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Abstract

We work out the basics of conformal N=(4,4), 2D supergravity in the N=(4,4), 2D
analytic harmonic superspace with two independent sets of harmonic variables. We
define the relevant most general analytic superspace diffeomorphism group and show
that in the flat limit it goes over into the "large'' N=(4,4), 2D superconformal group. The
basic objects of the supergravity considered are analytic vielbeins covariantizing two
analyticity-preserving harmonic derivatives. For self-consistency they should be
constrained in a certain way. We solve the constraints and show that the remaining
irreducible field content in a WZ gauge amounts to a new short N=(4,4) Weyl
supermultiplet. As in the previously known cases, it involves no auxiliary fields and the
number of remaining components in it coincides with the number of residual gauge
invariances. We discuss various truncations of this "master'' conformal supergravity
group and its compensations via couplings to N=(4,4) superconformal matter multiplets.
Besides recovering the standard minimal off-shell N=(4,4) conformal and Poincaré
supergravity multiplets, we find, at the linearized level, several new off-shell gauge
representations.
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1 Introduction

For building up self-consistent string models with N = (4; 4) worldsheet supersymme-

try (SUSY) it is of primary importance to explore in full the structure of the relevant

worldsheet conformal supergravity (SG), both on and o� shell, as well as its couplings

to N = (4; 4), 2D superconformal sigma models. In components and in the standard

N = (4; 4), 2D superspace these issues were addressed in refs. [1]-[10]. Recently, there

was a revival of interest to N = (4; 4) superconformal 2D theories caused by the fact that

they describe the low-energy limits of some string theory compacti�cations (see. e.g., [11]-

[13]). This makes it urgent to revert to the problem of �nding out an adequate superspace

description of N = (4; 4) SG and listing all possible versions of the latter.

Here we present the basics of conformal N = (4; 4), 2D SG in the analytic harmonic

SU(2)� SU(2) superspace [14] with two independent sets of harmonic variables (for the

left and right light-cone sectors). This kind of harmonic superspace is indispensable for

the o�-shell description of N = (4; 4) supersymmetric torsionful sigma models, with all

supersymmetries being manifest. Our construction in its starting points follows the anal-

ogous one for conformal SG in the analytic subspace of N = 2, 4D harmonic superspace

[15]-[17], but eventually we �nd a few essential di�erences from the latter theory. These

di�erences amount to a number of novel features of our construction compared to the

existing approaches to N = (4; 4), 2D SG.

First, in the SU(2)�SU(2) harmonic superspace three di�erent SG groups containing

local SU(2)L � SU(2)R symmetry can be de�ned (L and R stand for the left- and right-

handed 2D light-cone sectors). Two of them have as the rigid limits two di�erent in�nite-

dimensional N = 4, SU(2) superconformal groups [18] the realization of which in the


at harmonic superspace was given in [14]. A closure of these two rigid superconformal

groups is the large N = 4, 2D superconformal group with the SO(4)� U(1) a�ne Kac-

Moody group as internal symmetry (in each of two 2D light-cone sectors) [19]-[22]. The

most general SG group which can be de�ned in the analytic SU(2) � SU(2) harmonic

superspace yields in the 
at limit just this large N = (4; 4) superconformal group. The

corresponding SG can be treated as a \master theory" producing two N = (4; 4), SU(2)

SG theories as its proper truncations. Another, more elegant way of getting N = (4; 4),

SU(2) SG theories from the master N = (4; 4) SG is to couple the latter to appropriate

harmonic super�eld compensators. We explicitly demonstrate how one of N = (4; 4),

SU(2) SG groups can be recovered using this compensation procedure. The relevant

compensator is one of the SU(2)�SU(2) harmonic super�elds de�ned in [23] (it contains

(32+32) o�-shell components and generalizes the so-called nonlinear supermultiplet [24]).

It should be stressed that the most characteristic feature of the master N = (4; 4) SG

group is the presence of four local SU(2) symmetries (corresponding to gauging left and

right SO(4)) and two local U(1) symmetries (corresponding to gauging left and right

U(1)). The versions of o�-shell conformal N = (4; 4) SG known until now contained at

most two local SU(2) symmetries and no local U(1) symmetries at all.

One more di�erence from the N = 2, 4D case stems from the presence of two indepen-

dent sets of SU(2) harmonic variables in the SU(2)� SU(2) harmonic superspace. This

peculiarity gives rise, on the one hand, to the property that the relevant groups of analytic

superdi�eomorphisms are more powerful than their N = 2, 4D counterpart, in the sense
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that they allow to gauge away more �elds from the basic geometric objects of the theory,

analytic vielbeins which covariantize two analyticity-preserving harmonic derivatives. On

the other hand, prior to any gauge �xing, we are led to impose the constraints on the

analytic vielbeins re
ecting the commutativity of two independent analyticity-preserving

harmonic derivatives in the 
at case. The constraints and the original SG gauge group

together work in such a way that in the WZ gauge we are left with no auxiliary �elds

at all. Besides, the number of gauge �elds coincides with that of the remaining inde-

pendent gauge parameters in the left and right sectors. Thus, the analytic vielbeins in

the considered case actually describe a sum of two pure gauge Weyl multiplets. This

sum can be naturally called the N = (4; 4) Beltrami-Weyl (BW) multiplet (the SU(2)

or SO(4) � U(1) one, depending on from which superdi�eomorphism group one pro-

ceeds). For the N = (4; 4), SU(2) case our results agree with those of Schoutens [3], who

constructed the corresponding SG in the component approach by directly gauging the

product of left and right N = 4, SU(2) superconformal groups. The standard conformal

N = (4; 4) SG group corresponds to gauging the maximal �nite-dimensional subgroup

SU(1; 1j2) � SU(1; 1j2) of this product [1, 2], [4]-[6] and also gives rise to Weyl multi-

plet containing no o�-shell degrees of freedom. A novel point is that this phenomenon of

the one-to-one correspondence between the gauge �elds and residual gauge invariances is

continued as well to the more general case of N = (4; 4), SO(4)� U(1) SG group. The

supermultiplet of what is usually referred to as \the minimal o�-shell Poincar�e N = 4

SG" [5, 6] arises after coupling N = 4, SU(2) BW multiplet to a compensating super�eld

which represents one of twisted chiral multiplets in the analytic harmonic SU(2)�SU(2)

superspace. Thus the minimal N = (4; 4) SG representation corresponds to the two suc-

cessive compensations: �rstly, the N = (4; 4), SO(4) � U(1) SG group is compensated

down to its N = (4; 4), SU(2) subgroup by using some special harmonic compensator

and, secondly, this subgroup is further compensated down to the group corresponding to

the minimal representation via coupling to a twisted N = (4; 4) supermultiplet. The ex-

istence of a dual formulation of the twisted multiplet with an in�nite number of auxiliary

�elds [14] implies the existence of new o�-shell version of N = (4; 4) Poincar�e SG with an

in�nite number of auxiliary �elds.

In the present paper we do not aim to present the whole formalism of N = (4; 4) SG

in harmonic superspace. We concentrate on describing the analytic superspace geometry

of the SU(2) and SO(4) � U(1), N = (4; 4) BW supermultiplets: de�ne the relevant

groups, the analyticity-preserving harmonic derivatives and the covariant constraints on

the latter, and show that after choosing appropriateWZ gauges and solving the constraints

we are left with the needed irreducible �eld contents. We present the invariant couplings

of SO(4) � U(1), N = (4; 4) BW multiplet to the compensating N = (4; 4) multiplets,

such that the residual gauge freedom is just one of the N = (4; 4), SU(2) SG groups.

Then we extend this coupling to include an arbitrary number of self-interacting twisted

multiplets. We also show, at the linearized level, how to extract another N = (4; 4),

SU(2) SG group from the N = (4; 4), SO(4)� U(1) one. We discuss various truncations

and schemes of compensation of N = (4; 4), SO(4) � U(1) SG down to its N = (4; 4),

SU(2) superconformal descendants and, further, to di�erent versions of Poincar�e SG. A

few novel possibilities are found. More detailed considerations with passing to component

actions, etc, will be given elsewhere.
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2 Flat SU(2)� SU(2) analytic harmonic superspace

To proceed, we need some facts about the 
at analytic harmonic SU(2) � SU(2) super-

space. In our notation we will basically follow ref. [14] with minor deviations.

This superspace is spanned by the following set of coordinates

A(1+2;1+2j2;2) = (z++; z��; �(1;0) k +; �(0;1) b �; u
(�1;0)
i ; v(0;�1)a ) � (��; u

(�1;0)
i ; v(0;�1)a ) : (2.1)

Here, the +;� indices of the z and � coordinates are the left and right light-cone SO(1; 1)

ones, while i; k; a; b are doublet indices of four commuting SU(2) groups which constitute

the full automorphism group SO(4)L� SO(4)R of N = (4; 4), 2D Poincar�e superalgebra.

In what follows we will omit the light-cone indices of Grassmann coordinates, keeping in

mind that the indices i and a are always accompanied by the indices + and �. The har-

monic part of A(1+2;1+2j2;2) is parametrized by two independent sets of harmonic variables

u
(�1;0)
i ; v(0;�1)a , each associated with one of the SU(2) factors of SO(4)L and SO(4)R,

respectively (we denote these \harmonized" SU(2) groups as SU(2)L and SU(2)R):

u(1;0) iu
(�1;0)
i = 1; v(0;1) av(0;�1)a = 1 : (2.2)

The harmonics u and v, as well as the left and right odd coordinates, carry two indepen-

dent U(1) charges \(n; 0)", \(0; m)" which are assumed to be strictly conserved (like in

the N = 2 , 4D harmonic superspace approach [15]). This requirement restricts u and

v to parametrize 2-spheres SU(2)L=U(1)L and SU(2)R=U(1)R. The super�elds given on

A(1+2;1+2j2;2) (analytic N = (4; 4) super�elds), �(p;q)(�; u; v), are also labelled by a pair of

such U(1) charges \(p; q)" and are assumed to admit expansions in the double harmonic

series on the above 2-spheres. It should be stressed that the \harmonized" subgroups

SU(2)L; SU(2)R and the two remaining SU(2) factors of SO(4)L; SO(4)R are realized

in essentially di�erent ways. Namely, the \harmonized" SU(2) symmetries are hidden,

in the sense that they manifest themselves only in the existence of the double harmonic

series; on the other hand, two extra SU(2) symmetries are explicit, as they rotate the

underlined doublet indices of the analytic Grassmann coordinates and the related indices

of component �elds in the � expansion of �(p;q). Note that the latter in general can carry

indices of any linear representation of these explicit SU(2) symmetries.

