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Abstract

The ratioΦ → K+K−/K0K̄0 is discussed and its present experimental value is com-
pared with theoretical expectations. A difference larger than two standard deviations is
observed. We critically examine a number of mechanisms that could account for this dis-
crepancy, which remains unexplained. Measurements at DAΦNE at the level of the per
mille accuracy can clarify whether there exist any anomaly.
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1 Introduction

Theφ-meson was discovered many years ago as aKK̄ resonance [1]. Its decay is dom-

inated by the twoKK̄ decay modes which proceed through Zweig-rule allowed strong

interactions. The ratioR ≡ φ → K+K−/K0K̄0 has been measured in a variety of

independent experiments using differentφ-production mechanisms. Among these, the

cleanest one is electron-positron annihilation around theφ resonance peak,i.e. the reac-

tionse+e− → φ→ K+K−/K0K̄0, which have been accurately measured at Novosibirsk

quite recently [2] and are the object of intense investigation at the FrascatiΦ-factory [3].

With as much as8 × 106 φ’s on tape, the KLOE experiment at DAΦNE can be expected

to measure the above ratioR with a statistical accuracy of the order of the per mille. In

view of this, we wish to discuss the theoretical expectations and compare them with the

most recent determinations for this ratio.

In the following we shall first review the present experimental situation, then com-

pare it with the na¨ıve expectations from isospin symmetry and phase space considerations

thus observing that a disagreement seems to exist. Contributions arising from electro-

magnetic radiative corrections andmu − md isospin breaking effects are analyzed and

shown to bring the observed discrepancy to be more than three standard deviations. Vari-

ous additional theoretical improvements on our analysis, such as the use of vector-meson

dominated electromagnetic form-factors, the modification of the strong vertices and the

inclusion of rescattering effects through the scalar resonancesf0(980) anda0(980) using

the charged kaon loop model, are also examined and shown not to change in any sub-

stantial way our results which imply a clear discrepancy between theory and the available

data.

The first combined measurement of the four majorφ decay modes in a singlee+e−

dedicated experiment has been performed quite recently with the general purpose detector

CMD-2 at the upgradede+e− collider VEPP-2M at Novosibirsk [2]. Having a single

experiment normalized to almost 100% of decay modes implies a reduction of systematic

errors, and the following branching ratios (BR) and errors from VEPP-2M [2] are quoted:

BR(φ→ K+K−) = (49.2 ± 1.2)% ,

BR(φ→ K0K̄0) = (33.5 ± 1.0)% ,
(1)

leading to

Rexp ≡ BR(φ→ K+K−)

BR(φ→ K0K̄0)
= 1.47 ± 0.06 . (2)

All these results were in agreement with the average values quoted in the then available
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PDG 1994 compilation [4]:

BR(φ→ K+K−) = (49.1 ± 0.9)%

BR(φ→ K0K̄0) = (34.3 ± 0.7)%


 =⇒ Rexp = 1.43 ± 0.04 . (3)

The current PDG edition [5], now including the above VEPP-2M data, quotes

BR(φ→ K+K−) = (49.1 ± 0.8)%

BR(φ→ K0K̄0) = (34.1 ± 0.6)%


 =⇒ Rexp = 1.44 ± 0.04 , (4)

as a result of a global fit, which appears as a very stable result, established with a 3%

error. In the same PDG edition, one can also findRdirect = 1.35 ± 0.06, as the averaged

result of the various experiments measuring the ratioφ → K+K−/K0K̄0 directly. A

reduction of these errors can be expected from DAΦNE, where the KLOE experiment

has already collected8 × 106 φ-mesons. Like in the case of the CMD-2 detector, all the

main decay modes of theφ will be measured by the same apparatus and this could bring

the systematic errors to a minimum, while the statistics will allow to bring the statistical

error well below the 1% level. Our discussion centers around this ratioR and the possible

interest in studying it with a much reduced experimental error.

