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3) Departament de F́ısica Tèorica, IFIC, Universitat de Val̀encia - CSIC

Apt. Correus 2085, E-46071 València, Spain
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1 Introduction

Although isospin violation in nonleptonic weak interactions has been investigated many times

in the past systematic treatments have appeared only rather recently [1–5]. The topic is both

of general interest and of considerable phenomenological relevance. Precise determinations of

weak decay amplitudes are needed for many purposes, in particular for a reliable calculation of

CP violation in theK0 − K̄0 system. In the standard model, isospin violation arises from the

quark mass differencemu − md and from electromagnetic corrections. Although these effects

are expected to be small in general they are amplified in nonleptonic weak transitions. Because

of the suppression of amplitudes with∆I > 1/2, isospin violation in the dominant∆I = 1/2

amplitudes leads to significantly enhanced corrections for the sub-dominant amplitudes. In

fact, a quantitative analysis of the∆I = 1/2 rule is only possible with the inclusion of isospin-

violating effects.

At first order in a systematic low-energy expansion, isospin breaking in the leading octet

amplitudes of nonleptonic kaon decays is of orderG8(mu − md) andG8e
2 whereG8 denotes

the strength of the effective octet coupling. The corrections appear in the mass differences of

charged and neutral mesons, viaπ0 − η mixing and through electromagnetic penguins [6] in

the effective nonleptonic weak Hamiltonian. However, there are good reasons to believe that

the problem cannot be understood at lowest order only. For instance, the resulting (tree-level)

corrections do not produce a∆I = 5/2 component for which there is some phenomenological

evidence [1].

The chiral realization of isospin violation due to the light quark mass difference is avail-

able also at next-to-leading order. The purpose of this paper is to close the gap in the electro-

magnetic sector by

• completing the construction of the effective chiral Lagrangian ofO(G8e
2p2) and

• performing the complete renormalization at the one-loop level for nonleptonic weak tran-

sitions including electromagnetic corrections.

As our notation indicates, we only consider corrections to the leading octet part of the nonlep-

tonic weak Hamiltonian. The results are applicable to the analysis of bothK → 2π [2–4,7] and

K → 3π decays.

We start in Sec. 2 by recalling the ingredients for the construction of effective theories

of strong, electromagnetic and nonleptonic weak interactions. In Sec. 3 we review the effective

Lagrangian of lowest order. For this Lagrangian, we evaluate the one-loop divergence func-

tional by standard heat-kernel techniques in Sec. 4. The new parts are terms ofO(G8e
2p2)

which arise also from using the equations of motion to transform to the standard bases for

the nonleptonic weak Lagrangian ofO(G8p
4) [8] and for the electromagnetic Lagrangian of
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O(e2p2) [9]. In the following section we construct the complete and minimal Lagrangian of

O(G8e
2p2) making use of CPS symmetry [10], Cayley-Hamilton relations, partial integration

in the action and of the equations of motion. We order the terms in the effective Lagrangian

according to their physical relevance:K → ππ amplitudes receive contributions from the first

12 operators, the next two appear inK → 3π and the rest turns out not to be relevant phe-

nomenologically. In Sec. 6, we present the divergences for the threeK → 2π amplitudes and

compare with the results of direct one-loop calculations [3,7]. We summarize our findings in

Sec. 7. Various quantities appearing in the heat-kernel expansion of the generating functional

are collected in the Appendix.

2 Symmetries

For a complete treatment of isospin-breaking effects in nonleptonic kaon decays, an appropri-

ate effective Lagrangian with the pseudoscalar octet and the photon as dynamical degrees of

freedom has to be used. The symmetries of the standard model are serving as the basic guiding

principles for its construction. Starting with QCD in the chiral limitmu = md = ms = 0, the

resulting symmetry under the chiral groupG = SU(3)L × SU(3)R is spontaneously broken

to SU(3)V . The pseudoscalar mesons(π,K, η) are interpreted as the corresponding Goldstone

fieldsϕi (i = 1, . . . , 8) acting as coordinates of the coset spaceSU(3)L × SU(3)R/SU(3)V .

The coset variablesuL,R(ϕ) are transforming as

uL(ϕ)
G→ gLuL(ϕ)h(g, ϕ)

−1 ,

uR(ϕ)
G→ gRuR(ϕ)h(g, ϕ)

−1 ,

g = (gL, gR) ∈ SU(3)L × SU(3)R , (2.1)

whereh(g, ϕ) is the nonlinear realization ofG [11].

