiI � h(��)IjQijKi,
the CP ratio can be written as
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! =ReA0=ReA2 = 22:2 is the ratio of the CP conservingK ! �� isospin amplitudes;


IB parameterizes isospin breaking corrections [3]."0=" is dominated byhQ6i0 andhQ8i2
which cannot be fixed from the CP conserving data [4,5]. Beside the theoretical uncer-

tainties coming from the calculation of thehQiiI and of
IB, the analysis of the CP ratio

suffers from the uncertainties on the values of various input parameters, in particular of

the CKM phase in Im�t, of �QCD � �
(4)

MS
, and of the strange quark mass.

2 ON THE COUNTING IN 1=Nc AND THE USE OF THE LARGE-Nc VALUES
FOR THE MATRIX ELEMENTS

To calculate the hadronic matrix elements we start from the effective chiral lagrangian for

pseudoscalar mesons which involves an expansion in momenta where terms up toO(p4)
are included [6]. Keeping only terms ofO(p4)which contribute, at the order we calculate,

to theK ! �� amplitudes, for the lagrangian we obtain:

Leff =

f
2

4
(hD�U

yD�Ui+ �

4Nc
hlnUy � lnUi2
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+h�Uy + U�yi) + L8h�yU�yU + �Uy�Uyi

+L5hD�U
yD�U(�yU + Uy�)i ; (3)

with hAi denoting the trace ofA, � = m2
�
+ m2

�0 � 2m2
K

, � = rM, andM =

diag(mu;md;ms). f and r are parameters related to the pion decay constantF� and

to the quark condensate, withr = �2h�qqi=f2. The complex matrixU is a non-linear

representation of the pseudoscalar meson nonet. The conventions and definitions we use

are the same as those in [7–9]. The method we use is the1=Nc expansion [10]. In this

approach, we expand the matrix elements in powers of the momenta and of1=Nc. For the

1=Nc corrections we calculated chiral loops as described in refs. [8,9]. Especially impor-

tant to this analysis are the non-factorizable corrections, which are UV divergent and must

be matched to the short-distance part. They are regularized by a finite cutoff�c which is

identified with the short-distance renormalization scale. The definition of the momenta in

the loop diagrams, which are not momentum translation invariant, is discussed in detail

in ref. [8]. Other recent work on matrix elements in the1=Nc approach can be found in

refs. [11–13].

For the Wilson coefficients we use the leading logarithmic and the next-to-leading

logarithmic values [4]. The absence of any reference to the renormalization scheme in the

low-energy calculation, at this stage, prevents a complete matching at the next-to-leading

order [14]. Nevertheless, a comparison of the numerical results obtained from the LO and

NLO coefficients is useful as regards estimating the uncertainties and testing the validity

of perturbation theory.

As it is well known the large-Nc approximation fails completely in explaining the

�I = 1=2 rule. By taking the large-Nc values for the two dominant operatorsQ1 and

Q2 one obtains a�I = 1=2 CP-conserving amplitude which underestimates the data by

roughly a factor of three. However, as pointed out in ref. [10],Q1;2 show an important

specificity; they are expected to be largely affected by non-chirally suppressed corrections

beyond the large-Nc limit. In the counting inp2 and1=Nc, this property is attributed to

the fact that the tree level mesonic representation ofQ1;2 from the leadingO(p2) chiral

lagrangian introducesO(p2) terms with two derivatives. As a result the one-loop contri-

butions over these terms, which areO(p2=Nc), are quadratically divergent, i.e. possibly

very large because these corrections are not protected by any symmetry like the chiral one.

Calculating the terms ofO(p2=Nc) one obtains a large enhancement of the�I = 1=2 am-

plitude [10] in the range required to reproduce the experiment [9]. This illustrates how

important are the non-chirally suppressed1=Nc corrections for an understanding of the

K ! �� amplitudes.