The analytic superspace (2.1) is real with respect to the generalized involution \�"

which is the product of ordinary complex conjugation and an antipodal map of the 2-

spheres SU(2)L=U(1)L and SU(2)R=U(1)R

g(�(1;0) i) = �
(1;0)
i ; g(u(�1;0) i) = �u

(�1;0)
i ; (2.3)

(and similarly for �(0;1) a; v(0;�1)a ). The analytic super�elds �(p;q) can be chosen real with

respect to this involution, provided jp+ qj = 2n

g(	(p;q)) = 	(p;q) ; jp+ qj = 2n : (2.4)

In what follows we will need the fact of the existence of the mutually commuting

sets of harmonic derivatives D(2;0), D(0;0)
u � D0

u and D(0;2), D(0;0)
v � D0

v which preserve
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N = (4; 4) Grassmann harmonic analyticity, i.e. yield an analytic super�eld when acting

on some analytic super�eld. They are given by the expressions

D(2;0) = @(2;0) + i(�(1;0))2@++ ; D(0;2) = @(0;2) + i(�(0;1))2@�� (2.5)

D0
u = @0u + �(1;0) i

@

@�(1;0) i
; D0

v = @0v + �(0;1) a
@

@�(0;1) a
; (2.6)h

D0
u; D

(2;0)
i

= 2 D(2;0) ;
h
D0

v; D
(0;2)

i
= 2 D(0;2) : (2.7)

Here @�� = @=@z�� and

@(2;0) = u(1;0) i
@

@u(�1;0) i
; @0u = u(1;0) i

@

@u(1;0) i
� u(�1;0) i

@

@u(�1;0) i
; (2.8)

(the same formulas are valid for @(0;2) and @0v with the change u! v). The operators D0
u,

D0
v count the U(1) charges of the analytic super�elds

D0
u�

(p;q)(�; u; v) = p�(p;q)(�; u; v) ; D0
v �

(p;q)(�; u; v) = q�(p;q)(�; u; v) : (2.9)

In the analytic superspace (2.1) one can realize two di�erent in�nite-dimensional

groups of superconformal transformations. Each group consists of two commuting light-

cone branches, the left and right ones, having as the algebra the classical N = 4, SU(2)

superconformal algebra (SCA) [18]. Without loss of generality we can specialize, e.g., to

the left sector. It turns out that the form of the relevant superconformal transformations

is basically speci�ed by the transformation law of the analyticity-preserving covariant

harmonic derivative D(2;0) (or D(0;2) in the right sector).

The basic distinguishing feature of the �rst group is that it does not touch the har-

monics

�I u
(�1;0)
i = 0 : (2.10)

Its realization inA(1+2;1+2j2;2) is completely �xed by the requirement thatD(2;0) is invariant

�I D
(2;0) = 0 : (2.11)

The second superconformal group has the same Lie bracket structure as the �rst one,

but it acts on all the left coordinates of A(1+2;1+2j2;2), including the harmonic ones u(�1;0).

We give here only the generic form of transformations of harmonics and the derivative

D(2;0) [14]

�II u
(1;0)
i = �

(2;0)
I (z++; �(1;0); u)u

(�1;0)
i ; �II u

(�1;0)
i = 0

�II D
(2;0) = ��(2;0)D0

u ; �(2;0) = D(2;0)�L ; D(2;0)�(2;0) = 0 : (2.12)

The main di�erence between these two N = 4, SU(2) superconformal groups lies in

the realization of their a�ne SU(2) subgroups: the second one acts on the indices i; j and

a�ects both the Grassmann and harmonic coordinates, while the �rst one acts only on the

underlined indices and so a�ects only �'s. These groups do not commute; their closure is

the \large" N = 4, SO(4)� U(1) group [18, 20, 21, 22]. For our further purposes it will

be important that the latter involves an extra U(1) a�ne (Kac-Moody) symmetry with
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the dimensionless holomorphic parameter �L(z
++) (or �R(z

��) in the right sector). It is

realized, e.g., on u(1;0) i as [14]

�U(1)u
(1;0) i = (D(2;0)�L(z) ) u

(�1;0) i = i(�(0;1))2@++�L(z) u
(�1;0) i : (2.13)

The \large" superconformal algebra corresponds to the most general solution [25] of the

constraints on �(2;0) in eq. (2.12), while two of its SU(2) subalgebras (SCA-I and SCA-II

in what follows) are singled out by some additional conditions. Here we will not present

the explicit form of the coordinate transformations of all these superconformal groups

(see [14, 23] for details), since we will recover them as 
at limits of the appropriate SG

groups in the next Sections. Notice the following important property: both N = 4, SU(2)

superconformal groups, and hence their closure, leave invariant the analytic superspace

integration measure �(�2;�2) = d2zd2�(1;0)d2�(0;1)[du][dv]:

�I �
(�2;�2) = �II �

(�2;�2) = 0 : (2.14)

The last topic of this introductory Section is the harmonic superspace description of

some important N = (4; 4) multiplets. We start with one of the possible N = (4; 4)

twisted chiral multiplets [26, 27], namely, the one having a simple description in SU(2)�

SU(2) harmonic analytic superspace. It is represented by a real analytic (4; 4) super�eld

q(1;1)(�; u; v) subject to the constraints

D(2;0)q(1;1) = D(0;2)q(1;1) = 0 : (2.15)

They leave in q(1;1) 8 + 8 independent components [14], just the o�-shell �eld content of

N = (4; 4) twisted multiplet. The super�eld q(1;1) is scalar with respect to the �rst N = 4,

SU(2) superconformal group but it is transformed with the weight 1 under the second

one (this is necessary for preserving the constraints (2.15))

�I q
(1;1) = 0 ; �II q

(1;1) = �L q
(1;1) (2.16)

(the transformations from the right-handed branches are similar). The physical dimension

components of q(1;1) (four dimension 0 bosons and eight dimension 1/2 fermions) behave in

di�erent ways under these two kinds of N = (4; 4), SU(2) transformations. In particular,

the SU(2) a�ne transformations from the �rst superconformal group act only on fermions,

while those from the second group act both on bosons and fermions. The physical bosonic

�elds are naturally combined, with respect to the latter transformations and their right-

handed counterparts, into a 2�2 matrix qia(z++; z��) on which the left (right) conformal

SU(2) acts as a left (right) multiplication . So the purely SU(2) part of qia represents

the coset SU(2)L � SU(2)R=SU(2)diag, and it is not too surprising that the q(1;1) action

invariant under the second superconformal group is none other than N = (4; 4) extension

of the SU(2) WZW sigma model action. Indeed, it is just the N = 4, SU(2) � U(1)

WZW sigma model action of ref. [27, 21, 22, 28, 29, 30]. The SU(2) � SU(2) analytic

superspace form of this action reads [14]

Swzw = �
1

4
2

Z
�(�2;�2) q̂(1;1)q̂(1;1)

 
1

(1 +X)X
�

ln(1 +X)

X2

!
; (2.17)
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where

q̂(1;1) = q(1;1) � c(1;1) ; X = c(�1;�1)q̂(1;1) ; c(�1;�1) = ciau
(�1;0)
i v(0;�1)a ; ciacia = 2 ; (2.18)

and 
 is a dimensionless sigma model coupling constant. Despite the presence of an extra

quartet constant cia in the analytic super�eld Lagrangian, the action actually does not

depend on cia [14].

We wish to stress that the action (2.17) is unique (up to adding full harmonic deriva-

tives) in the sense that it is the only possible action of a single super�eld q(1;1) invariant

under the second N = (4; 4); SU(2) superconformal group. As we will see later, in the

curved case the super�eld q(1;1) serves as a compensator which breaks the appropriate

N = (4; 4), SU(2) SG group (having as the rigid limit the second N = (4; 4), SU(2)

superconformal group) down to the supergroup of minimal N = (4; 4), 2D SG [5].

As for the �rst superconformal group, an arbitrary action of the super�eld q(1;1),

Sq =

Z
�(�2;�2) L(2;2)(q(1;1) M(�; u; v); u; v) ; (2.19)

is invariant with respect to it. As a consequence of this property, the particular q(1;1) action

(2.17) is invariant under both N = (4; 4), SU(2) superconformal groups and, hence, under

their closure, i.e. the \large" N = (4; 4), SO(4)� U(1) superconformal group. Note that

q(1;1) transforms under the left a�ne U(1) transformations (2.13) as

�U(1)q
(1;1) = �L(z

++) q(1;1) (2.20)

(and analogously under their right-handed counterparts). The full transformation law

of q(1;1) under the left \large" group looks like the second law in eq. (2.16), with �L =

�L(z
++) + �(ik)(z++)u

(1;0)
i u

(�1;0)
k + :::. Further details will be given in Sect. 4. It is worth

mentioning that the general action (2.19) always yelds the sigma model with torsion in

the sector of physical bosons, just of the same kind as in the N = (4; 4) supersymmetric

subclass of general N = (2; 2) chiral and twisted chiral super�eld sigma models explored

in [26]. The actions of other matter multiplets in SU(2) � SU(2) harmonic superspace

reveal the same characteristic feature. This is the radical di�erence of the considered

case from the dimensionally-reduced o�-shell sigma model actions of hypermultiplets in

the standard harmonic superspace with one set of the SU(2) harmonic variables [15]: for

physical bosons they yield the torsionless hyper-K�ahler sigma model actions.

Note that there exist other types of twisted N = 4 multiplets, with the same number

of o�-shell components, but with di�erent realizations of various SU(2) factors of the

full SO(4)L � SO(4)R automorphism group of rigid N = (4; 4); 2D SUSY [31, 32].

Respectively, the above two N = (4; 4), SU(2) superconformal groups are realized in

di�erent ways on these multiplets. In particular, there exists a sort of twisted multiplet

on which the �rst and second superconformal groups act in the way just opposite to their

action on q(1;1). 1

1In [7, 31] such a multiplet is called TM-I as opposed to q
(1;1) which is TM-II in this classi�cation.

Such a classi�cation makes sense with respect to a �xed N = (4; 4); SU(2) SCA: if the conformal SU(2)

groups act both on the physical bosons and fermions, one deals with TM-II, whereas if they act only on

fermions, one faces TM-I. Conversely, q(1;1) is TM-I with respect to the �rst of the two N = (4; 4); SU(2)

SCAs de�ned above, but it is TM-II with respect to the second one.
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The SU(2)�SU(2) harmonic superspace description of these complementary twisted

multiplets [32] is somewhat more complicated. Nevertheless, all of them can be coupled

to the N = (4; 4) Beltrami-Weyl SG multiplets to be de�ned below and so can serve as

compensators. We are planning to present these couplings in a future work.

Finally, we mention one more analytic SU(2)�SU(2) harmonic supermultiplet which

will be used in Sec. 5 as a compensator reducing the N = (4; 4), SO(4) � U(1) SG

group to one of its N = (4; 4) , SU(2) subgroups. It is represented by a pair of analytic

super�elds N (2;0), N (0;2) satisfying the constraints [23]

D(2;0)N (2;0) +N (2;0)N (2;0) = 0; D(0;2)N (0;2) +N (0;2)N (0;2) = 0;

D(2;0)N (0;2)
�D(0;2)N (2;0) = 0 : (2.21)

These constraints are analogous to those de�ning the so-called nonlinear supermultiplet

[24] in the N = 2, 4D harmonic superspace (the latter goes into N = (4; 4), SU(2)diag
harmonic superspace upon reduction to 2D). They are obviously covariant under the

�rst N = (4; 4) , SU(2) superconformal group, if N (2;0); N (0;2) are assumed to transform

as scalars with respect to it. They are also covariant under the second group, provided

N (2;0); N (0;2) transform according to

�IIN
(2;0) = �(2;0); �IIN

(0;2) = �(0;2) : (2.22)

The simplest invariant action (with the correct sign of the kinetic terms of the physical

�elds) is as follows:

SN � �

Z
�(�2;�2)N (2;0)N (0;2) : (2.23)

To see that it is invariant (up to surface terms) under (2.22), one should take into account

the invariance of the analytic superspace integration measure and the properties

�(2;0) = D(2;0)�L; �(0;2) = D(0;2)�R; D(2;0)�R = D(0;2)�L = 0 : (2.24)

The pair N (2;0); N (0;2) describes 32+32 o�-shell degrees of freedom and is dual-equivalent

to four q(1;1) super�elds [23].