The photon fieldAµ is introduced in

uµ = i[u†
R(∂µ − irµ)uR − u†

L(∂µ − ilµ)uL] (2.2)

by adding appropriate terms to the usual external vector and axial-vector sourcesvµ, aµ:

lµ = vµ − aµ − eQLAµ ,

rµ = vµ + aµ − eQRAµ . (2.3)

The3× 3 matricesQL,R are spurion fields with the transformation properties

QL
G→ gLQLg

†
L , QR

G→ gRQRg†R (2.4)

under the chiral group. We also define

QL := u†
LQLuL , QR := u†

RQRuR (2.5)
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transforming as

QL
G→ h(g, ϕ)QLh(g, ϕ)

−1 ,

QR
G→ h(g, ϕ)QRh(g, ϕ)−1 . (2.6)

At the end, one identifiesQL,R with the quark charge matrix

Q =


 2/3 0 0

0 −1/3 0
0 0 −1/3


 . (2.7)

External scalar and pseudoscalar sources are combined in

χ = s+ ip . (2.8)

For the construction of the effective Lagrangian, it is convenient to introduce the quantities

χ± = u†
RχuL ± u†

Lχ
†uR (2.9)

with the same chiral transformation properties asQL,QR in (2.6).

After integrating out the heavy degrees of freedom, the∆S = 1 weak interactions can

be described in terms of an effective four-fermion Hamiltonian [12]. With respect to the chiral

groupG, this effective Hamiltonian transforms as the direct sum

(8L, 1R) + (27L, 1R) + (8L, 8R) , (2.10)

where the first piece, contributing only to∆I = 1
2

transitions, is largely dominant. In this work

we shall consider only the electromagnetic corrections induced by the dominant octet part of

the effective Hamiltonian. To this end we introduce a weak spurionλ that is finally taken at

λ =
λ6 − iλ7

2
=


 0 0 0
0 0 0
0 1 0


 , (2.11)

whereλ6,7 are Gell-Mann matrices. In analogy to (2.5) we also define

∆ := u†
LλuL , (2.12)

transforming again as in (2.6) under chiral transformations.

Although CP is broken by the weak interactions, the∆S = 1 transitions are still invari-

ant under the so-called CPS symmetry [10]: a CP transformation followed by a subsequent

interchange ofd ands quarks. This symmetry is also obeyed by strong and electromagnetic

interactions, provided the 2-3 indices of the external fields are also exchanged appropriately
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(this implies, in particular, the exchangems ↔ md in the mass terms). The explicit CPS trans-

formation properties of the several building blocks introduced so far are given by

uµ(x)
CPS→ −ε(µ)SuT

µ (x̃)S ,

χ±(x)
CPS→ ±SχT

±(x̃)S ,

QL,R(x)
CPS→ SQT

L,R(x̃)S ,

∆(x)
CPS→ S∆T (x̃)S , (2.13)

with

x̃ = (x0,− →
x) , ε(0) = 1 , ε(1) = ε(2) = ε(3) = −1 , (2.14)

and

S =


 1 0 0
0 0 1
0 1 0


 . (2.15)

3 The effective Lagrangian at lowest order

With the building blocks introduced in the previous section we may now assemble our effective

Lagrangian. We adopt an expansion scheme where the n-th order is related to terms of orderpn

in the strong and weak sector and to terms of ordere2pn−2 in the electromagnetic sector where

p denotes a typical meson momentum. Terms ofO(e4) will be neglected throughout.

To lowest order(n = 2), our effective theory consists of the following parts: the strong

sector is represented by the nonlinear sigma model in the presence of the external sources

vµ, aµ, χ [13] and the photon coupling introduced in (2.3):

F 2

4
〈uµu

µ + χ+〉 . (3.1)

The symbol〈 〉 denotes the trace in three-dimensional flavour space andF is the pion decay

constant in the chiral limit. Explicit chiral symmetry breaking by the non-vanishing masses of

the light quarks is achieved by evaluating the generating functional at

χ = 2BMquark = 2B


 mu 0 0

0 md 0
0 0 ms


 . (3.2)

The quantityB is related to the quark condensate in the chiral limit by〈0|q̄q|0〉 = −F 2B.

The(8L, 1R) piece of the nonleptonic weak interactions is represented by the well-known

Cronin Lagrangian [14],

F 2 〈Ξuµu
µ〉 , Ξ = G8F

2∆+ h.c. . (3.3)
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At lowest order, the parameterG8 can be determined [15] fromK → 2π decays to be|G8| �
9× 10−6GeV−2 � 5(GF/

√
2)|VudVus|.