We shall approach this discussion by starting with the most na¨ıve result for the

above ratioR, i.e. R = 1, which follows from assuming that theseφ → KK̄ decay

modes proceed exclusively via the strong interaction dynamics in the good isospin limit

mu = md and ignoring phase space differences. The mass difference between neutral

and charged kaons —which includes both isospin breaking effects (mu �= md) and elec-

tromagnetic (photonic) contributions— considerably increases this too-na¨ıve prediction

via the (purely kinematical) phase-space factor. Assuming now perfect isospin symmetry

only for the strong interaction dynamics (equal couplings forφK+K− andφK0K̄0) and

knowing thatφ → KK̄ areP -wave decay modes of a narrow resonance, one necessarily

has

R =

(
1 − 4m2

K+

M2
φ

)3/2

(
1 − 4m2

K0

M2
φ

)3/2
= 1.528 , (5)

with negligible errors coming from the mass values quoted in the PDG. The phase-space

correction thus pushes the ratioR two standard deviations above its experimental value

(4). This kinematical correction is exceptionally large because of the vicinity of theφ

mass to theKK̄ thresholds, which translates into considerably large differences between

the charged and neutral kaon momenta (or velocities,v+/v0 = 0.249/0.216 = 1.152), a

difference which is further increased to its third power in suchP -wave decay modes.
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This two-σ discrepancy between experiments and the theoretical tree level predic-

tions obviously claims for further corrections. The most immediate of such corrections is

due to electromagnetic radiative effects on the ratioR, which affect the numerator but not

the denominator, and which will be discussed in the next section.

2 Electromagnetic radiative corrections

Electromagnetic radiative corrections are frequently ignored when dealing with strong

decays. In our case, they could be relevant since, although small, they affect the charged

decay mode but not the neutral one, and, in order to solve the discrepancy in the ratioR

under consideration, only a few per cent correction is needed. Many years ago they were

already considered by Cremmer and Gourdin [6] who found a positive correction of the

order of 4% to the prediction in Eq. (5), thus enlarging that discrepancy. The dominant

contribution was found to arise from the so-called Coulomb term which is positive for

φ→ K+K− and rather large because of the small kaon velocitiesv± = 0.249. A similar

increase of the ratioR (some 5%) by radiative corrections is expected by the experimen-

talists at VEPP-2M [2], whose quoted result is inclusive of any vertex correction. If we

include this correction in the theoretically predicted ratio, the final result for the radia-

tively corrected ratio is thenR � 1.59 [6], in agreement with still another independent

analysis by Pilkuhn leading toR in the range1.52–1.61 [7]. To better qualify these state-

ments, we shall now examine in detail the contribution of such corrections to the ratio

R.

We have recalculated the electromagnetic radiative corrections toφ → K+K−

along the lines of Ref. [6]. For the charged amplitude we start with the usual and simplest

tree level expressionA0(φ → K+K−) = g0εµ(p+ − p−)µ, whereg0 is the uncorrected

strong coupling constant forφKK̄, εµ is theφ polarization andp± are the kaon four-

momenta. As is well known, the various contributions to the radiative corrections can be

grouped in two parts. The first part comprises one-loop corrections to the uncorrected

amplitudeA0(φ → K+K−). This part contains three vertex diagrams with one virtual

photon exchanged between the two charged-kaons or between theφK+K− vertex and

each charged-kaon. In addition, it also contains wave-function renormalization of ex-

ternal kaon lines that render the whole amplitude ultraviolet finite1. The second part is

needed to cancel the infrared divergence. It contains three real-photon emission diagrams

which are order
√
α. Adding these two parts we find the complete orderα corrective

1Notice that Eq. (19) in Ref. [6] contains a small imaginary part while it is supposed to be the real part
of the one-loop amplitude.
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factor to theφ→ K+K− decay width

1 + Cf + βf log 2∆E
mK+

≡ 1 + α
π

{
1+v2

2v
π2 − 2

(
1 + log 2∆E

mK+

) (
1 + 1+v2

2v
log 1−v

1+v

)

−1
v
log 1−v

1+v
− 1+v2

4v
log 1−v

1+v
log 1−v2

4
− 1+v2

2v

[
Li2

(
2v

1+v

)
− Li2

(−2v
1−v

)]

+1+v2

2v

[
Li2

(
1+v
2

)
− Li2

(
1−v
2

)]
− 1+v2

v
[Li2(v) − Li2(−v)]

}
,

(6)

wherev =
√

1 − 4m2
K+/M2

φ is the kaon velocity and∆E stays for the photon energy

resolution. For∆E = 1 MeV the correction (6) amounts to a 4.2% increase. Taking for

∆E the maximal available photon energy (32.1 MeV, not far from the energy resolution

in the KLOE detector at DAΦNE, which is≈ 20 MeV) makes no substantial difference

as the main contribution comes from the Coulomb term, the first one inside the brackets.