Having the multiplet N (2;0); N (0;2), one can de�ne further consistent non-linear multi-

plets G(2;0); G(0;2) which are zero-weight scalars under both N = (4; 4); SU(2) supercon-

formal groups

�I;II G
(2;0) = �I;II G

(0;2) = 0 : (2.25)

The corresponding constraints (covariant with respect to both superconformal groups)

are a slight modi�cation of (2.21)

(D(2;0) + 2N (2;0))G(2;0) + �G(2;0)G(2;0) = 0 ;

(D(0;2) + 2N (0;2))G(0;2) + �G(0;2)G(0;2) = 0 ;

D(2;0)G(0;2)
�D(0;2)G(2;0) = 0 ; (2.26)

where � is an arbitrary dimensionless parameter (it can be equal to zero). All such

representations comprise 32 + 32 o�-shell degrees of freedom. Their Lagrangians are

bilinears like in (2.23).
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3 Curved SU(2) � SU(2) analytic superspace and

N=(4,4) Beltrami-Weyl multiplet

By analogy with the N = 2, 4D case [16, 17] we assume that the fundamental group of

N = (4; 4) , 2D conformal supergravity is represented by the following di�eomorphisms

of the analytic harmonic SU(2)� SU(2) superspace

��� = ��(�; u; v); �u
(1;0)
i = �(2;0)(�; u; v)u

(�1;0)
i ; �v(0;1)a = �(0;2)(�; u; v)v(0;�1)a ;

�u
(�1;0)
i = �v(0;�1)a = 0 : (3.1)

Here �� = (z++; z��; �(1;0) k +; �(0;1) b �) as in (2.1) and the gauge parameters ��, �(2;0),

�(0;2) are arbitrary functions over the whole harmonic analytic superspace A(1+2;1+2j2;2).

These transformation laws preserve the de�ning relations of harmonic variables (2.2)

and the reality of A(1+2;1+2j2;2) with respect to the \� " conjugation. The analyticity-

preserving harmonic derivatives D(2;0) and D(0;2) are covariantized by introducing appro-

priate analytic vielbeins

D(2;0)
) r

(2;0) = D(2;0) +H(2;0) �@� +H(4;0)@(�2;0) +H(2;2)@(0;�2)

� D(2;0) +H(2;0) M@M ;

D(0;2)
) r

(0;2) = D(0;2) +H(0;2) �@� + ~H(2;2)@(�2;0) +H(0;4)@(0;�2)

� D(0;2) +H(0;2) M@M ; (3.2)

where we used the notation

M = (�; (2; 0); (0; 2)); @M = (@�; @
(�2;0); @(0;�2));

@(�2;0) = u(�1;0) i
@

@u(1;0) i
; @(0;�2) = v(0;�1) a

@

@v(0;1) a
(3.3)

and separated the 
at parts of the vielbein components in front of @++ in r(2;0) and @��
in r(0;2). In eqs. (3.2) all the vielbeins are analytic N = (4; 4), 2D super�elds,

H(2;0) M = H(2;0) M(�; u; v) ; H(0;2) M = H(0;2) M(�; u; v) :

The 
at limit is achieved by putting them equal to zero. The U(1) charge-counting

operators D0
u and D0

v retain their 
at form (2.6).

Again in analogy with refs. [16, 17], we postulate for r(2;0), r(0;2) the following

transformation law under the N = (4; 4) SG group (3.1)

�r(2;0) = ��(2;0)D0
u ; �r(0;2) = ��(0;2)D0

v ; (3.4)

whence

�H(2;0) ++ = r
(2;0)�++

� 2i�(1;0)�(1;0) ; �H(2;0) �� = r
(2;0)��� ;

�H(3;0) i = r
(2;0)�(1;0) i

� �(2;0)�(1;0) i ; �H(2;1) a = r
(2;0)�(0;1) a ;

�H(4;0) = r
(2;0)�(2;0) ; �H(2;2) = r

(2;0)�(0;2) ; (3.5)

�H(0;2) ++ = r
(0;2)�++ ; �H(0;2) �� = r

(0;2)���
� 2i�(0;1)�(0;1) ;

�H(1;2) i = r
(0;2)�(1;0) i ; �H(0;3) a = r

(0;2)�(0;1) a
� �(0;2)�(0;1) a ;

� ~H(2;2) = r
(0;2)�(2;0) ; �H(0;4) = r

(0;2)�(0;2) : (3.6)
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From now on, the similarity with the N = 2, 4D construction ceases to be literal and the

speci�city of the N = (4; 4) case comes into play.

First of all, we wish to generalize the notion of the twisted analytic super�eld q(1;1) to

the curved case and hence need to �nd a correct generalization of the de�ning constraints

(2.15) and the superconformal transformation laws (2.16). As we have started with the

most general di�eomorphism group of the analytic superspace, we expect it to yield, in the


at limit, the product of the left and right \large" SO(4)� U(1) superconformal groups,

including their U(1) a�ne subgroups with the parameters �L(z
++), �R(z

��). However,

a close inspection of the analytic super�eld gauge parameters ��(�; u; v), �(2;0)(�; u; v)

and �(0;2)(�; u; v) shows that there is no place in them for such dimensionless parameters

(these can appear only with their z derivatives). To generalize the transformation laws

of q(1;1) (2.16), (2.20) to the curved case, we are led to introduce two extra independent

analytic gauge functions

�L(�; u; v) = �L(z
++; z��) + ::: ; �R(�; u; v) = �R(z

++; z��) + :::

and to ascribe the following transformation laws to q(1;1)

�q(1;1) = (�L + �R)q
(1;1) : (3.7)

We call these transformations the \U(1) weight" ones, to distinguish them from the

harmonic U(1) phase transformations. We normalize the left and right U(1) weights JL
and JR as

JLq
(1;1) = JRq

(1;1) = q(1;1) : (3.8)

At this stage, the U(1) weight analytic parameters �L, �R are entirely unrelated to those

of the coordinate transformations.

Such a relation naturally comes out, as a result of choosing the appropriate transfor-

mation law for the U(1) weight-covariantized harmonic derivatives and �xing a proper

gauge.

We covariantize r(2;0), r(0;2) by introducing four analytic super�eld U(1) connections

H
(2;0)
L (�; u; v), H

(2;0)
R (�; u; v), H

(0;2)
L (�; u; v), H

(0;2)
R (�; u; v)

r
(2;0)

) D
(2;0) = r(2;0) +H

(2;0)
L JL +H

(2;0)
R JR

r
(0;2)

) D
(0;2) = r(0;2) +H

(0;2)
L JL +H

(0;2)
R JR ; (3.9)

and postulate the following transformation laws for D(2;0), D(0;2)

�D(2;0) = ��(2;0)(D0
u � JL)�r

(2;0)�L JL �r
(2;0)�R JR ;

�D(0;2) = ��(0;2) (D0
v � JR)�r

(0;2)�L JL �r
(0;2)�R JR : (3.10)

The transformation laws of the vielbeins in r(2;0), r(0;2) do not change, while the newly

introduced U(1) connections are transformed as

�H
(2;0)
L = �(2;0)

�r
(2;0)�L ; �H

(2;0)
R = �r

(2;0)�R ;

�H
(0;2)
L = �r

(0;2)�L ; �H
(0;2)
R = �(0;2)

�r
(0;2)�R : (3.11)
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The D(2;0) and D(0;2) derivatives of the analytic super�eld �(p;q), with the left and right

U(1) weights equal to l and r, are transformed as follows:

�D(2;0)�(p;q) = ��(2;0)(p� l)�(p;q) + (l�L + r�R)D
(2;0)�(p;q) ;

�D(0;2)�(p;q) = ��(0;2)(q � r)�(p;q) + (l�L + r�R)D
(0;2)�(p;q) : (3.12)

We see that only provided p = l, q = r, these derivatives are actually covariant, i.e.

they transform as the super�eld �(p;q) itself. But this is precisely what happens for q(1;1),

which possesses JL = JR = 1. Therefore, as the appropriate curved generalization of the

constraints (2.15), we choose the following ones:

D
(2;0)q(1;1) = (r(2;0) +H

(2;0)
L +H

(2;0)
R )q(1;1) = 0 ;

D
(0;2)q(1;1) = (r(0;2) +H

(0;2)
L +H

(0;2)
R )q(1;1) = 0 : (3.13)

Before going further, let us adduce some reasoning in favor of the choice of the trans-

formation laws of D(2;0), D(0;2) in the form (3.10). The primary reason for this choice is

the desire to relate the coordinate transformations with the U(1) weight transformations,

so as to eventually ensure a correct 
at limit. Indeed, from eqs. (3.11) it follows that the

connections H
(2;0)
L , H

(0;2)
R can be entirely gauged away, thereby establishing the sought

relation

H
(2;0)
L = H

(0;2)
R = 0) �(2;0) = r(2;0)�L ; �(0;2) = r(0;2)�R : (3.14)

In what follows we will frequently stick to this gauge. One more argument why we

should assume (3.10) is based on an analogy with the harmonic space description of

quaternionic manifolds in [33]. There, the analyticity-preserving harmonic derivative in

the analytic basis necessarily involves an analytic connection �++ associated with the so

called \Sp(1) weight". Its transformation law literally mimics that of H
(2;0)
L , H

(0;2)
R , so it

is natural to assume that the U(1) weights JL, JR and the associated analytic super�eld

parameters �L and �R are direct analogs of the just mentioned Sp(1) weight and the

related analytic parameter inherent to the quaternionic manifolds 2. Of course, the most

direct way to justify the transformation law (3.10) would be to deduce it proceeding from

the appropriate constraints in the standard N = (4; 4) superspace. An alternative way is

to show that it leads to a self-consistent SG theory, still in the framework of the analytic

superspace. This is just what we are going to demonstrate.

An important consequence of the presence of two independent harmonic constraints

in the de�nition of the twisted super�eld q(1;1), eqs. (3.13), is the integrability condition

[D(2;0);D(0;2)]q(1;1) = 0 : (3.15)

It is easy to see that the direct generalization of the 
at condition [D(2;0); D(0;2)] = 0,

namely,

[D(2;0);D(0;2)] = 0 ;

is not covariant under (3.10). The covariant version of this constraint is as follows:

[D(2;0);D(0;2)] = �H(2;2)(D0
v � JR) + ~H(2;2)(D0

u � JL) : (3.16)

2A deep analogy between the description of quaternionic manifolds in the harmonic space and that of

conformal N = 2; 4D SG in the harmonic superspace was pointed out in [33].
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It is evident that eq. (3.15) is automatically satis�ed as a consequence of (3.16) and (3.8).