Now also the electromagnetic interaction has to be included. Apart from the necessary

modification in (2.2), we have to add a kinetic term for the photon field,

−1

4
FµνF

µν , Fµν = ∂µAν − ∂νAµ , (3.4)

and a strangeness-conserving term ofO(e2p0) [16],

e2F 4Z〈QLQR〉 . (3.5)

The numerical value of the parameterZ can be determined from the mass difference of charged

and neutral pions. The relationM 2
π± − M2

π0 = 2e2ZF 2 impliesZ � 0.8.

Finally, we have to introduce a weak-electromagnetic term characterized by a coupling

constantgewk,

e2F 4〈ΥQR〉 , Υ = gewkG8F
2∆+ h.c. . (3.6)

Note that to lowest order only a single (linear independent) term of this type can be constructed

once the relation

QL∆ = ∆QL = −1

3
∆ (3.7)

is taken into account. This term is the lowest-order chiral realization of electromagnetic pen-

guins [6,17] and transforms as(8L, 8R) underG when theQR spurion field is “frozen” to the

constant value (2.7). By chiral dimensional analysis we expect the coupling constantgewk to

be ofO(1). A recent estimate in Ref. [2] corresponds in fact togewk = −1.0 ± 0.3 (see also

Ref. [18]).

Summing up all these contributions, our lowest-order effective Lagrangian assumes the

form

L2 =
F 2

4
〈uµu

µ + χ+〉+ F 2 〈Ξuµu
µ〉

− 1

4
FµνF

µν + e2F 4Z〈QLQR〉+ e2F 4〈ΥQR〉 . (3.8)

Using (2.13), one easily verifies that (3.8) is CPS invariant.

4 One-loop divergences

For the construction of the one-loop functional, we first add a gauge-breaking term (we are

using the Feynman gauge) and external sources to (3.8):

L2 → L2 − 1

2
(∂µA

µ)2 − JµA
µ . (4.1)

5



Then we expand the lowest-order action associated with (4.1) around the solutionsϕcl, A
µ
cl of

the classical equations of motion. In the standard “gauge”uR(ϕcl) = uL(ϕcl)
† =: u(ϕcl), a

convenient choice of the pseudoscalar fluctuation variablesξi (i = 1, . . . , 8) is given by

uR = ucle
iξiλi/2F , uL = u†

cle
−iξiλi/2F , ξi(ϕcl) = 0 , (4.2)

with the Gell-Mann matricesλi (i = 1, . . . , 8). The photon field is decomposed as

Aµ = Aµ
cl + εµ (4.3)

with a fluctuation fieldεµ. In the following formulas, we shall drop the subscript “cl” for sim-

plicity. The classical equations of motion take the form

∇µu
µ =

i

2

(
χ− − 1

3
〈χ−〉

)
+ 2ie2F 2Z[QR,QL]

+i[uµu
µ,Ξ]− 2(∇µ{uµ,Ξ} − 1

3
〈∇µ{uµ,Ξ}〉)

+2ie2F 2[QR,Υ] , (4.4)

✷Aµ = Jµ +
eF 2

2
〈uµ(QR −QL)〉+ eF 2〈Ξ{QR −QL, uµ}〉 , (4.5)

where

∇µ = ∂µ + [Γµ, ] ,

Γµ =
1

2
[u†(∂µ − irµ)u+ u(∂µ − ilµ)u

†] . (4.6)

The solutions of (4.4) and (4.5) are uniquely determined functionals of the external sourcesvµ,

aµ, χ, Jµ. (Note that the usual Feynman boundary conditions are always implicitly understood.)

Expanding (4.1) up to terms quadratic in the fieldsξi, εµ, we obtain the second-order

fluctuation LagrangianL(2). The one-loop functionalWL=1 is then given by the Gaussian func-

tional integral

eiWL=1 =
∫
[dξidεµ] e

i
∫

ddxL(2)

. (4.7)

In our case,L(2) reads

L(2) =
F 2

4
〈∇µξ∇µξ +

1

2
uµξu

µξ − 1

2
(uµu

µ + χ+)ξ
2〉

+ e2F 4Z〈ξQLξQR − 1

2
ξ2{QL,QR}〉

+
F 2

4
〈4Ξ(∇µξ∇µξ − 1

4
{uµ, {uµ, ξ2}}+ 1

4
{uµ, ξ}{uµ, ξ})− 2i[ξ,Ξ]{∇µξ, u

µ}〉
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+ e2F 4〈Υ(ξQRξ − 1

2
{ξ2,QR})〉

+
1

2
εµ✷εµ +

e2F 2

4
〈(QR −QL)

2〉εµε
µ + e2F 2〈Ξ(QR −QL)