The above discussion ignores the fact that what is actually measured at VEPP-2M

and at DAΦNE is the ratio

Re+e− ≡ σ(e+e− → φ→ K+K−)

σ(e+e− → φ→ K0K̄0)
, (7)

and that radiative corrections toR correspond to consider the ratio of the radiatively cor-

rected cross-sections which appear at the numerator and denominator ofRe+e−. In addi-

tion to consider both initial and final state corrections, a complete treatment also requires

to discuss the presence of theφ resonance and the associated distortion of the cross-

sections [8]. At the numerator, radiative corrections include virtual corrections as well

as emission of soft unobserved photons, both from the initial and final states, with no in-

terference between initial and final state radiation for an inclusive measurement (i.e. in a

measurement that does not distinguish the charges of the kaons) [9]. For the cross-section

at the denominator, there are only initial state radiative corrections since the final kaons

are neutral. In the absence of final state radiation, the presence of a narrow resonance like

theφ in the intermediate state introduces large double logarithms which can be resummed

[8,10] and factorized in an expression like

(
Γφ

Mφ

)βi

(1 + Ci) , (8)

whereβi = 2α
π

(
log s

m2
e
− 1

)
is the initial state radiation factor andCi is the finite part

of the initial virtual and soft photon corrections, which survives after the cancellation of

the infrared divergence and the exponentiation of the large resonant dependent factors.

The same factor for initial state radiation appears both at numerator and denominator, and

since there is no interference between initial and final state radiation, the real soft-photon

radiative corrections to the initial state cancel out in the ratio (7). In principle, one should
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also resum the contributions coming from final state radiation but the final state radiative

factorβf = 2α
π

(
1+v2

2v
log 1+v

1−v
− 1

)
� 3.9 × 10−4 is very small and resummation in this

case is irrelevant. One then obtains the following expression for the ratioRe+e− as defined

in Eq. (7):

Re+e− =
Γ(φ→ K+K−)

Γ(φ→ K0K̄0)

1 + Ci + Cf + βf log 2∆E
mK+

1 + Ci
. (9)

SinceCi ≈ α
π

(
3
2
log s

m2
e

+ π2

3
− 2

)
� 5.6 × 10−2 [11], one can expand the denominator

in Eq. (9), canceling theCi term and remaining with the final state correction termsCf

andβf given explicitly in Eq. (6). We thus conclude that one is justified in using the

expressions as above and that the conventional treatment of radiative corrections increases

the previous two-σ discrepancy between experiment and theory for the ratioR to the level

of three standard deviations.

3 SU(2)-breaking in φKK̄ vertices

The φK+K− andφK0K̄0 vertices are not equal (and thus do not cancel in the ratio

R) onceSU(2)-breaking effects are taken into account. The waySU(2)-breaking is

usually introduced in the effective lagrangians is the same as forSU(3)-breaking, namely,

via quark mass differences. In the latterSU(3) case, an improved description of the

vector-meson couplings to two pseudoscalar-mesons can easily be achieved as shown, for

example, in Refs. [12,13]. But the situation is by far less convincing when turning to

the much smallerSU(2)-breaking effects [14]. The essential feature —common to most

models— is that the dynamics of these flavour symmetry breakings suppress the creation

of heavierqq̄ pairs. In theφK+K− andφK0K̄0 vertices, one needs to produce auū

and add̄ pair, respectively. Since the latter is heavier, theφ → K0K̄0 decay is further

suppressed and then the ratioR is further increased. To be somewhat more precise, we

will consider two recent and independent models dealing quite explicitly with such kind

of effects [12,15].