In this context, for"0=", it is very important to investigate the counting inp2 and
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1=Nc for the dominant operatorsQ6;8 and to compare it with the one forQ1;2. ForQ8 the

mesonic representation from theO(p2) lagrangian isO(p0) and does not have any deriva-

tive (becauseQ8 is a density-density operator whereasQ1;2 are of the current-current

type). As a result we do not expect any quadratic term but only chirally suppressed loga-

rithmic or finite terms. The large-Nc limit, B(3=2)

8 = 1, is therefore expected to be a much

better approximation than forQ1;2. Different is the case ofQ6 due to the fact that there

is no tree level contribution from the leadingO(p2) lagrangian, and the large-Nc value

B
(1=2)

6 = 1 refers to the tree level contribution from theO(p4) lagrangian which, as for

Q1;2, carries two derivatives [i.e. isO(p2)]. Therefore, as forQ1;2, we expect the large-Nc

value ofB(1=2)

6 to be affected by largeO(p2=Nc) corrections [� O(100%)] resulting from

the loops over theO(p2) tree operator. This shows clearly that, in the same way as for

the�I = 1=2 rule, no clear statement can be done on the expected size of"0=" without

calculating these1=Nc non-factorizable corrections.

3 ANALYSIS OF "0="

Analytical formulas for all matrix elements, at next-to-leading order in the twofold ex-

pansion in powers of momenta and of1=Nc, are given in refs. [8,9]. In the pseudoscalar

approximation, the matching has to be done below 1 GeV. Varying�c between 600 and

900 MeV, the bag factorsB(1=2)

1 andB(1=2)

2 take the values8:2 � 14:2 and 2:9 � 4:6;

quadratic terms inhQ1i0 andhQ2i0 produce a large enhancement which brings the�I =

1=2 amplitude in agreement with the data [9]. Corrections beyond the chiral limit were

found to be small.

For hQ6i0 and hQ8i2 the leading non-factorizable loop corrections, which are of

O(p0=Nc), are only logarithmically divergent [8]. Including terms ofO(p0), O(p2), and

O(p0=Nc), B
(1=2)
6 andB(3=2)

8 take the values1:10 � 0:72 and0:64 � 0:42. As a result,

as with large-Nc values,"0=" is obtained generally much smaller than the data, except

for input parameters taken close to the extreme of the ranges we considered. However,

as stated above, since the leadingO(p0) contribution vanishes forQ6, corrections from

higher order terms beyond theO(p2) andO(p0=Nc) are expected to be large. In ref. [7]

we investigated theO(p2=Nc) contribution, i.e., the1=Nc correction at the next order in

the chiral expansion, because it brings about, for the first time, quadratic corrections on

the cutoff. From counting arguments and more generally from the fact that the chiral

limit is assumed to be reliable, the quadratic terms (which are not chirally suppressed)

are expected to be dominant. It is still desirable to check that explicitly by calculating the

corrections beyond the chiral limit, from logarithms and finite terms, as done forQ1 and

Q2. Numerically, we observe a large positive correction from the quadratic term inhQ6i0.
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Table 1: Numerical values for"0=" (in units of10�4) as explained in the text.

LO 14:8 � "0=" � 19:4

NDR 12:5 � "0=" � 18:3 central
HV 7:0 � "0=" � 14:9

LO 6:1 � "0=" � 48:5

NDR 5:2 � "0=" � 49:8 scanning
HV 2:2 � "0=" � 38:5

This point was already emphasized in ref. [15]. The slope of the correction is qualitatively

consistent and welcome since it compensates for the logarithmic decrease atO(p0=Nc).

Varying�c between 600 and 900 MeV, theB(1=2)

6 factor takes the values1:50 � 1:62. Q6

is a�I = 1=2 operator, and the enhancement ofhQ6i0 indicates that at the level of the

1=Nc corrections the dynamics of the�I = 1=2 rule applies toQ6 as toQ1 andQ2. The

size of the enhancement forB(1=2)

6 appears however to be smaller forQ6 than forQ1;2

due to a smaller coefficient of the quadratic term. This coefficient is nevertheless large

enough to increase"0=" by almost a factor of two.

Using the quoted values forB(1=2)
6 together with the full leading plus next-to-leading

orderB factors for the remaining operators [7] the results we obtain for"0=" are given in

tab. 1 for the three sets of Wilson coefficients LO, NDR, and HV and for�c between

600 and900MeV. The numbers are close to the measured value for central values of

the parameters (upper set). They are obtained by assuming zero phases from final state

interactions. This approximation is very close to the results we would get if we used the

small imaginary part obtained at the one-loop level [7].