2〉εµε
µ

− ieF 2

4
〈[uµ,QR +QL]ξ〉εµ +

eF 2

2
〈(QR −QL)∇µξ〉εµ

− ieF 2

2
〈Ξ{[QR +QL, ξ], uµ}〉εµ − ieF 2

2
〈[ξ,Ξ]{QR −QL, uµ}〉εµ

+ eF 2〈Ξ{QR −QL,∇µξ}〉εµ , (4.8)

where

ξ = ξiλi/F . (4.9)

In the next step, we perform the field transformation

ξ → ξ − {Ξ, ξ}+ 2

3
〈Ξξ〉1 . (4.10)

Because of〈∆〉 = 0, we do not pick up an additional contribution from the Jacobi determinant

and the fluctuation Lagrangian (4.8) assumes the form

L(2) = −1

2
ξi(dµd

µ + σ)ijξj +
1

2
εµ(✷+ κ)εµ + εµa

µ
i ξi + εµbid

µ
ijξj , (4.11)

where

dµ
ij = δij∂

µ + γµ
ij . (4.12)

The explicit expressions forγµ
ij, σij , κ, aµ

i , bi are given in the Appendix.

The divergent part of the one-loop functional,

W div
L=1 =

∫
ddxLdiv

L=1 , (4.13)

is determined by

Ldiv
L=1 = − 1

(4π)2(d− 4)
[tr(

1

12
γµνγ

µν +
1

2
σ2)− aµ

i aµi + aµ
i (dµb)i

+
1

2
(bibi)

2 − biσijbj − κbibi + 2κ2] , (4.14)

where

γµν = ∂µγν − ∂νγµ + [γµ, γν] . (4.15)

This formula can easily be derived from the well-known second Seeley-deWitt coefficient for

bosonic systems [19].
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5 The chiral Lagrangian at next-to-leading order

We are now in the position to construct the most general local action at next-to-leading order

which will also renormalize the one-loop divergences discussed in the previous section.

The strong part of the local action ofO(p4) is, of course, generated by the well-known

Gasser-Leutwyler Lagrangian [13] associated with the low-energy constantsL1, . . . , L12. In the

presence of virtual photons, the structure of the operators given in [13] remains unchanged. The

only necessary modification is the inclusion of the dynamical photon field in the generalized

“sources”3µ andrµ (see (2.3)). The divergences corresponding to the strong sector of (4.14)

are absorbed by the divergent parts of theLi [13]. In the relevant case of chiralSU(3), the

strong terms generated by (4.14) can be written immediately as a linear combination of the

O(p4) operators of the Gasser-Leutwyler basis without using the equations of motion (4.4) or

(4.5). Consequently, no additional (weak-)electromagnetic terms are induced at this point.

The strangeness-conserving terms ofO(e2p2) have been constructed by Urech [9]. His

list of electromagnetic counterterms is associated with the coupling constantsK1, . . . , K14.

In this case, (4.14) leads to that canonical basis only after the use of the equation of motion

(4.4). In this way, also some divergent weak-electromagnetic contributions ofO(G8e
2p2) are

generated.

For the octet part of the nonleptonic weak Lagrangian ofO(GFp4) [20] we refer to the

standard form of Ecker, Kambor and Wyler [8] with couplingsN1, . . . , N37. Again, because of

the mismatch between (4.14) and the standard basis, the equation of motion has to be used and

the (purely) electromagnetic piece in (4.4) induces divergent terms ofO(G8e
2p2).

Finally, we have to construct the most general weak-electromagnetic Lagrangian of

O(G8e
2p2). Some parts of this Lagrangian have appeared before in the literature [1,3,21]. The

complete minimal Lagrangian ofO(G8e
2p2) takes the form

LG8e2p2 = G8e
2F 4

32∑
i=1

ZiQi + h.c. , (5.1)

with operatorsQi of O(p2) and dimensionless coupling constantsZi. A linear independent set

of operators is given by

Q1 = 〈∆{QR, χ+}〉 ,

Q2 = 〈∆QR〉〈χ+〉 ,

Q3 = 〈∆QR〉〈χ+QR〉 ,

Q4 = 〈∆χ+〉〈QLQR〉 ,

Q5 = 〈∆uµu
µ〉 ,

Q6 = 〈∆{QR, uµu
µ}〉 ,
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Q7 = 〈∆uµu
µ〉〈QLQR〉 ,

