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1. Introduction. During last few years there was a considerable interest in applying the

general method of nonlinear realizations to systems with partial breaking of global super-

symmetries (PBGS), �rst of all to the superbranes as a notable example of such systems

(see, e.g., [1, 2, 3] and refs. therein). On this path one meets two problems. The �rst one

is purely computational. Following the general prescriptions of nonlinear realizations, one is

led to include into the coset, alongside with the spontaneously broken translation and super-

translation generators, also the appropriate part of generators of the automorphism group

for the given supersymmetry algebra (including those of the Lorentz group). This makes

the computations beyond the linearized approximation rather complicated. Moreover, some-

times these additional symmetries which we should take into account at the step of doing

the coset routine appear to be explicitly broken at the level of the invariant action (see, e.g.,

refs. [4, 5, 6]), with no clear reasons for this. The second, closely related di�culty is lacking

of a systematic procedure for constructing the PBGS actions. In all the cases elaborated so

far, the PBGS Lagrangians cannot be constructed in a manifestly invariant way from the

relevant Cartan forms: under the broken supersymmetry transformations they are shifted

by the spinor or x-derivatives (like the WZNW or Chern-Simons Lagrangians).

In the present note we argue, on several instructive examples, that the automorphism

symmetries can be ignored if we are interested only in the equations of motion for the given

PBGS system. This radically simpli�es the calculations, resulting in rather simple manifestly

covariant equations in which all nonlinearities are hidden inside the covariant derivatives.

2. N = 1; D = 4 supermembrane and D2-brane. To clarify the main idea of our

approach, let us start from the well known systems with partially broken global supersym-

metries [7, 8]. Our goal is to get the corresponding super�eld equations of motion in terms

of the worldvolume super�elds starting from the nonlinear realization of the global super-

symmetry group.

The supermembrane in D = 4 spontaneously breaks half of four N = 1; D = 4 super-

symmetries and one translation. Let us split the set of generators of N = 1 D = 4 Poincar�e

superalgebra (in the d = 3 notation) into the unbroken fQa; Pabg and broken fSa; Zg ones
(a; b = 1; 2). The d = 3 translation generator Pab = Pba together with the generator Z form

the D = 4 translation generator. The basic anticommutation relations read 1

fQa; Qbg = Pab ; fQa; Sbg = �abZ ; fSa; Sbg = Pab : (1)

In contrast to our previous considerations [8, 1, 2], here we prefer to construct the non-

linear realization of the superalgebra (1) itself, ignoring all generators of the automorphisms

of (1) (the spontaneously broken as well as unbroken ones), including those of D = 4 Lorentz

group SO(1; 3). Thus, we put all generators into the coset and associate the N = 1 ; d = 3

superspace coordinates
n
�
a
; x

ab

o
with Qa; Pab. The remaining coset parameters are Gold-

stone super�elds,  a �  
a(x; �); q � q(x; �). A coset element g is de�ned by

g = e
x
ab
P
abe

�
a
Qae

qZ
e
 
a
Sa : (2)

1Hereafter, we consider the spontaneously broken supersymmetry algebras modulo possible extra central-

charge type terms which should be present in the full algebra of the corresponding Noether currents to evade

the no-go theorem of ref. [9] along the lines of ref. [10].
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As the next step of the coset formalism, one constructs the Cartan 1-forms

g
�1
dg = !

a

Q
Qa + !

ab

P
Pab + !ZZ + !

a

S
Sa; (3)

!Z = dq +  ad�
a
; !

ab

P
= dx

ab +
1

4
�
(a
d�

b) +
1

4
 
(a
d 

b)
;

!
a

Q
= d�

a
; !

a

S
= d 

a; : (4)

and de�ne the covariant derivatives

Dab = (E�1)cd
ab
@cd ; Da = Da +

1

2
 
b
Da 

cDbc = Da +
1

2
 
bDa 

c
@bc ; (5)

where

Da =
@

@�a
+

1

2
�
b
@ab ; fDa; Dbg = @ab ; (6)