Performing a scanning of the parameters [125MeV � ms(1GeV) � 175 MeV,

0:15 � 
IB � 0:35, 1:04 � 10�4 � Im�t � 1:63 � 10�4, and245MeV � �QCD � 405MeV]

we obtain the numbers in lower set of tab. 1. They can be compared with the results of

refs. [5,12,16–18]. The values ofB(3=2)

8 can also be compared with refs. [13,19]. Other

recent calculations are reported in refs. [20–22]. The wide ranges reported in the table

can be traced back, to a large extent, to the large ranges of the input parameters. This can

be seen by comparing them with the relatively narrow ranges obtained for central values

of the parameters. The parameters, to a large extent, act multiplicatively, and the large

range for"0=" is due to the fact that the central value(s) for the ratio are enhanced roughly

by a factor of two compared to the results obtained withB factors forQ6 andQ8 close to
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Table 2: Same as in Tab. 1, but now with the phenomenological values for the phases.

LO 19:5 � "0=" � 24:7

NDR 16:1 � "0=" � 23:4 central
HV 9:3 � "0=" � 19:3

LO 8:0 � "0=" � 62:1

NDR 6:8 � "0=" � 63:9 scanning
HV 2:8 � "0=" � 49:8

the VSA. More accurate information on the parameters, from theory and experiment, will

restrict the values for"0=".

To estimate the uncertainties due to higher order final state interactions we also cal-

culated"0=" using the real part of the matrix elements and the phenomenological values of

the phases [23],�0 = (34:2�2:2)� and�2 = (�6:9�0:2)�, i.e., we replacedj
P

i
yihQiiI j

in Eq. (2) by
P

i
yiRehQiiI= cos �I. The corresponding results are given in tab. 2. They

are enhanced by� 25% compared to the numbers in tab. 1. To reduce the FSI uncertain-

ties in the1=Nc approach it would be interesting to investigate the two-loop imaginary

part. By doing so we expect to get phases very close to the ones of ref. [24] which have

been obtained in Chiral Perturbation Theory at the same order and reproduce relatively

well the data. In this sense we expect to get results close to the ones of tab. 2. A compar-

ison of tabs. 1 and 2 will be however still useful to estimate higher order corrections (e.g.

for the real part). In our analysis part of the uncertainty from higher order corrections

is also included in the range due to the (moderate) residual dependence on the matching

scale. In order to reduce the scheme dependence in the result, appropriate subtractions

would be necessary [11,12,25]. Finally, it is reasonable to assume that the effect of the

pseudoscalar mesons is the most important one. Nevertheless, the incorporation of vector

mesons and higher resonances would be desirable in order to improve the treatment of the

intermediate region around the rho mass and to show explicitly that the large enhance-

ment we find at low energy at the level of the pseudoscalars remains up to the scale� mc,

where the matching with the short-distance part can be done more safely.

4 ON THE SIZE OF THE ERRORS IN THE ANALYSIS of "0="

As shown in tabs. 1 and 2 the errors we obtain for"0=" are large. We believe however that

the uncertainties are not largely overestimated and reflect well our present knowledge on
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"0=".

Note that we performed a scanning of the parameters. Refs. [5,16–18] used in ad-

dition to the scanning method also a Monte Carlo procedure with gaussian distributions

for the experimental input and flat distributions for the theoretical parameters. In this way

a probability distribution is obtained for"0=", and the authors gave the median and the

68% confidence level interval. We would like to emphasize that the use of this C.L. inter-

val removes part of the hadronic uncertainties and leads to a range for"0=" which is two

times smaller than the one obtained from a full scanning over the ranges of the theoreti-

cal (mostly hadronic) parameters. In our opinion the Monte Carlo analysis is misleading

because there is no justification for assumingany probability distribution for theoretical

parameters, and it leads to an underestimate of the uncertainties in the calculation. To

illustrate this point one might note that values for"0=" above the68% C.L. range given

e.g. in ref. [16] can be obtained for central values of the experimental parameters and for

quite reasonable values of the theoretical ones within the ranges considered in this refer-

ence. Therefore we think that a full scanning of the theoretical parameters, with gaussian

distribution or full scanning for the experimental parameters1, gives a better idea of the

uncertainties in the CP ratio. A similar comment applies to the range for Im�t since the

determination of the CKM phase involves many non-perturbative theoretical parameters

(as e.g.B̂K).

Moreover, as we explained above, non-chirally suppressed corrections beyond the

largeNc limit are essential forB(1=2)

6 . Therefore, in our opinion larger errors forB(1=2)

6

should have been taken in ref. [16] since the authors did not calculate this parameter (in

this case, from the counting inp2 and1=Nc, the errors could be taken as large as100%).