Q8 = 〈∆uµ〉〈QLu
µ〉 ,

Q9 = 〈∆uµ〉〈QRuµ〉 ,

Q10 = 〈∆uµ〉〈{QL,QR}uµ〉 ,

Q11 = 〈∆{QR, uµ}〉〈QLu
µ〉 ,

Q12 = 〈∆{QR, uµ}〉〈QRuµ〉 ,

Q13 = 〈∆QR〉〈uµu
µ〉 ,

Q14 = 〈∆QR〉〈uµu
µQR〉 ,

Q15 = 〈∆QR〉〈uµu
µ(QL −QR)〉 ,

Q16 = 〈∆χ+〉 ,

Q17 =
2

3
〈∆χ+〉+ 〈∆{QR, χ+}〉+ 〈∆[QR, χ−]〉 ,

Q18 = 〈∆{QR, χ+}〉 − 1

3
〈∆[QR, χ−]〉+ 〈∆(χ−QLQR −QRQLχ−)〉

− 4

3
〈∆QR〉〈χ+〉 − 〈∆QR〉〈χ+QR〉+ 〈∆χ+〉〈QLQR〉 ,

Q19 = 〈∆QR〉〈χ+(QL −QR)〉 ,

Q20 = i〈(∇̂µ∆)[QL, u
µ]〉 ,

Q21 = i〈(∇̂µ∆)[QR, uµ]〉 ,

Q22 = i〈(∇̂µ∆)(QLu
µQR −QRuµQL)〉 ,

Q23 = i〈(∇̂µ∆)(u
µQLQR −QRQLu

µ)〉 ,

Q24 = i〈∆(uµ(∇̂µQL)QR −QR(∇̂µQL)uµ)〉 ,

Q25 = i〈(∇̂µ∆)(u
µQRQL −QLQRuµ)〉 ,

Q26 = i〈∆(uµQR(∇̂µQR)− (∇̂µQR)QRuµ)〉 ,

Q27 = i〈∆(QRuµ(∇̂µQR)− (∇̂µQR)uµQR)〉 ,

Q28 = 〈(∇̂µ∆)(∇̂µQL)〉 ,

Q29 = 〈(∇̂µ∆)(∇̂µQR)〉 ,

Q30 = 〈∆(∇̂µQR)(∇̂µQR)〉 ,

Q31 = 〈(∇̂µ∆){∇̂µQL,QR}〉 ,

Q32 = 〈(∇̂µ∆){∇̂µQR,QL}〉 , (5.2)

where

∇̂µ∆ = ∇µ∆+
i

2
[uµ,∆] = u(Dµλ)u

† ,

∇̂µQL = ∇µQL +
i

2
[uµ,QL] = u(DµQL)u

† ,
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∇̂µQR = ∇µQR − i

2
[uµ,QR] = u†(DµQR)u , (5.3)

with

Dµλ = ∂µλ− i[lµ, λ] ,

DµQL = ∂µQL − i[lµ, QL] ,

DµQR = ∂µQR − i[rµ, QR] . (5.4)

For the construction of the list of local terms (5.2) we have used CPS invariance, the

relations (3.7) and

Q2
L,R =

2

9
1+

1

3
QL,R , (5.5)

the Cayley-Hamilton formula, partial integration and the equations of motion (4.4).

If the spurion fieldsQL,R andλ are fixed to the constant values in (2.7) and (2.11),

respectively, thenLG8e2p2 transforms underG as

(8L, 1R) + (8L, 8R) + (27L, 1R) + (27L, 8R) + (8L, 27R) . (5.6)

This structure is richer than the one of theO(G8) terms inL2 and also of the weak four-

fermion effective Hamiltonian [12]. The last two pieces, in particular, which are responsible

for ∆I = 5/2 transitions, have no analog in the effective Hamiltonian of dimension six.

The operatorQ16 does not contribute to on-shell matrix elements [10,22,23,20]. The

termsQ17, Q18, Q19 vanish for electrically neutral (pseudo)scalar sources,

[χ,Q] = 0 , (5.7)

which is, of course, the case for all realistic physical processes. Also the operatorsQ20, . . . Q32

are irrelevant for practical purposes. Because of (5.3) and (5.4), they contribute only in the

presence of non-vanishing external (axial-)vector sources.