This constraint implies

r
(2;0)H

(0;2)
L �r

(0;2)H
(2;0)
L + ~H(2;2) = 0 ;

r
(2;0)H

(0;2)
R �r

(0;2)H
(2;0)
R �H(2;2) = 0 (3.17)

and

[r(2;0);r(0;2)] = �H(2;2)D0
v +

~H(2;2)D0
u : (3.18)

From the latter relation one deduces the constraints on the analytic vielbeins

r
(2;0)H(0;2) ++

�r
(0;2)H(2;0) ++

� 2iH(1;2)�(1;0) = 0 ;

r
(2;0)H(0;2) ��

�r
(0;2)H(2;0) �� + 2iH(2;1)�(0;1) = 0 ;

r
(2;0)H(1;2) i

�r
(0;2)H(3;0) i

� ~H(2;2)�(1;0) i = 0 ;

r
(2;0)H(0;3) a

�r
(0;2)H(2;1) a +H(2;2)�(0;1) a = 0 ;

r
(2;0)H(0;4)

�r
(0;2)H(2;2) = 0 ;

r
(2;0) ~H(2;2)

�r
(0;2)H(4;0) = 0 : (3.19)

Thus we see that in the N = (4; 4); SU(2)� SU(2) case the analytic vielbeins and U(1)

connections covariantizing D(2;0), D(0;2) are necessarily constrained. This is the crucial

di�erence from the formulation of N = 2, 4D conformal SG in the standard harmonic

superspace [16, 17], where the analogous quantities are unconstrained analytic super�elds,

i.e. the prepotentials of the theory. Of course, this peculiarity is a direct consequence of

the presence of two independent sets of harmonic variables in the considered case.

For the time being, we do not know how to solve (3.17), (3.19) via unconstrained

super�eld prepotentials. To single out the irreducible �eld representation carried by viel-

beins and U(1) connections, we keep to another strategy. Namely, we use the initial gauge

freedom to gauge away from these objects as many components as possible, then substi-

tute the resulting expressions into the constraints and solve the latter in this WZ-type

gauge. Eventually, it turns out that the solution exists, is unique and is not reduced to

a pure gauge. The super�eld constraints prove to be purely kinematic: indeed, they do

not imply any di�erential conditions, nor equations of motion, for the remaining �elds.

At present we are aware of the full nonlinear solution of these constraints. Here, we limit

ourselves to the linearized level. This is quite su�cient for revealing the irreducible �eld

contents of the SG theory under consideration.

In the present case, one can choose the WZ gauge in several di�erent ways, the basic

criterion for one or another choice being the desire to simplify the constraints (3.17),

(3.19) as much as possible. As a �rst step, we choose the gauge (3.14) and the following

additional ones

H(2;0) ++ = H(0;2) �� = H(3;0) i = H(0;3) a = 0 ; (3.20)

H(4;0) = H(0;4) = 0 : (3.21)

These gauges restrict in a certain way the original gauge parameters. At the considered

linearized level, (3.20) and (3.21) give rise to the following relations:

D(2;0)�++
� 2i�(1;0)�(1;0) = 0 ; D(2;0)�(1;0) i

�D(2;0)�L �
(1;0) i = 0 ;
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D(0;2)���
� 2i�(0;1)�(0;1) = 0 ; D(0;2)�(0;1) a

�D(0;2)�R �
(0;1) a = 0 ;

(D(2;0))2�L = (D(0;2))2�R = 0 ; (3.22)

which strictly �x the u or v dependence of the relevant parameters (depending on which

derivative, i.e. either D(2;0) or D(0;2), enters the given relation). After this, there still

remains a freedom associated with the surviving harmonic dependence. This freedom can

be used to further gauge away some of the components in the double harmonic expansion

of the remaining vielbeins H(2;0) ��, H(0;2) ++, H(2;1) a, H(1;2) i and the U(1) connections

H
(2;0)
R , H

(0;2)
L . At this stage, the u and v dependence of all analytic super�eld gauge pa-

rameters is completely �xed and we are left with a �nite set of the component parameters.

However, in the vielbeins and connections one still �nds a non-trivial harmonic depen-

dence which is entirely �xed only after imposing the constraints. The �nal expressions

for the vielbeins, connections and super�eld gauge parameters at the linearized level are

as follows:

H(2;0) �� = i(�(1;0))2fh��++ � 2i�(0;1)a h
� aa
++ v(0;�1)a � i(�(0;1))2h

(ab)
++ v

(0;�1)
a v

(0;�1)
b g ;

H(2;1) a = i(�(1;0))2fh
� aa
++ v(0;1)a + �(0;1) b[h

(a
++ b) +

1

2
�
a

b (@��h
��
++ � 2h

(ab)
++ v

(0;1)
a v

(0;�1)
b )]

+(�(0;1))2(
1

2
t
ba
++� � i@��h

� ba
++ )v

(0;�1)
b g ;

H
(2;0)
R = i(�(1;0))2fh++ + h

(ab)
++ v

(0;1)
a v

(0;�1)
b � �(0;1)a t

ba
++�

� i(�(0;1))2@��h
(ab)
++ v

(0;�1)
a v

(0;�1)
b g ; (3.23)

��� = ��� � 2i�(0;1)a �� aav(0;�1)a + i(�(0;1))2�(ab)v(0;�1)a v
(0;�1)
b ;

�(0;1) a = �� aav(0;1)a + �(0;1) b[�
(a
b) +

1

2
�
a

b (@���
�� + 2�(ab)v(0;1)a v

(0;�1)
b )]

�(�(0;1))2(i@���
� aa +

1

2
�
aa
� )v(0;�1)a ;

�R = �R + �(ab)v(0;�1)a v
(0;1)
b � �(0;1)a �

aa
� v

(0;�1)
a

� i(�(0;1))2@���
(ab)v(0;�1)a v

(0;�1)
b ; (3.24)

and H(0;2) ++, H(1;2) i, H
(0;2)
L , �++, �(1;0) i, �L can be obtained from these expressions via

the substitutions + $ �, �(1;0) i $ �(0;1) a, u $ v, i; i $ a; a. In (3.23), (3.24) all the

component �elds and gauge parameters are functions of z++; z�� and we have explic-

itly indicated their 2D space-time indices. Note that in the chosen gauge the diagonal

components of the world-sheet zweibein h++++, h
��
�� equal unity and the parameters of two

independent Weyl rescalings of �(1;0) i, �(0;1) a are �xed to be @++�
++, @���

��, so the dif-

ference between the world and tangent indices of the involved �elds actually disappears.

Actually, we have used all the gauge symmetries with pure shifts in their transforma-

tion laws for gauging away the corresponding �eld components (rescalings are just of this

kind). We ended up only with the transformations starting with z-derivatives of gauge

parameters.

Looking at the above expressions we observe that the irreducible content of the original

set of analytic vielbeins and connections includes only gauge �elds: the two components
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of the world-sheet zweibein h++��; h
��
++, the left and right gravitino components h

+ ii
�� ; h

� aa
++ ,

the left and right components of the SO(4)L�U(1)L and SO(4)R�U(1)R gauge connec-

tions h
(ij)
��; h

(ij)
��; h�� and h

(ab)
++ ; h

(ab)
++ ; h++, as well as the left and right components of the

\conformal gravitino" t
ii
��+, t

ab
++�, with a total of (16 + 16) independent components. The

remaining gauge freedom involves just the same number of gauge parameters, so locally all

these gauge �elds can be gauged away, though such a gauge is inadmissible globally (e.g.,

after coupling this multiplet to the N = (4; 4) string �elds, the zweibein components

should produce two Virasoro constraints). Therefore it is natural to call the obtained

gauge multiplet, with no o�-shell degrees of freedom, the \ N = (4; 4); SO(4) � U(1)

Beltrami-Weyl (BW) multiplet". We shall see later that it admits truncations to two

di�erent N = (4; 4); SU(2) ones. We will also show that the o�-shell (8+8) \minimal

N = 4, 2D SG multiplet" [5, 6] naturally comes out as the result of coupling one of the

N = (4; 4) , SU(2) BW multiplets to one kind of twisted N = (4; 4) multiplet treated as

a compensator.

Actually, in order to be able to construct manifestly invariant super�eld couplings of

N = (4; 4) BW multiplets to N = (4; 4) matter, we need one more ingredient. This is an

analytic density which should transform so as to cancel the transformation of the analytic

superspace integration measure �(�2;�2). Indeed, as distinct from the 
at superspace

superconformal groups, the full local group (3.1) does not leave �(�2;�2) invariant:

��(�2;�2) = ((�1)P (�)@��
� + @(�2;0)�(2;0) + @(0;�2)�(0;2)) �(�2;�2) � ~� �(�2;�2) ; (3.25)

where P (�) is 0 for bosonic and 1 for fermionic indices.

De�ning the objects

�(2;0) = (�1)P (M)@MH
(2;0) M ; �(0;2) = (�1)P (M)@MH

(0;2) M ; (3.26)

one �nds them to transform as

��(2;0) = r(2;0)~� ; ��(0;2) = r(0;2)~� (3.27)

and to satisfy, as a consequence of the constraints (3.19), the condition

r
(2;0)�(0;2) �r(0;2)�(2;0) = 0 : (3.28)

It is easy to show that (3.28) implies

�(2;0) = r(2;0)�(�; u; v) ; �(0;2) = r(0;2)�(�; u; v) : (3.29)

Again, with making use of the constraints (3.19), �(�; u; v) can be expressed in terms

of the original BW multiplet (up to an unessential additive constant) 3 and shown to

transform as

�� = ~� : (3.30)

Hence the quantity


 � e�� ; �
 = �~� 
 (3.31)

3To the zeroth order in the �'s and the �rst order in the �elds, one has � = const+(h++
+++h

��

��

)+ :::.
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is the sought object, compensating for the non-invariance of the measure. In what follows

we will need only the property

(r(2;0) + �(2;0) ) 
 = 0 ; (r(0;2) + �(0;2) ) 
 = 0 : (3.32)

In particular, due to this property, one can still integrate by parts with respect to the co-

variantized harmonic derivatives. Indeed, for any analytic function F (�; u; v), the integralZ
�(�2;�2)
r(2;0)F (�; u; v) ;

up to full ordinary derivatives, reduces to

�

Z
�(�2;�2)(r(2;0) + �(2;0))
 F (�; u; v) = 0

(the same is true for r(0;2)).

4 Various limits and truncations

Inspecting the residual symmetry parameters (3.24), one observes that after constraining

their z dependence, in such a way that the left (right) parameters are functions solely of

z++(z��),

@���
++ = @++�

(1;0) i = @���L = 0 ;

@++�
�� = @++�

(0;1) a = @++�R = 0 ; (4.1)

they constitute the direct sum of two \large" N = (4; 4), SO(4) � U(1) superconformal

algebras [18, 20, 21, 22]. To see this, one should study the Lie brackets of the trans-

formations (3.1) into which these restricted parameters expanded in series in z�� are

substituted. Then, e.g., for the right branch, one �nds that the expansion of ���(z��)

produces a Virasoro subsector, that of �(ab)(z��); �(ab)(z��) yields two a�ne SU(2) subal-

gebras, and that of ��ab(z��); �
ab
� (z

��) corresponds to the two types of SUSY generators

present in this SCA, i.e. the canonical generators (they involve, in particular, the N = 4

Poincar�e SUSY and the special conformal SUSY generators) and the non-canonical ones.
4 The a�ne U(1) parameters contained in �R(z

��) appear in the closure of the canonical

and non-canonical SUSY transformations (actually, the rigid U(1) parameter �R(z
��)jz=0

never appears in the closure on the superspace coordinates, but it does appear when one

considers the closure on the super�eld q(1;1) with the transformation law (3.7)). It is also

easy to check that these restricted superparameters coincide with those appearing in the

realizations of these N = 4 SCAs in the 
at SU(2)�SU(2) harmonic superspace [14, 32].