E
cd

ab
=

1

2
(�c
a
�
d

b
+ �

d

a
�
c

b
) +

1

4
( c@ab 

d +  
d
@ab 

c) : (7)

They obey the following algebra

[Dab;Dcd] = �Dab 
fDcd 

gDfg ;

[Dab;Dc] = Dab 
fDc 

gDfg ;

fDa;Dbg = Dab +Da 
fDb 

gDfg : (8)

Not all of the above Goldstone super�elds fq(x; �);  a(x; �)g must be treated as independent.
Indeed,  a appears inside the form !Z linearly and so can be covariantly eliminated by the

manifestly covariant constraint (inverse Higgs e�ect [11])

!Zjd� = 0)  a = Daq ; (9)

where jd� means the ordinary d�-projection of the form. Thus the super�eld q(x; �) is the

only essential Goldstone super�eld needed to present the partial spontaneous breaking N =

1 ; D = 4 ) N = 1 ; d = 3 within the coset scheme.

Now we are ready to put additional, manifestly covariant constraints on the super�eld

q(x; �), in order to get dynamical equations. The main idea is to covariantize the \
at"

equations of motion. Namely, we simply replace the 
at covariant derivatives in the standard

equation of motion for the bosonic scalar super�eld in d = 3

D
a
Daq = 0 (10)

by the covariant ones (5)

DaDaq = 0 : (11)

The equation (11) coincides with the equation of motion of the supermembrane in D = 4

as it was presented in [8]. Thus, we conclude that, at least in this speci�c case, additional

super�elds-parameters of the extended coset with all the automorphism symmetry generators
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included are auxiliary and can be dropped out if we are interested in the equations of motion

only.

Actually, in [8] eq. (11) was deduced, proceeding from the D = 4 Lorentz covariant coset

formalism with preserving all initial symmetries. This means that (11), having been now

reproduced from the coset involving only the translations and supertranslations generators,

possesses the hidden covariance under the full D = 4 Lorentz group. On the other hand, one

more automorphism symmetry of the N = 1; D = 4 supersymmetry algebra, \
5" symmetry,

is explicitly broken in eq. (11), and there is no way to keep it. In the d = 3 notation this

symmetry is realized as an extra SO(2) with respect to which the generators Qa and Sb and,

respectively, the coset parameters �a;  a form a 2-vector. This symmetry is spontaneously

broken at the level of the transformation laws, with the auxiliary �eld of q(x; �) being the

relevant Goldstone �eld. From eq. (11) we conclude that it cannot be preserved even in

this spontaneously broken form when q is subjected to the dynamical equation: one can

preserve the spontaneously broken D = 4 Lorentz symmetry at most. This U(1) is explicitly

broken in the o�-shell PBGS action of ref. [8], as well as in the corresponding Green-Schwarz

action [7]. A similar phenomenon was observed in refs. [4, 5] for the N = (1; 0); D = 6

3-brane. There, the auxiliary �elds of the basic worldvolume N = 1; d = 4 Goldstone

chiral supermultiplet are the Goldstone �elds parameterizing the coset SU(2)A=U(1)A of the

automorphism SU(2)A group of N = (1; 0); D = 6 Poincar�e superalgebra, and the coset part

of SU(2)A is realized as nonlinear shifts of these �elds. In the super�eld equations of motion

of the 3-brane and the corresponding o�-shell action this SU(2)A is explicitly broken down

to U(1)A, though the spontaneously broken D = 6 Lorentz symmetry is still preserved.

As a straightforward application of the idea that the automorphism symmetries are ir-

relevant when deducing the equations of motion, let us consider the case of the \space-time

�lling" D2-brane (i.e. having no scalar �elds in its worldvolume multiplet the �eld content

of which is that of N = 1; d = 3 vector multiplet). The main problem with the descrip-

tion of D-branes within the standard nonlinear realization approach is the lack of the coset

generators to which one could relate the gauge �elds as the coset parameters 2. So we do

not know how interpret the gauge �elds as coset parameters in this case 3. Let us show how

these di�culties can be circumvented in the present approach.