The same comment applies to ref. [18] where a similar range forhQ6i0 was adopted

[B(1=2)
6 was varied around its large-Nc value taking an error of100%, butms was fixed

adopting the value(ms +md)(2GeV) = 130MeV without considering any error on it].

A similar statement applies to the dispersive analysis of ref. [26] which does not give

access to any of the scale dependent non-factorizable terms (the non-chirally suppressed

quadratic corrections in particular). The calculation of the scale dependent terms is not

easier for lower values of the squared momentum of the kaon, and dispersive techniques

do not help in their calculation. To neglect these terms leads to a failure in reproducing the

�I = 1=2 rule and is also not justified forQ6.2 As pointed out in ref. [18], in the Chiral

Quark Model [17] the correlation between the�I = 1=2 amplitude and"0=" (used to fix

1Since the ranges in tabs. 1 and 2 are predominantly due to the theoretical uncertainties, the difference
between these two procedures is moderate.

2Further comments on the dispersive analysis of the FSI effects in the calculation of"
0
=" can be found

in ref. [27].
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the parameters necessary to estimate the matrix element ofQ6) is subject to potentially

large uncertainties. As for
IB, a minimum error of� 0:10 seems to be required for

a careful estimate of"0=". The value
IB = 0:16 � 0:03 in ref. [3] (which has been

used in ref. [18]) was obtained by investigating the� � � contribution to this parameter

(including���0 mixing). However, corrections beyond this term could be non-negligible

as suggested by the numerical results of refs. [28,29].

We would like to emphasize also that the� 25% error obtained by comparing

tabs. 1 and 2 should be included by any analysis which either does not include final state

interactions or does not reproduce well the numerical values of the phases. This estimate

of part of the neglected higher order corrections is usually not taken into account.

We conclude that at present there is no method which can predict"0=" with an error

much smaller than the one presented in tabs. 1 and 2 which give a good idea of the uncer-

tainties involved in the calculation of the CP ratio. The statement, that the experimental

data can be accommodated (only) if all the hadronic parameters are taking values at the

extreme of their reasonable ranges (see e.g. ref. [30]), which is based on the use of the

68% C.L. intervals of refs. [5,16,18], has only weak theoretical foundations.

5 COMMENTS ON "0="

Following our analysis, described above, a series of comments can be made:

� The use of the large-Nc value or values close to it is not justified forQ6 in "0=" in

the same way as forQ1;2 in the�I = 1=2 rule.

� The related claim that we expect in general in the standard model a value of"0="

smaller than the data is therefore not justified. One should note that the main meth-

ods used to calculate the1=Nc corrections [7,12,17] all find them large and positive.

� Dispersive techniques as proposed in ref. [26] do not help in the calculation of many

of these corrections (i.e. of the scale dependent terms).

� Errors are large. A value between� few � 10�4 and� 5 � 10�3 appears perfectly

plausible without going beyond the reasonable ranges of the parameters.

� Therefore"0=" cannot be used at present to investigate new physics. Even if Im�t

was found as small as0:6�10�4 as could be suggested by recent measurements [31],

we could still not exclude that the standard model reproduces the data.

� At low energy there is a significant enhancement ofB
(1=2)

6 [7]. It is quite reasonable

that below500 � 600MeV the model independent lagrangian of Eq. (3) gives
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the bulk of the result. This is an important indication for a large value of"0="

in accordance with the data. The results of refs. [12,17] also point towards this

direction.

� The effects of dimension-eight operators could possibly change the results largely

[32] and should certainly be investigated.

� Despite the recent progress in the calculation of
IB [3,28,29] the problem of an

accurate calculation of this parameter is still relevant in the same way as forB
(1=2)

6 .

Questions (E. Pallante, Univ. Barcelona):

1) Can you comment on the one-loop estimate of B(3=2)
8 in ref. [19]? The results of

ref. [19] (which have been obtained in the chiral limit) and our results forB
(3=2)

8 are not

incompatible within their respective errors especially for moderate values of�c.

2) The value of 
IB = 0:16 � 0:03 is actually not a pure large-Nc calculation. There

is no reason to expect large 1=Nc corrections in this case. There is a priori no reason

for the 1=Nc corrections from irreducible one-loop diagrams beyond the reducible ones

calculated in ref. [3] to be negligible (see also refs. [28,29]).
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