Thus, we found that the original N = (4; 4) SG group (3.1), (3.5), (3.6), (3.7), (3.11)

contains the direct sum of two N = 4; SO(4) � U(1) SCAs as the essential invariance

subalgebra of the residual gauge freedom associated with the superparameters (3.24) (and

4Strictly speaking, such expansions de�ne that part of N = 4 SCA which is regular at the origin. Just

such subalgebras of the left and right N = 4; SU(2) SCAs were gauged in the component approach of

ref. [3].
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their left counterparts). It should be stressed that it is an invariance of the full nonlinear

theory, not only of the linearized approximation (3.23). Indeed, it could be recovered from

the general harmonic vielbein transformation laws (3.5), (3.6), (3.11), as the maximal

subgroup preserving the 
at limit

H(2;0) M = H(0;2) M = H
(2;0)
L;R = H

(0;2)
L;R = 0 : (4.2)

Thus, the analytic superdi�eomorphism group of Sect. 3 can be regarded as the local,

gauged version of this maximal rigid N = (4; 4) superconformal group, with the BW

multiplet de�ned by eq. (3.23) (and by its left counterpart) as the corresponding gauge

multiplet. Presumably, the latter can be alternatively recovered via direct gauging of

this SCA following the procedure of ref. [3]. The SU(2) � SU(2) harmonic superspace

approach allows one to relate it to the fundamental objects of the analytic superspace

geometry, the analytic harmonic vielbeins H(2;0)M ; H(0;2)M and the analytic U(1) connec-

tions H
(2;0)
L;R ; H

(0;2)
L;R .

Since N = (4; 4); SO(4)� U(1) SCA contains as its in�nite-dimensional subalgebras

two N = (4; 4); SU(2) SCAs (SCA-I and SCA-II), it is natural to expect that its local

extension also contains two smaller N = (4; 4) SG groups having these superconformal

symmetries as the maximal \rigid" subgroups. They can naturally be called the N =

(4; 4); SU(2) SG-I and SG-II groups. They should come out as appropriate truncations

of (3.1), (3.5), (3.6), (3.11) implemented through imposing certain constraints on the

group parameters. The analytic harmonic vielbeins comprising the relevant shortened

BWmultiplets should then arise upon setting certain relations among the original analytic

vielbeins, in a way covariant under the truncated SG group.

One obvious truncation of the original group and vielbeins is as follows:

�(2;0) = �(0;2) = �L = �R = 0 ; (4.3)

H(4;0) = H(0;4) = H(2;2) = ~H(2;2) = H
(2;0)
L;R = H

(0;2)
L;R = 0 : (4.4)

The resulting group is the group of general analytic di�eomorphisms of the coordinates

��, with the inert harmonics

��� = ��(�; u; v); �u = �v = 0 : (4.5)

The corresponding covariant harmonic derivatives read

r
(2;0) = D(2;0) +H(2;0) �@� ; r

(0;2) = D(0;2) +H(0;2) �@� : (4.6)

The transformation laws of these derivatives and vielbeins, as well as the constraints the

latter should satisfy, directly follow from those given in the previous Section, after taking

into account the constraints (4.3), (4.4). Note that the harmonic derivatives now are

inert,

�r(2;0) = �r(0;2) = 0 ;

and the integrability condition (3.18) becomes

[r(2;0);r(0;2)] = 0 ) (4.7)
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r
(2;0)H(0;2) ++

�r
(0;2)H(2;0) ++

� 2iH(1;2)�(1;0) = 0 ;

r
(2;0)H(0;2)��

�r
(0;2)H(2;0)�� + 2iH(2;1)�(0;1) = 0 ;

r
(2;0)H(1;2) i

�r
(0;2)H(3;0)i = 0 ;

r
(2;0)H(0;3) a

�r
(0;2)H(2;1) a = 0 : (4.8)

Comparing the above truncated transformations with those of the �rst rigid super-

conformal N = 4; SU(2) group (eqs. (2.11), (2.10)), one can suspect that the truncated

SG group corresponds to gauging just this SCA-I. This is indeed the case. One can again

choose the gauges

H(2;0) ++ = H(0;2) �� = H(0;3) a = H(3;0) i ; (4.9)

as in (3.20), and repeat all the steps which led us to the irreducible �eld representation

(3.23) and the residual gauge freedom (3.24). For the truncated SG case we �nally get,

at the linearized level,

H(2;0) �� = i(�(1;0))2fh��++ � 2i�(0;1)a h
� aa
++ v(0;�1)a g ;

H(2;1) a = i(�(1;0))2fh
� aa
++ v(0;1)a + �(0;1) b[h

(a
++ b) +

1

2
�
a

b @��h
��
++]

� i(�(0;1))2@��h
� ba
++ v

(0;�1)
b g ; (4.10)

��� = ��� � 2i�(0;1)a �� aav(0;�1)a ;

�(0;1) a = �� aav(0;1)a + �(0;1) b[�
(a
b) +

1

2
�
a

b @���
��]� i(�(0;1))2@���

� aav(0;�1)a (4.11)

and analogous relations for the left vielbeins and parameters. We observe that the same

can be obtained simply by setting

H
(2;0)
R = 0 ; �R = 0; H

(0;2)
L = 0 ; �L = 0

in the relations (3.23), (3.24) (and their left counterparts). Thus we end up with the BW

multiplet h��++; h
++
��, h

� aa
++ ; h

+ ii
�� , h

(ab)
++ ; h

(ik)
�� the �eld content of which basically coincides

with that of the N = (4; 4); SU(2) gauge multiplet found by Schoutens [3] (a slight

di�erence comes from the fact that, on the way to this �eld representation, we have already

gauge-�xed some local symmetries with pure shifts in the relevant gauge parameters,

in particular, the local 2D Lorentz and scale invariances by setting h++++ = h���� = 1).

The residual gauge group has the parameters ���; �++ (local translations), �� aa; �+ ii

(local supertranslations), �(ab); �(ik) (right and left SU(2) groups). The number of these

gauge invariances coincides with that of the gauge �elds, so that the N = (4; 4); SU(2)

BW multiplet (BW-I in what follows) contains no o�-shell components like its parental

N = (4; 4); SO(4) � U(1) BW multiplet. Once again, the maximal subgroup of (4.5)

preserving the 
at limit

H(2;0) � = H(0;2) � = 0

is just the N = (4; 4); SU(2) SCA-I. It is singled out by imposing the light-cone chirality

conditions on the parameters of the residual gauge group.
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While specializing to the N = (4; 4); SU(2) SG-I group, we may retain the standard

de�ning constraint for the twisted super�eld q(1;1),

r
(2;0)q(1;1) = r(0;2)q(1;1) = 0 (4.12)

(because of the commutativity property (4.7)), and the zero-weight scalar transformation

rule

q(1;1)0(� 0; u; v) = q(1;1)(�; u; v) : (4.13)

So, with respect to this SG-I group, q(1;1) is what is called TM-I in [7, 31] because its

physical bosonic �elds qia(z) are not a�ected by the local SU(2) symmetries (on the con-

trary, the auxiliary �elds F ia are transformed). Thus, the general rigidly supersymmetric

q(1;1) action (2.19) can be straightforwardly extended to the locally supersymmetric one

SI
q =

Z
�(�2;�2) 
̂ L(2;2)(q(1;1)M ; u; v) ; (4.14)

where the density 
̂ is still de�ned by eqs. (3.29), (3.31), with the truncation conditions

(4.4) taken into account. In components and with the auxiliary �elds eliminated, it

gives the general locally supersymmetric N = (4; 4) sigma-model of ref. [4] which is a

modi�cation of the sigma-model action of ref. [2] by torsion terms in the sector of the

physical bosons. For the rigid q(1;1) action (2.19), the general torsionful o�-shell component

action was presented in [14]. The action (4.14) yields a locally supersymmetric version of

the latter. In Appendix we present, as an example, the component form of a very simple

particular case of (4.14).

What about the second N = (4; 4); SU(2) SCA, with respect to which q(1;1) is TM-II?

How to extract the relevant N = (4; 4) SG group from the original \master" SG group?

It is easy to answer these questions at the linearized level. The answer is prompted by

the known realization of the N = (4; 4); SU(2) SCA-II in the SU(2) � SU(2) harmonic

analytic superspace [14, 23]. In order to have this SCA as the maximal symmetry after

imposing the light-cone chiral constraints (4.1), one must seek for restrictions on the

residual gauge superparameters (3.24) and their left counterparts such, that: i) the U(1)

parameters �L:R are identi�ed with @���
��; ii) the a�ne SU(2) parameters �(ab); �(ik)

are eliminated. The unique possibility to obey these requirements, still leaving the \true"

SU(2) parameters �(ab); �(ik) unconstrained, is to impose the following relations:

@�(1:0) i

@�(1;0) k
= �

i

k (�L + @++�
++) ;

@�(0;1) a

@�(0;1) b
= �

a

b (�R + @���
��) ; (4.15)

whence

�(ab) = �(ik) = 0 ; �L = �
1

2
@++�

++ ; �R = �
1

2
@���

�� ;

�
ik
+ = �2i@++�

+ ik ; �
ab
� = �2i@���

� ab : (4.16)

It is easy to explicitly check that the superparameters (3.24) (and their left counterparts)

restricted in this way indeed span the sought N = (4; 4); SU(2) SCA-II after imposing

the chirality conditions (4.1). Then, at the linearized level, it is a consistent truncation
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to set equal to zero those combinations of the analytic vielbeins, which are not shifted

under the subgroup singled out by eqs.(4.15):

@H(1:2) i

@�(1;0) k
= �

i

k (@++H
(0;2) ++

�H
(0;2)
L ) ;

@H(2;1) a

@�(0;1) b
= �

a

b (@��H
(2;0) ��

�H
(2;0)
R ) : (4.17)

These relations amount to the following linearized constraints on the gauge �elds:

h
(ab)
++ = h

(ik)
�� = 0 ; h�� =

1

2
@++h

++
�� ; h++ =

1

2
@��h

��
++ ;

t
ii
��+ = 2i@++h

+ ii
�� ; t

aa
++� = 2i@��h

� aa
++ : (4.18)

They leave us with the representation h��++; h
++
��, h

+ ik
�� , h

� ab
++ , h

(ik)
�� ; h

(ab)
++ , which is again

a N = (4; 4); SU(2) BW multiplet, but with another chiral pair of SU(2) gauge �elds,

compared to (4.10). We call it the N = (4; 4); SU(2) BW-II multiplet. For completeness,

we explicitly quote here the counterparts of (4.10), (4.11) for the considered case

H(2;0) �� = i(�(1;0))2fh��++ � 2i�(0;1)a h
� aa
++ v(0;�1)a � i(�(0;1))2h

(ab)
++ v

(0;�1)
a v

(0;�1)
b g ;

H(2;1) a = i(�(1;0))2fh
� aa
++ v(0;1)a +

1

2
�(0;1) a(@��h

��
++ � 2h

(ab)
++ v

(0;1)
a v

(0;�1)
b )g ;

H
(2;0)
R = i(�(1;0))2f

1

2
@��h

��
++ + h

(ab)
++ v

(0;1)
a v

(0;�1)
b � 2i �(0;1)a @��h

�ba
++

� i(�(0;1))2@��h
(ab)
++ v

(0;�1)
a v

(0;�1)
b g ; (4.19)

��� = ��� � 2i�(0;1)a �� aa v(0;�1)a + i(�(0;1))2�(ab)v(0;�1)a v
(0;�1)
b ;

�(0;1) a = �� aa v(0;1)a +
1

2
�(0;1) a(@���

�� + 2�(ab)v(0;1)a v
(0;�1)
b ) ;

�R = �
1

2
@���

�� + �(ab)v(0;�1)a v
(0;1)
b + 2i �(0;1)a @���

� aa v(0;�1)a

� i(�(0;1))2@���
(ab)v(0;�1)a v

(0;�1)
b : (4.20)

The left objects are obtained via the same substitutions as in the previous cases.