The superalgebra we start with is the same algebra (1), but now without the central

charge

Z = 0 :

The coset element g contains only one Goldstone super�eld  a which now must be treated

as the essential one, and the covariant derivatives coincide with (5). Bearing in mind to end

up with the irreducible �eld content of N = 1; d = 3 vector multiplet, we are led to treat  a

as the corresponding super�eld strength and to �nd the appropriate covariantization of the


at irreducibility constraint and the equation of motion. In the 
at case the d = 3 vector

multiplet is represented by a N = 1 spinor super�eld strength �a subjected to the Bianchi

2For the covariant �eld strengths as Goldstone �elds such generators can still be found in the automor-

phism symmetry algebras [3, 12].
3It seems that the existing interpretation of gauge �elds as the coset �elds [13] can be generalized to the

PBGS case only on the way of non-trivial uni�cation of the gauge group algebra with that of supersymmetry,

so that the gauge group transformations appeared in the closure of supersymmetries before any gauge-�xing

as a sort of tensorial central charges.
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identity [14]:

D
a
�a = 0 )

(
D

2
�a = �@ab�b ;

@abD
a
�
b = 0 :

)
: (12)

This leaves in �a the �rst fermionic (Goldstone) component, together with the divergenceless

vector Fab � Da�bj�=0 (i.e., just the gauge �eld strength). The equation of motion reads

D
2
�a = 0 : (13)

In accordance with our approach, we propose the following equations which should describe

the D2-brane:

(a) Da
 a = 0 ; (b) D2

 a = 0 : (14)

The equation (a) is a covariantization of the irreducibility constraint (12) while (b) is the

covariant equation of motion.

In order to see which kind of dynamics is encoded in (14), we considered it in the bosonic

limit. We found that it amounts to the following equations for the vector Vab � Da bj�=0:

(@ac + V
m

a
V
n

c
@mn)V

c

b
= 0 : (15)

One can wonder how these nonlinear but polynomial equations can be related to the nonpoly-

nomial Born-Infeld theory which is just the bosonic core of the super�eld D2-brane theory

as was explicitly demonstrated in [8]. The trick is to rewrite the parts of the equation (15),

respectively antisymmetric and symmetric in the indices fa; bg, as follows:

@ab

 
V
ab

2� V 2

!
= 0 ; (16)

@ac

�
V
c

b

2 + V 2

�
+ @bc

�
V
c

a

2 + V 2

�
= 0 ; (17)

where V 2 � V
mn
Vmn. After passing to the \genuine" �eld strength

F
ab =

2V ab

2� V 2
) @abF

ab = 0 ; (18)

the equation of motion (17) takes the familiar Born-Infeld form

@ac

 
F
c

bp
1 + 2F 2

!
+ @bc

 
F
c

ap
1 + 2F 2

!
= 0 : (19)

Thus we have proved that the bosonic part of our system (14) indeed coincides with the

Born-Infeld equations. One may explicitly show that the full equations (14) are equivalent

to the worldvolume super�eld equation following from the o�-shell D2-brane action given in

[8] (augmented with the Bianchi identity (12)). An indirect proof is based on the fact that

(14) is an N = 1 extension of the bosonic d = 3 Born-Infeld equations, such that it possesses

one more nonlinearly realized supersymmetry completing the explicit one to N = 2; d = 3

superalgebra (1) with Z = 0. On the other hand, the N = 1; d = 3 super�eld action of [8] is

uniquely speci�ed by requiring it to possess this second supersymmetry. Hence both types

of equations should be equivalent.
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In closing this Section, it is worth mentioning that the equations (15) which equivalently

describe the bosonic Born-Infeld dynamics in d = 3, look much simpler than the standard

ones (18), (19).

3. D3-brane. As another interesting application of the proposed approach, we shall con-

sider the space-time �lling D3-brane in d = 4. This system amounts to the PBGS pattern

N = 2; d = 4 ! N = 1; d = 4, with a nonlinear generalization of N = 1; d = 4 vector

multiplet as the Goldstone multiplet [15, 6]. The o�-shell super�eld action for this system

and the related equations of motion are known [15], but the latter have never been derived

directly from the coset approach.