In the SU(3)-breaking treatment ofV P1P2 vertices by Bijnenset al. [15], these

decays proceed through two independent terms containing the relevant vector and pseu-

doscalar masses (MV andm1,2) and thus incorporating quark-mass breaking effects. In

the notation of Ref. [15], to which we refer for details, theseV P1P2 couplings are then

proportional to

M2
V

(
gV + 2

√
2fχ

m2
1 +m2

2

M2
V

)
. (10)

For theφK+K− andφK0K̄0 coupling constants, the uncorrected strong coupling con-
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stantg0 becomes, respectively,

M2
φ

2
√

2g0f 2

(
1 + 4

√
2
fχ

gV

m2
K+,K0

M2
φ

)
, (11)

with the pion decay constantf � 92 MeV. One then obtains the ratio

gφK+K−

gφK0K̄0

� 1 + 4
√

2
fχ

gV

m2
K+ −m2

K0|mu �=md

M2
φ

� 1.01 , (12)

where we have usedm2
K+ − m2

K0|mu �=md
� −6 10−3 GeV2 for the non-photonic kaon

mass difference [16] and the estimatefχ

gV
� −1

3
obtained in Ref. [15] when fitting the

ρ→ ππ andK∗ → Kπ decay widths.

Similarly, in the independent treatment ofSU(3) symmetry breaking [12], some

relevantV P1P2 couplings are given by

gρππ =
√

2g ,

gφK+K− = gφK0K̄0 = −g(1 + 2cV )(1 − cA) ,
(13)

with cV � 0.28 andcA � 0.36 (see Ref. [12] for notation and details) mimicking the

SU(3) mass difference effects discussed in the previous approach [15]. The transition

from SU(3)- to SU(2)-breaking offers no difficulties. One now obtains

gφK+K−

gφK0K̄0

� 1 − m2
K+ −m2

K0|mu �=md

m2
K −m2

π

cA � 1.01 . (14)

As in the approach of Ref. [15], theseSU(2)-breaking corrections work in the undesired

direction and the discrepancy between theory and experiment for the ratioR increases by

an additional 2%.

An independentSU(2)-breaking effect can arise fromρ-φ mixing. This is both

isospin and Zweig-rule violating, and should therefore lead to rather tiny corrections.

Indeed, in this context one can immediately obtain the following relation among coupling

constants2: gφK+K− − gφK0K̄0 = gφπ+π− , with a small value for thegφπ+π− coupling

coming from the observed smallness of theφ → π+π− branching ratio (O(10−4) [5]) in

spite of its much larger phase space. A more quantitative estimate is now possible thanks

to the recent data one+e− → φ → π+π− coming from VEPP-2M [17]. These data

describe the pion form factor around theφ peak,F (s � M2
φ), in terms of the complex

parameterZ by the expression

F (s)

(
1 − ZMφΓφ

M2
φ − s− iMφΓφ

)
. (15)

2Notice that this isospin relation not only accounts forρ(770)–φ mixing effects but also for those be-
tweenφ and any other higher mass isovectorρ-like resonance.
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ThisZ, in turn, can be easily related toεφρ, the complex parameter describing the amount

of ρ-like (or (uū− dd̄)/
√

2) contamination in theφ wave function. One finds

εφρ � −fφ

fρ

Γφ

Mφ
F (s = M2

φ)Z , (16)

where the first coefficientfφ

fρ
� − 3√

2
is the well-known ratio ofφ-γ to ρ-γ couplings. One

finally obtains
gφK+K−

gφK0K̄0

� 1 −
√

2
(εφρ) � 1.001 , (17)

where an average of the values forZ in Ref. [17] and the parametrization ofF (s = M2
φ)

from Ref. [18] have been used in the final step. This time the correction is tiny and the

accuracy of our estimate is rather rough, but again it tends to increase the discrepancy on

the ratioR.