For the time being, we do not know how to go beyond the linearized level in this

important case. It seems that it is more fruitful to descend to the above shortened

versions of the BW multiplets (and further to the Poincar�e SG), using a more convenient

approach based on the concept of superconformal compensation.

5 Superconformal matter couplings

The basic idea of the compensation approach (see, e.g., [34]) is to start from the pure

superconformal SG and then to couple to it, in a superconformally covariant way, appro-

priate matter multiplets with inhomogeneous (Goldstone type) transformation laws with

respect to certain (super)conformal symmetries. Then, by properly �xing gauges (nor-

mally, in such a way that all inhomogeneously transforming components are fully gauged

away), one gets as a net result the theory with a smaller number of local symmetries
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and supersymmetries, i.e. a sort of Poincar�e SG. The auxiliary �elds of the compensat-

ing super�eld become in this gauge auxiliary �elds of the relevant Poincar�e SG gauge

multiplet. If, from the beginning, a few matter super�elds coupled to a given conformal

SG are included, being one of them a compensator, we end up with the theory of the

remaining matter multiplets in a Poincar�e SG background. In this way, one can derive

various Poincar�e-type supergravities (with all, or a part of, the original conformal sym-

metries compensated for), di�erent o�-shell SG multiplets (depending on the choice of

compensator), etc.

We believe that the N = (4; 4); SO(4)�U(1) SG group de�ned in Sect. 3 is the max-

imal, \master" N = (4; 4); 2D conformal SG group. Then, the relevant gauge multiplet,

N = (4; 4); SO(4)� U(1) BW multiplet, is the \master" multiplet from which all other

known N = (4; 4) SG multiplets should follow by the appropriate compensating proce-

dure. To list all possibilities, we need to know all possible superconformal rigid o�-shell

matter multiplets which can be de�ned in SU(2)�SU(2) harmonic superspace, their o�-

shell actions, and the locally superconformal extensions of the latter. As it was already

noticed earlier, not all known types of twisted super�elds (and their variant representa-

tions) admit a simple formulation in SU(2) � SU(2) analytic harmonic superspace [32].

There also exists some other o�-shell representation with �nite number of auxiliary �elds,

whose SU(2)� SU(2) harmonic superspace description (if existing) is not known, as yet.

In what follows, we shall deal with the superconformal o�-shell matter multiplets which

admit a description in terms of analytic SU(2)� SU(2) harmonic super�elds and which

were reviewed in Sect. 2. These are the nonlinear multiplets N (2;0); N (0;2), G(2;0); G(0;2)

and the twisted chiral multiplets q(1;1) which can be either TM-I or TM-II, depending

on the superconformal N = (4; 4); SU(2) group with respect to which one studies their

transformation properties. We shall show that some of these super�elds can be used to

compensate the \master" N = (4; 4) conformal SG group down to its N = (4; 4); SU(2)

subgroups and, further, to the Poincar�e SG groups, including the group of minimal o�-

shell SG of refs. [5, 6].

We start with a local extension of the set N (2;0); N (0;2). The rigid superconformal

transformation laws of this multiplet (2.22) naturally generalize to the whole \master"N =

(4; 4) SG group as

� N (2;0) = �(2;0) ; � N (0;2) = �(0;2) ; (5.1)

where the transformation parameters are now the general analytic superfunctions intro-

duced in (3.1). The de�ning constraints (2.21) are covariantized as follows:

(a) r
(2;0)N (2;0) +N (2;0)N (2;0) = H(4;0) ; r(0;2)N (0;2) +N (0;2)N (0;2) = H(0;4) ;

(b) r
(2;0)N (0;2)

�r
(0;2)N (2;0) = H(2;2)

� ~H(2;2) (5.2)

(for a similar covariantization of the standard nonlinear multiplet in the conventional

harmonic superspace, see [17, 23]). It is obvious that the N -multiplet can be used to fully

compensate all gauge invariances contained in �(2;0);�(0;2), including two chiral SU(2)

symmetries acting on the harmonic variables. One can achieve this purpose, choosing the

gauge

N (2;0) = N (0;2) = 0 ) (a) H(0;4) = H(4;0) = 0 ; (b) H(2;2)
� ~H(2;2) = 0 : (5.3)
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Prior to any gauge-�xing, it is instructive to fully elaborate on the corollaries of the

constraints (5.2). For the quantities

Q(2;0)
� N (2;0)

�H
(2;0)
L �H

(2;0)
R ; Q(0;2)

� N (0;2)
�H

(0;2)
L �H

(0;2)
R ; (5.4)

eq. (5.2b), combined with eqs. (3.17) implies the following constraint:

r
(2;0)Q(0;2)

�r
(0;2)Q(2;0) = 0 ) Q(2;0) = r(2;0)� ; Q(0;2) = r(0;2)� ; (5.5)

where � = �(�; u; v) is a new analytic compensating super�eld. Recalling the transfor-

mation properties (3.11), (5.1), we see that

� Q(2;0) = r(2;0)(�L + �R) ; � Q(0;2) = r(0;2)(�L + �R) ) �� = �L + �R : (5.6)

Hence, the newly introduced analytic object � can be fully gauged away using the analytic

gauge parameter �L + �R

� = 0 ) �L = ��R � � : (5.7)

As a corollary of this choice, the following relations occur:

Q(2;0) = Q(0;2) = 0 ) N (2;0) = H
(2;0)
L +H

(2;0)
R ; N (0;2) = H

(0;2)
L +H

(0;2)
R : (5.8)

At this stage, it is time to �x the gauge freedom associated with the superparameters

�(2;0);�(0;2), by imposing the gauge (5.3). As a result of this gauge choice, the original

\master" N = (4; 4) SG group (3.1) proves to be compensated just down to its N =

(4; 4); SU(2) SG-I subgroup (4.5). Eqs. (5.8), in this gauge, imply

H
(2;0)
L = �H

(2;0)
R � H(2;0) ; H

(0;2)
L = �H

(0;2)
R � H(0;2) ; (5.9)

� H(2;0) = r(2;0)� ; � H(0;2) = r(0;2)� : (5.10)

As a consequence of these relations and the gauge choice (5.7), the transformation law

(3.7) of the twisted multiplet q(1;1) in the \master" SG group, as well as its de�ning

constraints (3.13), are reduced to those covariant under the N = (4; 4); SU(2) SG group,

i.e. (4.13) and (4.12). Nevertheless, the resulting theory is not yet identical to what

we have got after truncation in Sect. 4. Indeed, the gauge-�xed covariant derivatives

r(2;0);r(0;2) di�er from those de�ned by eq. (4.6)

r
(2;0) = D(2;0) +H(2;0) �@� +H(2;2)@(0;�2) ;

r
(0;2) = D(0;2) +H(0;2) �@� +H(2;2)@(�2;0) ; (5.11)

H(2;2) = r(2;0)H(0;2)
�r

(0;2)H(2;0) : (5.12)

Though H(2;2) as well as H(2;0); H(0;2) transform as scalars under the remaining N =

(4; 4); SU(2) SG-I group, the harmonic partial derivatives @(0;�2); @(�2;0) are not covariant,

due to the presence of a non-trivial u; v dependence in the group parameters in (4.5). As

a result, H(2;2) appears in the transformation laws of the vielbeins H(2;0) �; H(0;2) �. The

constraints (3.19) also do not go into the set (4.8), due to the presence of H(2;2). For
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this object, the original constraints (3.19) imply the following ones (recall that H(4;0) =

H(0;4) = 0 in the gauge (5.3)):

r
(2;0)H(2;2) = r(0;2)H(2;2) = 0 : (5.13)

This peculiarity comes out only at the nonlinear level. The linearized analysis goes

as before and shows that H(2;0) �; H(0;2) �, in the present case, carry the same set of �elds

forming the N = (4; 4); SU(2) BW-I multiplet. In other words, after �xing appro-

priate conformal gauges in the locally superconformal system of the original \master"

BW multiplet and the compensator multiplet N (2;0); N (0;2), we are left with a smaller

N = (4; 4); SU(2) BW-I multiplet and an extra o�-shell multiplet. The latter is car-

ried by the super�elds H(2;0); H(0;2) which exhibit the gauge freedom (5.10) with an extra

analytic gauge parameter �(�; u; v) and satisfy the constraints (5.13). This extended

representation is not fully reducible, in the sense that the additional gauge super�elds

H(2;0); H(0;2) are scalars with respect to the conformal N = (4; 4); SU(2) SG-I group

(4.5) while the SG-I transformation laws of the analytic vielbeins H(2;0) �; H(0;2) � include

these extra super�elds.

Thus, we have found the previously unknown o�-shell N = (4; 4) SG gauge multiplet.

In the WZ gauge and at the linearized level, its part coming from the analytic vielbeins is

the same BW-I gauge �elds representation which was described in Sect. 4 and which has

no o�-shell degrees of freedom (the linearized structure (4.10) in this case is slightly mod-

i�ed by the �elds from H(2;0); H(0;2), because of the presence of H(2;2) in the constraints

on H(0;2) �; H(2;0) �). To examine the o�-shell content of H(2;0); H(0;2), we have chosen an

appropriate WZ gauge with respect to the parameter �(�; u; v), so as to kill as much

component �elds in the �, u; v expansions of these super�elds as possible, and inserted

the result into the linearized form of the constraints (5.13). Solving the latter (it does not

put any �eld on shell), we have eventually found (32 + 32) independent o�-shell compo-

nents listed below (the numerals in the parentheses on the right to the �elds denote the

\engineering" dimension and the number of independent real components, respectively):

bosons : (h++; h��) (1; 1) ; l
(ab)
++ (1; 3) ; l

(ik)
�� (1; 3) ; liaia (1; 16) ; l(ik)(ab) (0; 9) ;

fermions : lba + (3=2; 4) ; lik � (3=2; 4) ; l
(ik) a
b (1=2; 12) ; l

(ab) i
k (1=2; 12) : (5.14)

The �elds h�� are gauge �elds for a U(1) with the gauge parameter �(z) which is the

�rst component in �(�; u; v). This U(1) is the only residual gauge symmetry of the

given WZ gauge. The �elds l
(ab)
++ ; l

(ik)
�� and lba + ; lik + are \former" gauge �elds for the

symmetries with the parameters �(ab); �(ik) and �ba �; �
i
k + in the \master" BW multiplet

(eqs. (3.23), (3.24) and their left counterparts). Now these local symmetries have been

entirely compensated by the appropriate compensating �elds fromN (2;0); N (0;2). Note that

the residual gauge group U(1) is the diagonal in the product of two chiral gauge U(1)

groups realized on the \master" BW multiplet; the rest of these U(1) symmetries has

been compensated by a dimension-0, SO(4) singlet �eld present in N (2;0); N (0;2) [23] (this

is just the �rst component of the compensator � introduced in (5.5)). The biggest 
at limit

symmetry of the extended gauge multiplet (N = (4; 4); SU(2) BW-I together with (5.14))

is N = (4; 4); SU(2) SCA-I augmented with an extra rigid U(1) symmetry. Note that in
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the matter couplings we shall discuss in this Section, the super�elds H(2;0); H(0;2) always

appear only through their analytic super�eld strength H(2;2) containing, in particular, the

�eld strength of the U(1) gauge �eld h��. In other words, the residual local U(1) group is

hidden, and for the time being we do not see in which situations it could become active.