Our starting point is the N = 2; d = 4 Poincar�e superalgebra without central charges:n
Q�;

�Q _�

o
= 2P� _� ;

n
S�;

�S _�

o
= 2P� _� : (20)

Assuming the S�; �S _� supersymmetries to be spontaneously broken, we introduce the Gold-

stone super�elds  �(x; �; ��); � _�(x; �; ��) as the corresponding parameters in the following

coset (we use the same notation as in [15])

g = e
ix
� _�
P� _�e

i�
�
Q�+i�� _�

�Q _�

e
i 

�
S�+i � _�

�S _�

: (21)

With the help of the Cartan forms

g
�1
dg = i!

� _�
P� _� + i!

�

Q
Q� + i�!Q _�

�Q _� + i!
�

S
S� + i�!S _�

�S _�
;

!
� _� = dx

� _� � i

�
�
�
d�� _� + �� _�

d�
� +  

�
d � _� + � _�

d 
�
�
;

!
�

Q
= d�

�
; �! _�

Q
= d�� _�

; !
�

S
= d 

�
; �! _�

S
= d � _�

; (22)

one can de�ne the covariant derivatives

D� _� =
�
E
�1
�
� _�

� _�
@
� _� ;

D� = D� � i

�
� 
_�
D� 

� +  
�
D�

� 
_�
�
D
� _� ;

D _� = �D _� � i

�
� 
_� �D _� 

� +  
� �D _�

� 
_�
�
D
� _� ; (23)

where

E
� _�
� _� = �

�

�
�
_�
_� � i 

�
@� _�

� 
_� � i � 

_�
@� _� 

�
; (24)

and the 
at covariant derivatives are de�ned as follows

D� =
@

@��
� i�� _�

@� _� ;
�D _� = � @

@�� _�
+ i�

�
@� _� : (25)

Now we are ready to write the covariant version of the constraints on  �; � _� which de�ne

the superbrane generalization of N = 1; d = 4 vector multiplet, together with the covariant

equations of motion for this system.

As is well-known [16], the N = 1; d = 4 vector multiplet is described by a chiral N = 1

�eld strength W� ,

D _�W� = 0 ; D�W _� = 0 ; (26)
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which satis�es the irreducibility constraint (Bianchi identity)

D
�
W� +D _�W

_�
= 0 : (27)

The free equations of motion for the vector multiplet read

D
�
W� �D _�W

_�
= 0 : (28)

It was shown in [15] that the chirality constraints (26) can be directly covariantized

D _� � = 0 ; D�
� _� = 0 : (29)

These conditions are compatible with the algebra of the covariant derivatives (23). This

algebra, with the constraints (29) taken into account, reads [15]

fD�; D�g = fD _�; D _�g = 0 ;

fD�; D _�g = 2iD
� _� � 2i (D� 


D _�
� _
)D
 _
 ;

fD�; D
 _
g = �2i (D� 
�D
 _


� 
_�)D

� _� : (30)

The �rst two relations in (30) guarantee the consistency of the above nonlinear version of

N = 1; d = 4 chirality. They also imply, like in the 
at case,

(D)3 = (D)3 = 0 : (31)

The second 
at irreducibility constraint, eq. (27), is not so simple to covariantize. The

straightforward generalization of (27),

D�
 � +D _� 

_�
= 0 ; (32)

is contradictory. Let us apply the square (D)2 to the left-hand side of (32). When hitting

the �rst term in the sum, it yields zero in virtue of the property (31). However, it is not

zero on the second term. To compensate for the resulting non-vanishing terms, and thus to

achieve compatibility with the algebra (30) and its corollaries (31), one should modify (32)

by some higher-order coorrections [15].