The coupling constantsZ1, . . . , Z12 appear in the amplitudes ofK → 2π decays. The

operatorsQ13 andQ14 do not contribute toK → 2π but they enter forK → 3π. Q15 involves

at least five pseudoscalar fields and is therefore irrelevant forK decays. A few linear combina-

tions of the operators in (5.2) were already given some time ago by de Rafael [1]. His list was

restricted to terms contributing toK → 2π, neglecting contributions∼ M 2
π and those renor-

malizingG8. A more recent extension of de Rafael’s list can be found in Ref. [3]. However,

their Lagrangian is still incomplete even for theK → 2π amplitudes, as we shall discuss in the

following section. There is in addition an obvious misprint in the operator multiplied bys 6 in

[3], which would be in conflict with chiral symmetry. Some of the operators in (5.2) have also

appeared in attempts [21] to bosonize the∆S = 1 four-fermion effective Hamiltonian.
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The low-energy couplingsZi are in general divergent. They absorb the divergences of the

one-loop graphs via the renormalization

Zi = Zr
i (µ) + ziΛ(µ) , i = 1, . . . , 32 ,

Λ(µ) =
µd−4

(4π)2

{
1

d− 4
− 1

2
[ln(4π) + Γ′(1) + 1]

}
, (5.8)

in the dimensional regularization scheme. The coefficientsz1, . . . z32 are determined in such a

way that the divergences generated by (4.14) are cancelled:

z1 = −17

12
− 3Z +

3

2
gewk , z2 = 1 +

16

3
Z + gewk , z3 =

3

4
+ 7Z , z4 = −3

4
− 7Z ,

z5 = −2 , z6 =
7

2
+ 5Z +

3

2
gewk , z7 =

3

2
+ 5Z , z8 = −1

2
,

z9 = −11

6
+
4

3
Z + 2gewk , z10 = −3

2
− Z , z11 = −3

2
− 2Z , z12 =

3

2
,

z13 = −35

12
− 3Z + gewk , z14 = 3 + 15Z , z15 =

3

2
+ 15Z , z16 = −4

9
− 4

3
Z ,

z17 =
2

3
+ 2Z , z18 =

3

4
+ 3Z , z19 = 4Z , z20 = −1

2
,

z21 =
1

6
, z22 = 3 + 6Z , z23 = −3− 9Z , z24 = 0 ,

z25 = −3Z , z26 = −1 , z27 = 0 , z28 = −1

2
,

z29 = −1

2
, z30 = 0 , z31 =

3

2
+ 6Z , z32 =

3

2
+ 6Z .

(5.9)

As already discussed above, the values in this list depend on our conventions for the basis

systems in the strong, electromagnetic and weak parts of the next-to-leading order Lagrangian.

Thezi given in (5.9) have to be used together with the divergent parts of the coupling constants

Li [13], Ki [9] andNi [8], respectively. The divergences involving the electroweak penguin

couplinggewk are independent of this choice of basis and they agree with a recent calculation

of Cirigliano and Golowich [24]. Note thatgewk appears only in the couplings of(8L, 8R)

operators. This is because the lowest-order term proportional togewk is already ofO(G8e
2).

Therefore, theO(G8e
2p2) terms proportional togewk arise from the product of the lowest-order

(8L, 8R) weak operator times theO(p2) invariant part of the strong Lagrangian.

The renormalized low-energy constantsZr
i (µ) are in general scale dependent. The coef-

ficientszi govern this scale dependence through the renormalization group equations

µ
dZr

i (µ)

dµ
= − zi

(4π)2
. (5.10)

By construction, the complete generating functional at next-to-leading order is then scale inde-

pendent.
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6 K → ππ

In the modern framework of chiral perturbation theory, electromagnetic corrections forK →
ππ decays toO(G8e

2p2) were discussed by de Rafael [1] and have been treated in more detail

by Cirigliano, Donoghue and Golowich [2–4]. Together with corrections ofO(G8(mu−md)p
2)

[5], the complete isospin-breaking effects of next-to-leading order have obvious phenomeno-

logical implications, from the∆I = 1/2 rule to CP violation [25].

In this section, we present the tree-level contributions to theK → ππ amplitudes from

the Lagrangian (5.1). We compare those amplitudes and in particular their divergent parts with

the results of Ref. [3]. Using our own one-loop calculation of isospin-breaking corrections [7]

and the heat-kernel results (5.9), we find that the complete amplitudes ofO(G8e
2p2) are indeed

finite. We demonstrate the cancellation of divergences explicitly for the subset of amplitudes

proportional to the electromagnetic penguin couplinggewk defined in (3.6).