4 Further attempts

Since the discrepancy between the theoretical and experimental value forR remains (or

has even been increased by some additional 2% due to theSU(2)-breaking effects just

discussed), we have tried to improve our analysis in different aspects. First, we have

taken into account that the couplings of photons to kaons, rather than being point-like (as

assumed in our previous and conventional treatment of radiative corrections), are known

to be vector-meson dominated [19]. Accordingly, we have redone the calculation per-

formed in Sec. 2 including the corresponding electromagnetic (vector-meson dominated)

kaon form-factors. Now, not only the decay modeφ → K+K− can be affected but

also theφ → K0K̄0 one due to theρ, ω andφ mass differences. For theφ → K+K−

case, the contribution of the charged kaon form-factor modifies the point-like result for

Γ(φ → K+K−) by ≈ 2 10−3. For the case ofφ → K0K̄0, a vanishing effect will be

obtained in the limit of exactSU(3) symmetry, and a fraction of the preceding one if

SU(3)-broken masses are used. In both cases, the effect of kaon form-factors on real-

photon emission diagrams is null. So then, the additional net effect of electromagnetic

kaon form-factors on the ratioR leads to a modification of the point-like radiative correc-

tions result of Sec. 2 by some per mille and is thus fully negligible.

A second and independent possibility consists in adopting a different framework for

V PP decays. This is usually done in terms of more general effective lagrangians with

V PP vertices containing two derivatives of the pseudoscalar fields instead of a single

one as in our previous discussion. The radiative decayρ→ π+π−γ —quite similar to the

processes we are considering— has been quite recently analyzed in this modern context in

Ref. [20]. The two relevant coupling constants (FV andGV , in the notation of Ref. [21])
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and their relative sign can be fixed to the canonical valuesFV = 2GV =
√

2fπ [22] thanks

to the experimental data forρ → π+π−γ and otherρ meson processes [5]. As discussed

in Ref. [20], a good description of these data is then achieved in terms of an amplitude

that coincides with the one previously introduced in Ref. [23], and which originated from

the simple one-derivativeV PP vertices used by Ref. [6] as well as in our recalculation

in Sec. 2. In other words, both types of effective lagrangians lead to exactly the same

real-photon emission amplitudes once the coupling constants are properly fixed. This is

also true for the other corrections concerning one-loop effects: for the canonical value

FV = 2GV one reobtains precisely our previous expression in Eq. (6).

A third attempt includes the effect of finalKK̄ rescattering through scalar reso-

nances. It is well known that the charged kaons emitted inφ → K+K− are always

accompanied by soft photons. In the case of single photon emission, theK+K− sys-

tem is found to be in aJPC = 0++ or 2++ state with an invariant mass just below the

φ mass. The presence of theJPC = 0++ scalar resonancesf0(980) anda0(980), with

masses and decay widths that cover the invariant mass range of interest (from theKK̄

threshold to theφ mass) [5], would suggest that rescattering effects could be important3.

We have computed these rescattering effects through the exchange of thef0 anda0 using

the charged kaon loop model [24–26]. In this model, theφ decays into aK+K− system

that emits a photon (from the charged kaon internal lines and from theφK+K− vertex)

before rescattering into a finalK+K− or K0K̄0 state through the propagation off0 and

a0 resonances. If the emitted soft photon is unobserved, the processφ → K+K−(γ) →
f0/a0(γ) → K+K−(γ) orK0K̄0(γ) contributes to the ratioR, both at the numerator and

denominator. In order to calculate these effects, one needs an estimate of the coupling

constantgSKK̄, whereS is either thef0 or thea0. Recent measurements of theφ → f0γ

anda0γ decay modes at VEPP-2M [27] are consistent with the predictions of the charged

kaon loop model for values of the above couplings given by

g2
f0KK̄

4π
= (1.48 ± 0.32) GeV2 ,

g2
a0KK̄

4π
= (1.5 ± 0.5) GeV2 . (18)

We have then found that the contribution of these kaon loops to theBR(φ→ K+K−(γ))

is O(10−7), while for BR(φ → K0K̄0(γ)) is O(10−9). For charged kaons in the final

state, there is an additional contribution from the interference between the soft-bremsstrahlung
3Rescattering effects from2++ states are suppressed because the nearest tensorial resonances,f2(1270)

anda2(1310), are well above theφ mass [5].
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and the scalar amplitudes. This contribution is given by

Γint(φ→ K+K−(γ)) = −4
3
α

g2
φK+K−

4π

g2
f0K+K−

4π

Mφ

2π2m2
K+

∫∆E
0 dω ω×



(
I(a, b)

[
1

Df0
(m)

+
g2

a0K+K−
g2

f0K+K−
1

Da0 (m)

]) (
w + 1−v2

2
log 1−w

1+w

)
,

(19)

whereI(a, b) is the kaon loop integral defined in Refs. [25,26] (witha ≡ M2
φ/m

2
K+ and

b ≡ m2/m2
K+), Df0/a0(m) are the scalar propagators andw =

√
1 − 4m2

K+/m2, with

m = Mφ

√
1 − 2ω/Mφ being the invariant mass of theKK̄ system andω the photon en-

ergy. Using the values in Eq. (18) for the scalar couplings, we find that the interference

term, which contributes toR only in the numerator, is positive andO(10−5), i.e. com-

pletely negligible in spite of being the dominant one.