A comment is to the point here. In principle, we could completely eliminate the extra

multiplet by treating it as pure gauge. This possibility corresponds to adding additional

constraints to the set (5.2)

H(2;2) = r(2;0)N (0;2) ; ~H(2;2) = r(0;2)N (2;0) : (5.15)

These constraints are manifestly covariant and compatible both with (5.2) and (3.19).The

same reasoning which led us to eqs. (5.5), (5.9) implies that in the gauge (5.3) the pairs

H
(2;0)
L ; H

(0;2)
L and H

(2;0)
R ; H

(0;2)
R become pure gauge, with respect to the U(1) gauge groups

with parameters �L and �R. Hence, they can be gauged away, fully compensating this

gauge freedom. As the result, the N = (4; 4); SU(2) SG-I group and the BW-I multiplet

are �nally reproduced. A deviation from the standard compensation point of view is

that, after imposing (5.15), the compensators N (2;0); N (0;2) cease to have a 
at o�-shell

limit (when all vielbeins are put equal to zero): the resulting modi�ed set of constraints

proves to be too restrictive, it puts these super�eld on shell [23]. On the other hand, one

can view the relations (5.2) and (5.15) merely as the covariant de�nition of particular

harmonic vielbeins H(0;4); H(4;0); H(2;2); ~H(2;2), such that it provides a covariant way to

make some gauge �elds in the \master" BWmultiplet purely longitudinal and, so, globally

removable by �xing appropriate gauges. Indeed, from the standpoint of the linearized WZ

representation (3.23) for the \master" BW multiplet, these relations mean that all gauge

�elds except those comprising the N = (4; 4); SU(2) BW-I multiplet are postulated to

be pure gauge.

Let us now turn to the issue of constructing matter actions invariant under the \mas-

ter" conformal SG group.

We start by seeking for the appropriate generalization of the N -action (2.23). Some-

what surprisingly, it cannot be straightforwardly promoted to an invariant of the local

superconformal group. The best we have reached, in our attempts to covariantize (2.23),

is the action

Sloc
N = �

Z
�(�2;�2)


�
Q(2;0)Q(0;2) + 2Q(2;0)H

(0:2)
L + 2Q(0;2)H

(2;0)
R + 2H

(0;2)
L H

(2;0)
R

�
; (5.16)

where Q(2;0); Q(0;2) are de�ned in (5.4). It is shifted, up to surface terms, by the expression

� Sloc
N = �2

Z
�(�2;�2) 


�
H

(0;2)
L r

(2;0)�L +H
(2;0)
R r

(0;2)�R

�
; (5.17)

which cannot be further cancelled in any way.

On the other hand, it is possible to construct invariant actions for the second type

of superconformally invariant (32+32) nonlinear multiplet de�ned by (2.25), (2.26). The

constraints (2.26) admit a direct covariantization

(r(2;0) + 2N (2;0))G(2;0) + �G(2;0)G(2;0) = 0 ;

(r(0;2) + 2N (0;2))G(0;2) + �G(0;2)G(0;2) = 0 ;

r
(2;0)G(0;2)

�r
(0;2)G(2;0) = 0 : (5.18)
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Indeed, it is easy to check their covariance under (3.1) provided that the super�elds G

transform as scalars: � G(2;0) = � G(0;2) = 0. Then the simplest manifestly invariant

action of G(2;0); G(0;2) in the background of the N = (4; 4) \master" conformal SG �elds

and compensators N (2;0); N (0;2) is given by

Sloc
G = �

Z
�(�2;�2) 
G(2;0)G(0;2) : (5.19)

Another possibility to construct an invariant o�-shell action for the pair of compen-

sators N (2;0); N (0;2) is to take as the relevant Lagrangian density the constraints (5.2) with

the appropriate analytic Lagrange multipliers !(�2;2), !(2;�2), !. Just an action of this

kind describes the standard nonlinear multiplet coupled to a conformal N = 2; 4D SG in

the conventional harmonic superspace [16, 17]. Its SU(2) � SU(2) analogue would also

have no propagating degrees of freedom and, before varying with respect to Lagrange mul-

tipliers, contain an in�nite number of auxiliary �elds. This possibility requires a thorough

analysis and we postpone discussing it to the future.

It is worth noting that there are no problems with extending the 
at superspace

actions of N (2;0); N (0;2) and G(2;0); G(0;2) to invariants of the N = (4; 4) SG-I group. The

relevant constraints are obtained from the 
at ones (2.21), (2.26) by the replacements

D(2;0); D(0;2) ! r(2;0);r(0;2), where r(2;0);r(0;2) are given by eqs. (4.6), and the locally

supersymmetric actions are obtained via the replacement �(�2;�2) ! �(�2;�2) 
̂ in the


at superspace ones.

Let us now switch over to the twisted multiplets. We already constructed in Sect. 4

a locally supersymmetric q(1;1) action (4.14) invariant under the N = (4; 4); SU(2) SG-I

group. An important question is how to construct the q(1;1) actions invariant under the

full \master" N = (4; 4) group (3.1). The main di�culty here is related to the non-trivial

transformation law (3.7) of q(1;1) in this group.

The simplest way to construct such a coupling is to consider q(1;1) together with the

compensators N (2;0); N (0;2). In this case, due to the existence of the analytic scalar com-

pensator � which is shifted by the sum �L + �R (eq. (5.5)), one can rede�ne any q(1;1)

with the transformation law (3.7) in such a way that it will transform as a scalar under

the \master" SG group

q(1;1)(�; u; v) ) ~q(1;1) = e� q(1;1) ; ~q(1;1)0(� 0; u0; v0) = ~q(1;1)(z; u; v) : (5.20)

The constraints (3.13) become

(r(2;0) +N (2;0))~q(1;1) = 0 ; (r(0;2) +N (0;2))~q(1;1) = 0 : (5.21)

Their covariance is evident. The general invariant action is similar to (4.14)

~SI
q =

Z
�(�2;�2) 
 L(2;2)(~q(1;1); ~u; ~v) ; (5.22)

where 5

~u(1;0) = u(1;0) �N (2;0)u(�1;0) ; ~u(�1;0) = u(�1;0) ;

~v(0;1) = v(0;1) �N (0;2)v(0;�1) ; ~v(�1;0) = v(0;�1) : (5.23)

5Within the conventional harmonic superspace, the necessity of analogous rede�nitions of the har-

monics explicitly appearing in the action of hypermultiplets coupled to conformal N = 2, 4D SG was

�rstly shown in [17].
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In the gauge (5.3) the action (5.22) coincides with (4.14) modulo a modi�cation of both

the covariant harmonic derivatives and the constraints on the analytic vielbeins due to

the presence of the U(1) gauge multiplet H(2;0); H(0;2). The e�ect of this modi�cation is

two-fold: �rst, the constraints de�ning q(1;1) are obscured by this extra multiplet and,

second, the density 
 di�ers from ~
 in (4.14) owing to the presence of the extra multiplet

in the constraints for the analytic vielbeins. It would be interesting to see what is the

precise impact of this modi�cation on the component sigma-model action as compared

to the action (4.14) which includes the N = (4; 4); SU(2) BW-I multiplet without any

additional SG �elds.

Since there exists the unique N = (4; 4) WZW q(1;1) action (2.17) invariant under the

full rigid N = (4; 4); SO(4) � U(1) superconformal symmetry, it is natural to seek for

its direct coupling to the \master" N = (4; 4) BW multiplet without adding any extra

compensators. If such a coupling can be set up, q(1;1) can be regarded, like N (2;0); N (0;2),

as a compensator extending the master BW multiplet to some SG multiplet with a smaller

number of gauge symmetries and gauge �elds. The corresponding SG group should be

some subgroup of the master N = (4; 4) SG group. Indeed, the shifted super�eld q̂(1;1)

de�ned in (2.18) transforms inhomogeneously under (3.1), (3.7)

� q̂(1;1) = (�L + �R)(q̂
(1;1) + c(1;1))� �(2;0)c(�1;1) � �(0;2)c(1;�1) ; (5.24)

and hence it can be employed as a compensator.

Unfortunately, we do not have yet any general recipe how to construct such a locally

supersymmetric extension of (2.17). The main di�culty stems from the fact that the

analytic super�eld density in (2.17) is not a tensor: it is shifted by full harmonic derivatives

under the rigid superconformal SO(4)� U(1) transformation. The most straightforward

approach is to restore the full action order by order in the SG super�elds, and this is what

we shall undertake.

First, we make the replacement

�(�2;�2) ) �(�2;�2) 


in (2.17) in order to be able to integrate by parts with respect to r(2;0), r(0;2) (recall the

discussion at the end of Sect. 3). We do not �x beforehand any gauges including (3.14).

Thus we represent the sought Sloc
wzw as a series in powers of the SG super�elds

Sloc
wzw = S(0) + S(1) + S(2) + ::: = �

1

4
2

Z
�(�2;�2) 
 [L

(2;2)
(0) + L

(2;2)
(1) + L

(2;2)
(2) + :::] ; (5.25)

where L
(2;2)
(0) is just the density in (2.17). Then, using the formula

� S(0) =
1

4
2

Z
�(�2;�2) 


 
q̂(1;1)� q̂(1;1)

1

(1 +X)2

!
;

it is rather straightforward to restore the �rst correction term in (5.25):

S(1) =
1

4
2

Z
�(�2;�2) 


 
q̂(1;1)

1

(1 +X)2

h
c(�1;1)H

(2;0)
L + c(1;�1)H

(0;2)
R

� (c(1;�1)H
(0;2)
L + c(�1;1)H

(2;0)
R )(2 +X)

i�
: (5.26)
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A problem is met at the next step, when trying to calculate the second term. Including

from the beginning all possible appropriate structures, we �nally found that almost all

structures appearing in the �rst-order variation of S(0) + S(1) can be cancelled by the

zeroth-order variation of S(2). Only one term cannot be cancelled. It looks just the same

as the term (5.17) appearing in the variation of the non-invariant N (2;0); N (0;2) action

(5.16)

� (S(0) + S(1) + S(2)) = �
1

4
2

Z
�(�2;�2) 


h
2H

(0;2)
L r

(2;0)�L + 2H
(2;0)
R r

(0;2)�R

i
: (5.27)

The origin of this anomaly can be inferred from the results of ref. [35] where the

problem of gauging isometries of bosonic sigma models with torsion was studied. As was

shown there, in the case of group manifold WZW model associated with a group G it is

impossible to construct an action in which the full G � G symmetry of the rigid WZW

action would be gauged (without adding extra copies of WZW �elds). One can only

gauge either the left, or right, or diagonal subgroups of G � G. The bosonic sector of

the above rigid q(1;1) action is just the SU(2)L � SU(2)R=SU(2)diag WZW action, while

the \master" N = (4; 4) SG group implies gauging both SU(2)L and SU(2)R symmetries.