From the Lagrangian (5.1) ofO(G8e
2p2), we obtain the following amplitudes in units of

Cewk := iG8e
2F :

A(K0 → π+π−) = Cewk

√
2

[
(M2

K −M2
π)(2Z1 + 4Z2 − 4/3Z3 + 4Z4 − Z5 − 1/3Z6

−2/3Z7) +M2
π(6Z1 + 6Z2 − Z6)

]
,

A(K0 → π0π0) = Cewk

√
2(M2

K − M2
π)(−Z5 + 2/3Z6 − 2/3Z7 + Z8 + Z9 + 2/3Z10

−2/3Z11 − 2/3Z12) ,

A(K+ → π+π0) = Cewk

[
(M2

K − M2
π)(2Z1 + 4Z2 − 4/3Z3 − Z6 − Z8 − Z9 − 2/3Z10

−4/3Z11 − 4/3Z12) +M2
π(6Z1 + 6Z2 − Z6)

]
. (6.1)

These amplitudes agree with Ref. [3] forZ3 = 3Z2, Z10 = Z11 = 0. In addition, the coefficients

s8, s9 in Eq. (35) of [3] should be multiplied by 2/3.

In theSU(3) limit for the mass matrix (3.2), the amplitudes (6.1) satisfy the relations

A(K0 → π+π−)SU(3) =
√
2A(K+ → π+π0)SU(3) ,

A(K0 → π0π0)SU(3) = 0 , (6.2)

in accordance with a general theorem onK → ππ transitions in the presence of electromag-

netism [7].

The divergent parts of theZi in (5.9) give rise to the following divergent tree-level am-

plitudes, withΛ(µ) andZ defined in (5.8) and (3.5), respectively:

A(K0 → π+π−)div = Cewk

√
2Λ(µ)

[
M2

K(−3− 27Z + 13/2gewk)

+M2
π(−3 + 36Z + 7gewk)

]
,

A(K0 → π0π0)div = Cewk

√
2Λ(µ)(M2

K − M2
π)(2Z + 3gewk) , (6.3)

A(K+ → π+π0)div = CewkΛ(µ)
[
M2

K(3Z + 7/2gewk) +M2
π(−6 + 6Z + 10gewk)

]
.
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Figure 1: Loop diagrams forK → ππ involving the electromagnetic penguin couplinggewk.
The associated vertex from the Lagrangian (3.6) is denoted by a crossed circle. Normal vertices
are from the lowest-order strong Lagrangian (3.1).

The (ultraviolet) divergences in (6.3) arise from three different sources:

• Photon loops proportional toG8e
2;

• Loops involving the electromagnetic coupling (3.5) proportional toG8e
2Z;

• Loops involving the coupling (3.6) proportional toG8e
2gewk.

Strong and electromagnetic wave function renormalization [26] is included in all three cate-

gories.

We have performed a complete calculation ofK → ππ amplitudes toO(G8e
2p2) and

O(G8(mu − md)p
2) [7]. For mu = md, we find that the explicit loop divergences are exactly

cancelled by the divergent tree-level amplitudes (6.3). We exhibit those cancellations in detail

for the divergences proportional togewk. Divergences arise both in loops with an electromag-

netic penguin vertex shown in Fig. 1 and from (strong) wave function renormalization of tree

diagrams from the Lagrangian (3.6).

In the exponential parametrization, the divergences due to the diagrams of Fig. 1 take the

form

A(K0 → π+π−)loops = −
√
2

2
CewkgewkΛ(µ)(7M

2
K + 8M2

π) ,

A(K0 → π0π0)loops = −3
√
2CewkgewkΛ(µ)(M

2
K − M2

π) ,

A(K+ → π+π0)loops = −CewkgewkΛ(µ)(M
2
K/2 + 7M2

π) . (6.4)

Wave function renormalization (again in exponential parametrization) leads to

A(K0 → π+π−)wfr = −3
√
2CewkgewkΛ(µ)(M

2
K +M2

π) ,
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A(K0 → π0π0)wfr = 0 ,

A(K+ → π+π0)wfr = −3CewkgewkΛ(µ)(M
2
K +M2

π) . (6.5)

The sum of (6.4) and (6.5) is parametrization independent and it is exactly cancelled by the

terms in (6.3) proportional togewk.

We have exhibited (part of) the loop divergences explicitly also because we do not com-

pletely agree with the results of Ref. [3]. Although the divergences due to photon loops are

identical, we obtain different results for some of the other divergences1. Only for the channel

K0 → π+π−, there is complete agreement for all three types of divergences.

The complete amplitudes ofO(G8e
2p2) andO(G8(mu − md)p

2) together with a phe-

nomenological analysis will be presented elsewhere [7].

7 Conclusions

We have supplied the missing ingredients for a complete analysis at next-to-leading order of

the combined strong, nonleptonic weak and electromagnetic interactions of mesons. The main

results are:

i. The complete and minimal Lagrangian (5.1) ofO(G8e
2p2) contains 32 operatorsQi

and associated dimensionless coupling constantsZi. Of these 32 operators, only 14 are

of immediate phenomenological relevance. We have ordered the terms in a way most

suitable for applications: the first 12 operators contribute toK → 2π decays whereas the

remaining two enter inK → 3π amplitudes.

ii. The one-loop divergence functional (4.13) determines the renormalization of the effec-

tive theory. Together with the previously known divergences, the new terms (5.9) in the

coupling constantsZi ensure that the complete amplitudes for strong, nonleptonic weak

and electromagnetic interactions of mesons at next-to-leading order are finite.