Let us argue that the constraints (27) together with the equations of motion (28) can be

straightforwardly covariantized as

D�
 � = 0 ; D _� 

_�
= 0 : (33)

Firstly, we note that no di�culties of the above kind related to the compatibility with

the algebra (30) arise on the shell of eqs. (33). As a consequence of (33) and the �rst two

relations in (30) we get

D2
 � = 0; D2 � _� = 0 : (34)

This set is a nonlinear version of the well-known reality condition and the equation of motion

for the auxiliary �eld of vector multiplet. Then, applying, e.g., D� to the second equation in

6



(33) and making use of the chirality condition (29), we obtain the nonlinear version of the

equation of motion for photino

D� _�
� _� � (D� 


D _�
� _
)D
 _


� _� = 0 : (35)

Acting on this equation by one more D� and taking advantage of the equations (34), we

obtain:

[D�
;D� _�] � 

_� �D� 

fD�

;D _�g � _
D
 _

� _� �D� 


D _�
� _
 [D�

;D
 _
] � 
_� = 0 : (36)

After substituting the explicit expressions for the (anti)commutators from (30), we observe

that (36) is satis�ed identically, i.e. it does not imply any further restrictions on  
�
; � _�.

It can be also explicitly checked, in a few lowest orders in  
�
; � _�, that the higher-order

corrections to (32) found in [15] are vanishing on the shell of eqs. (33).

Thus the full set of equations describing the dynamics of the D3-brane supposedly consists

of the generalized chirality constraint (29) and the equations (33). To prove its equivalence

to the N = 1 super�eld description of D3-brane proposed in [15], recall that the latter is the

N = 1 supersymmetrization [17] of the d = 4 Born-Infeld action with one extra nonlinearly

realized N = 1 supersymmetry. So, let us consider the bosonic part of the proposed set of

equations. Our super�elds  ; � contain the following bosonic components:

V
�� = V

�� � D�
 
�j�=0 ;

�V _� _� = �V
_� _� � D _� � 

_�j�=0 ; (37)

which, owing to (33), obey the following simple equations

@� _�V
�� � V




�
�V

_

_� @
 _
V

�� = 0 ; @� _�
�V _� _� � V




�
�V

_

_� @
 _


�V _� _� = 0 : (38)

Like in the D2-brane case, in the equations (38) nothing reminds us of the Born-Infeld

equations. Nevertheless, it is possible to rewrite these equations in the standard Born-Infeld

form.

The �rst step is to rewrite eqs.(38) as

�
1� 1

4
V

2 �V 2

�
@� _�V

�

�
+

1

4
�V 2
V
�

�
@� _�V

2 +
1

2
�V

_�
_�@� _�V

2 = 0 ; (39)�
1� 1

4
V

2 �V 2

�
@
� _�

�V
_�
_� +

1

4
V

2 �V
_�
_�@� _�

�V 2 +
1

2
V
�

�
@ _��

�V 2 = 0 : (40)

After some algebra, one can bring them into the following equivalent form

@� _�

�
fV

�

�

�
� @

� _�

�
�f �V

_�
_�

�
= 0 ; @� _�

�
gV

�

�

�
+ @

� _�

�
�g �V

_�
_�

�
= 0 ; (41)

where

f =
�V 2 � 2

1� 1
4
V 2 �V 2

; g =
�V 2 + 2

1� 1
4
V 2 �V 2

: (42)

After introducing the \genuine" �eld strengths

F
�

�
� 1

2
p
2
f V

�

�
; �F

_�
_� �

1

2
p
2
�f �V

_�
_� ; (43)
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�rst of eqs. (41) is recognized as the Bianchi identity

@� _�F
�

�
� @

� _�
�F

_�
_� = 0 ; (44)

while the second one acquires the familiar form of the Born-Infeld equation

@� _�

0
@ 1 + F

2 � �F 2q
(F 2 � �F 2)2 � 2(F 2 + �F 2) + 1

F
�

�

1
A

+ @
� _�

0
@ 1� F

2 + �F 2q
(F 2 � �F 2)2 � 2(F 2 + �F 2) + 1

�F
_�
_�

1
A = 0 : (45)

Thus, in this new basis the action for our bosonic system is the Born-Infeld action:

S =

Z
d
4
x

q
(F 2 � �F 2)2 � 2(F 2 + �F 2) + 1 : (46)

Now the equivalence of the system (33) to the equations corresponding to the action of

ref. [15], like in the D2-brane case, can be established proceeding from the following two

arguments: (i) It is N = 1 supersymmetrization of the d = 4 Born-Infeld equations; (ii)

It possesses the second hidden nonlinearly realized supersymmetry lifting N = 1; d = 4 to

N = 2; d = 4. The action given in [15] provides the unique extension of the d = 4 Born-

Infeld action with both these requirements satis�ed. Hence, both representations should be

equivalent to each other.

Note that at the full super�eld level the rede�nition (43) should correspond to passing

from the Goldstone fermions  �, � _� which have the simple transformation properties in the

nonlinear realization of N = 1; d = 4 supersymmetry but obey the nonlinear irreducibility

constraints, to the ordinary Maxwell super�eld strength W�;
�W _� de�ned by eqs. (26), (27).

The nonlinear action in [15] was written just in terms of this latter object. The equivalent

form (33) of the equations of motion and Bianchi identity is advantageous in that it is

manifestly covariant under the second (hidden) supersymmetry, being constructed out of

the covariant objects.

4. Conclusions. In this Letter we demonstrated that in many cases one can simplify

the analysis of the equations of motion which follow from the coset approach by taking no

account of the automorphism group at all. We showed that the equations of motion for

the N = 1; D = 4 supermembrane, D2- and D3-branes in a 
at background have a very

simple form when written in terms of Goldstone super�elds of nonlinear realizations and the

corresponding nonlinear covariant derivatives. As a by-product, we got a new simple form for

the d = 3 and d = 4 Born-Infeld theory equations of motion combined with the appropriate

Bianchi identities. The remarkable property of this representation is that it involves only a

third order nonlinearity in the gauge �eld strength.

Note that the idea to use the geometric and symmetry principles to derive the dynamical

equations is not new, of course. For instance, the completely integrable d = 2 equations admit

the geometrical interpretation as the vanishing of some curvatures. In the superembedding

approach (see [18] and refs. therein) the equations of motion for superbranes in a number

of important cases amount to the so-called \geometro-dynamical" constraint which, in the
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PBGS language, is just a kind of the inverse Higgs constraints. For instance, this applies to

the N = 1; D = 10 5-brane [1, 2]. In this case the condition like (9), besides eliminating

the Goldstone fermion super�eld in terms of the appropriate analog of the d = 3 super�eld

q (d = 6 hypermultiplet super�eld), also yields the equation of motion for the latter 4.

However, as we saw in the above examples, in other interesting cases the inverse Higgs (or

geometro-dynamical) constraints do not imply any dynamics which, however, can still be

implemented in a manifestly covariant way using the approach proposed here.

It still remains to fully understand why in the PBGS scheme the dynamical worldvolume

super�eld equations are not sensitive to the presence or absence of the automorphism gen-

erators in the initial coset construction. This is in contrast with the case of purely bosonic

p-branes. For the self-consistent description of them in terms of nonlinear realizations one

should necessarily make use of the cosets of the full target Minkowski space Poincar�e group

including the Lorentz (automorphism) part of the latter [3, 12]. A possible explanation of

this apparent disagreement is that the Goldstone fermion super�elds or Goldstone super�elds

associated with the central charges (and/or with the transverse components of the full mo-

menta) already accommodate the Lorentz and other automorphism groups Goldstone �elds.

These come out as component �elds in the � -expansion of the Goldstone super�elds. So the

automorphism groups Goldstone �elds are implicitly present in the superbrane super�eld

equations of motion.

The most interesting practical application of the approach exempli�ed here is the possi-

bility to construct, more or less straightforwardly, the equations for the N = 4 and N = 8

supersymmetric Born-Infeld theory.This work is in progress now [19].
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