Admittedly, this estimate of theKK̄ rescattering effects is model dependent and

affected by large uncertainties. Before concluding, we would thus like to make a few

comments on possible variations on the magnitude of the scalar coupling constants and

the expressions for the scalar propagatorsDf0/a0(m) which enter into our evaluation in the

preceding paragraph. The values of the couplingsgSKK̄ depend on the nature of the scalar

mesons,i.e. whether they are two- or four-quark states, orKK̄ molecules. The results

of theKK̄ molecule model, in addition to the couplingsgSKK̄, depend upon the spatial

extension of the scalarKK̄ bound state, and the predictions forBR(φ → f0/a0γ) (for

the samegSKK̄) are always smaller than in the purely point-like case,i.e. the effects onR

tend to vanish for more extended objects [26]. The two-quark model, irrespectively of the

ss̄ vs.(uū+ dd̄)/
√

2 quark content of thef0, predicts too small values (see, for example,

Refs. [26,28]) for the branching ratiosBR(φ → f0/a0γ) [27], and is unable anyway

to account for the near mass degeneracy of the isoscalarf0 and isovectora0. On the

other hand, such mass degeneracy is well understood in the four-quark model, critically

reexamined very recently in Refs. [29,30]. The four-quark model also predicts values for

gSKK̄ that seem to be in agreement with the available measurements ofBR(φ→ f0/a0γ)

[27,28]. In all cases, the different possibilities are found to modify the previously quoted

sizes of theKK̄ rescattering effects by at most one order of magnitude. Something similar

happens with the lack of consensus on the specific form for the scalar propagators to be

used in these estimates. Here the uncertainties arise because of the opening of theKK̄

channels quite close to the nominal scalar masses. This translates into sharp modifications

of the conventional Breit-Wigner curves and changes the size of theKK̄ rescattering

effects again by one order of magnitude. Although affected by large uncertainties, the

contributions coming from final-stateKK̄ rescattering are thus found to be negligible

and their effects on the ratioR irrelevant.
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5 Conclusions

In this letter, we have performed a discussion of the ratioR ≡ φ → K+K−/K0K̄0.

From the experimental point of view, the valueRexp = 1.44 ± 0.04 seems to be firmly

established [5]. However, in our present theoretical analysis of this ratioR we have failed

to reproduce the valueRexp quoted above. In a first and conservative attempt, including

isospin symmetry for the strong vertices and the appropriate phase-space factor, one ob-

tainsR = 1.53 which is twoσ’s aboveRexp. In a second step, we have also included

conventional electromagnetic radiative corrections to orderα, thus obtainingR = 1.59

and increasing the previous discrepancy up to threeσ’s. This value confirms some exist-

ing results and has been checked to be quite independent from the details of the relevant

vertices. In a third step, we have tried to correct our predictions forR introducing var-

ious isospin breaking corrections to theφKK̄ coupling constants. As a result, the ratio

R is found to be further increased by some 2%, an estimate affected by rather large er-

rors reflecting our poor knowledge on theSU(2)-breaking details. In view of all this, we

have introduced final-state rescattering effects which should be dominated by the almost

on-shell formation of thef0(980) anda0(980) resonances in theS-waveKK̄ channel.

The controversial nature of these scalar resonances allows for quite disparate estimates

of their effects, but one can safely conclude that they are well below those previously

mentioned. The disagreement on the ratioR persists well above two (experimental) stan-

dard deviations. Higher statistics from DAΦNE are expected in order to settle definitively

whether the discrepancy onR is a real problem, or final agreement between theory and

experimental data can be achieved.
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