As a first application, we have presented the tree-level amplitudes ofO(G8e
2p2) for K →

ππ decays. The associated divergent parts cancel with the explicit one-loop divergences [7] to

yield finite and scale independent decay amplitudes.

1V. Cirigliano has informed us that they now agree with the divergences (6.3); see forthcoming erratum for
Ref. [3].
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Appendix

The quantities occurring in (4.14) can be decomposed with respect to (explicit2) powers ofe

andG8 in the following way:

σij = σij |e0G0
8
+ σij |e2G0

8
+ σij |e0G8

+ σij |e2G8
,

γµ = γµ|e0G0
8
+ γµ|e0G8

,

aµ
i = aµ

i |eG0
8
+ aµ

i |eG8 ,

bi = bi|eG0
8
+ bi|eG8 ,

κ = κ|e2G0
8
+ κ|e2G8

. (A.1)

The explicit expressions for the various terms are given by

σij |e0G0
8

=
1

8
〈(uµu

µ + χ+){λi, λj}〉 − 1

4
〈uµλiu

µλj〉 , (A.2)

σij |e2G0
8

= e2F 2Z〈1
2
{QR,QL}{λi, λj} − λiQRλjQL − λjQRλiQL〉 , (A.3)

σij |e0G8
=

1

4
〈{Ξ, λi}uµλju

µ〉+ 1

4
〈{Ξ, λj}uµλiu

µ〉

− 1

8
〈(uµu

µ + χ+)({λi, {Ξ, λj}}+ {λj, {Ξ, λi}})〉

+
1

6
〈Ξλi〉〈χ+λj〉+ 1

6
〈Ξλj〉〈χ+λi〉

+
1

4
〈Ξ{uµ, {uµ, {λi, λj}}}〉

− 1

4
〈Ξ({uµ, λi}{uµ, λj}+ {uµ, λj}{uµ, λi})〉

+
i

4
〈[uµ,∇µΞ]{λi, λj}+ i

4
〈[∇µuµ,Ξ]{λi, λj}

− 1

2
〈{λi, λj}∇µ∇µΞ〉 , (A.4)

σij |e2G8
= e2F 2Z〈Ξ(λiQRλjQL + λjQRλiQL +QRλiQLλj +QRλjQLλi

2Note thate also appears in the vielbeinuµ (2.2) and in the connectionΓµ (4.6) via (2.3).
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+ λiQLλjQR + λjQLλiQR +QLλiQRλj +QLλjQRλi

− λi{QL,QR}λj − λj{QL,QR}λi − 1

2
{{QL,QR}, {λi, λj}})〉

+ e2F 2〈Υ(1
2
{{λi, λj},QR} − λiQRλj − λjQRλi)〉 , (A.5)

γµ
ij|e0G0

8
= −1

2
〈Γµ[λi, λj]〉 , (A.6)

γµ
ij|e0G8

=
i

4
〈[λi,Ξ]{uµ, λj}〉 − i

4
〈[λj,Ξ]{uµ, λi}〉 , (A.7)

aµ
i |eG0

8
= −ieF

4
〈uµ[QR +QL, λi]〉 , (A.8)

aµ
i |eG8 =

ieF

4
〈Ξ(uµλiQR −QRλiu

µ)〉+ 3ieF

4
〈Ξ(uµλiQL −QLλiu

µ)〉

− ieF

2
〈Ξ(uµQRλi − λiQRuµ)〉+ ieF

4
〈Ξ(λiu

µQR −QRuµλi)〉

+
ieF

4
〈Ξ(λiu

µQL −QLu
µλi)〉 − eF

2
〈(QR −QL){∇µΞ, λi}〉 , (A.9)

bi|eG0
8

=
eF

2
〈(QR −QL)λi〉 , (A.10)

bi|eG8 =
eF

2
〈Ξ{QR −QL, λi}〉 , (A.11)

κ|e2G0
8

=
e2F 2

2
〈(QR −QL)

2〉 , (A.12)

κ|e2G8
= 2e2F 2〈Ξ(QR −QL)

2〉 . (A.13)

The expressions (A.12) and (A.13) are included for completeness only;κ does not con-

tribute to the order we are concerned with.
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