Thus, in view of the argument just adduced, a direct coupling of the WZW q(1;1) action

(2.17) to the \master" BW multiplet does not exist and the \classical anomaly" (5.27) is

just a manifestation of this fact. The unremovable piece in the gauge variation (5.17) is of

the same origin, because the N (2;0); N (0;2) action (2.23) also contains the SU(2)L�SU(2)R
WZWmodel in its bosonic sector. The same reasoning implies the non-existence of similar

straightforwardN = (4; 4) SG-II group-invariant extensions of (2.17), (2.23), since this SG

group still includes gauge SU(2)L; SU(2)R symmetries which act on the physical bosons

of q(1;1) (SU(2) WZW �elds). Note that no problems of this sort arise while promoting

(2.17) to an invariant of the N = (4; 4) SG-I gauge group, or to that of the \master" SG

group with making use of the N (2;0); N (0;2) compensators at the intermediate step: such

locally supersymmetric q(1;1) actions are particular cases of (4.14), (5.22).

Thus the construction of direct couplings of N = (4; 4) WZW action (2.17) or the

N (2;0); N (0;2) action (2.23) to the \master" conformal N = (4; 4) SG or N = (4; 4) SG-II

is a non-trivial problem. It seems that the unique possibility to arrange such couplings

is to consider a few copies of the super�elds q(1;1), N (2;0); N (0;2). Then one can construct

invariant actions as sums of the individual actions of the type (5.16), (5.25), taking some of

them with the wrong sign so as to cancel out the non-vanishing variations like (5.17), (5.27)

coming from di�erent actions. This is possible just because these anomalous variations

involve only SG gauge �elds.

The simplest possibility is to consider a pair of nonlinear multiplets, N
(2;0)
1 ; N

(0;2)
1 and

N
(2;0)
2 ; N

(0;2)
2 , each set being subjected to the constraints (5.2). Then the di�erence of two

actions (5.16)

Sloc
N1N2

= Sloc
N1
� Sloc

N2
= �

Z
�(�2;�2) 


h
N

(2;0)
1 N

(0;2)
1 �N

(2;0)
2 N

(0;2)
2

+ (N
(2;0)
1 �N

(2;0)
2 )(H

(0;2)
L �H

(0;2)
R )� (N

(0;2)
1 �N

(0;2)
2 )(H

(2;0)
L �H

(2;0)
R )

i
(5.28)

can be easily checked to be invariant under the \master" SG group. Each of these multi-

plets, or their sum N
(2;0)
1 +N

(2;0)
2 ; N

(0;2)
1 +N

(0;2)
2 can be chosen as compensators reducing
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the \master" SG group to SG-I group via gauge-�xings like (5.3) (and, further, (5.7)).

Note that the gauge-invariant combinations ~N (2;0) = N
(2;0)
1 �N

(2;0)
2 ; ~N (0;2) = N

(0;2)
1 �N

(0;2)
2

obey the constraintsh
r

(2;0) + (N
(2;0)
1 +N

(2;0)
2 )

i
~N (2;0) = 0 ;

h
r

(0;2) + (N
(0;2)
1 +N

(0;2)
2 )

i
~N (0;2) = 0 ;

r
(2;0) ~N (0;2)

�r
(0;2) ~N (2;0) = 0 ; (5.29)

which are recognized as the � = 0 version of (5.18). So one can from the beginning add

the invariant piece

� ~N (2;0) ~N (0;2) (5.30)

to the Lagrangian density in (5.28). Finally, e.g., in the gauges

N
(0;2)
1 +N

(0;2)
2 = N

(2;0)
1 +N

(2;0)
2 = 0

and (5.7), we are left with the action of the (32 + 32) matter multiplet ~N (2;0); ~N (0;2) in

the background of the BW-I multiplet augmented with the U(1) multiplet (5.14). The

invariant couplings of an arbitrary number of q(1;1) multiplets can be arranged with the

help of the compensator N
(2;0)
1 + N

(2;0)
2 ; N

(0;2)
1 + N

(0;2)
2 as explained above, and added to

the N1; N2 action.

Another possibility to set up a direct coupling to the \master" N = (4; 4) conformal

SG is to take the di�erence of the \almost-covariant" N -super�elds action (5.16) and the

q(1;1) action (5.25)

Sloc
qN = Sloc

wzw �
1

4
2
Sloc
N : (5.31)

In analogy with the N (2;0); N (0;2) action (5.16), it is natural to assume that the only un-

removable term in the \master" SG group variation of (5.25) is given by (5.27), while

all higher-order variations can be cancelled by inserting into the Lagrangian density the

appropriate higher-order structures composed out of the analytic vielbeins and the super-

�eld q(1;1). This still has to be proved (it would be desirable to �nd out the geometric

principle behind such a recursion procedure). 6 If such an \almost-covariant" q(1;1) action

exists, the action (5.31) is invariant like (5.28), and in the gauges (5.3), (5.7) we arrive at

the SG-I group-invariant action of the (8+8) multiplet q(1;1) in the background consisting

of the BW-I gauge multiplet and the extra multiplet (5.14). Adding other q(1;1) super�elds

in a way covariant under \master" SG group can be accomplished, like in the previous

case, with making use of the compensators N (2;0); N (0;2).

An essentially new situation comes out if one directly couples q(1;1) super�elds to

BW multiplet, without using N -super�elds. For this purpose one should take at least

two di�erent WZW q(1;1) super�elds with the same transformation law (5.24) (although

with di�erent sets of constants cia, generally speaking). Under the assumptions that

the \almost-covariant" q(1;1) action Sloc
wzw exists to all orders in SG �elds and that its

non-invariance is given only by the variation (5.27), the fully invariant action could be

constructed as

Sloc
q1q2

= Sloc
wzw1

� Sloc
wzw2

: (5.32)

6The N = (4; 4), 2D WZW - SG couplings were earlier constructed using N = 1 super�elds and the

conventional N = 4 super�elds in [10, 8, 9].
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More generally, one can take a sum of n such actions and choose the coe�cients in such

a way that the anomaly variations (5.27) coming from di�erent items in the sum are

cancelled out. 7 Clearly, at least one of such actions should enter with a \wrong" sign,

presumably indicating that the relevant q(1;1) is a sort of \Liouville coordinate" [10].

In view of the inhomogeneous nature of the transformation law (5.24), one of the q(1;1)

super�elds will play the role of a compensator.

As it was already mentioned, for the time being we are not aware of the full nonlinear

structure of the \almost-covariant" q(1;1) actions and even of the complete proof of their

existence. Nevertheless, taking for granted that such actions can be constructed, let us

inspect which kind of compensation of the \master" SG group can be achieved with the

help of q(1;1). It will be enough to perform this analysis at the linearized level.

We shall start from the linearized WZ gauge content of BW gauge multiplet (3.23)

and the corresponding form (3.24) of the residual symmetry. At the linearized level, the

q(1;1) constraints (3.13) read (for the shifted super�eld q̂(1;1) = q(1;1) � c(1;1))

D(2;0)q̂(1;1) = c(1;�1)D(0;2)H
(2;0)
R � c(1;1)H

(2;0)
R ;

D(0;2)q̂(1;1) = c(�1;1)D(2;0)H
(0;2)
L � c(1;1)H

(0;2)
L : (5.33)

They imply

q̂(1;1) = q̂ia(z)u
(1;0)
i v(0;1)a + �(1;0) i  a

+ i(z) v
(0;1)
a + �(0;1) a �i� a(z) u

(1;0)
i

+ i�(1;0) i �(0;1) a Fia(z) + : : : ; (5.34)

where dots stand for the terms involving the BW multiplet gauge �elds and derivatives

of the explicitly written physical dimension �elds of q(1;1). The purely shift part of the

transformation (5.24) (we need only the latter for our linearized analysis)

� q̂(1;1) = c(1;1) (�L + �R)� c(�1;1)D(2;0)�L � c(1;�1)D(0;2)�R (5.35)

amounts to the following transformations of the �elds:

� q̂ia = cia (�L + �R)� c aj �
(ji)
L � cib �

(ba)
R ;

�  a
+ i = �c

a
i �

i
+ i ; � �i� a = �c

i
a �

a
�a ;

� Fia = 0 : (5.36)

One observes that all the physical dimension �elds can be gauged away by appropriate

gauge parameters

q̂ia = 0 ) (a) �L = ��R � � ; (b) �
(ij)
L =

1

c2
�
(ab)
R ciac

j
b � �(ij) ; (5.37)

 a
i = �ia = 0 ) �i+ i = �a� a = 0 ; (5.38)

where c2 = ciacia 6= 0. As it follows from (5.37), the product of two local U(1) symmetries

is compensated down to the diagonal U(1), and the same occurs for the product SU(2)L�

7A similar trick was used in [36] for construction of a gauge-invariant WZW action with the full G�G

symmetry group gauged.
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SU(2)R (this results in identifying the SU(2) indices of the left and right harmonics,

though still does not reduce two harmonic sets to each other). Eq. (5.38) implies the full

compensation of the local non-canonical supersymmetries.

As the result, in the gauge (5.37), (5.38) the irreducible o�-shell gauge representation

comprises the (0+0) BW-I multiplet (4.10) as a submultiplet of the \master" BW multi-

plet we started with, as well as a new o�-shell (8+8) gauge multiplet. The latter inherits

a part of its �elds from the original BW multiplet, and a part from the compensating

q̂(1;1) multiplet

bosons : (h++; h��) (1; 1) ; (h
(ik)
++ ; h

(ik)
�� ) (1; 3) ; Fia (1; 4) ;

fermions : t
i a
++� (3=2; 4) ; t

kj

��+ (3=2; 4) : (5.39)

Comparing it with the (8+8) \Sp(1) vector multiplet" of ref. [3], we �nd almost full

identity between the two representations, except for a minor distinction related to the

fact that one bosonic degree of freedom in (5.39) is represented by the dimension 1 U(1)

gauge �eld h��, while in [3] it is carried over by the dimension 2 auxiliary �eld. It

is natural to identify the latter with the curl @++h�� � @��h++, in view of the well-

known equivalence of the auxiliary scalar �eld and the curl of gauge vector �eld in two

dimensions. Note that the Sp(1) vector multiplet was introduced in [3] \by hand", in

addition to the purely gauge SG multiplet which we call here BW-I, in order to be able

to construct locally N = (4; 4) supersymmetric sigma models on quaternionic manifolds.

In our scheme it naturally appears, along with the BW-I gauge multiplet, as a result

of compensating the \master" N = (4; 4) SG group by the TM-II multiplet q(1;1). The

gauge Sp(1) symmetry of [3] is recognized as the diagonal in the product of SU(2)L and

SU(2)R symmetries realized as isometries of the WZW bosonic �elds in q(1;1). It would

be of interest to study this correspondence at the full nonlinear level and, in particular,

to inquire how to construct superconformally-invariant couplings of some other matter

q(1;1) super�elds to this �eld representation (di�erent from a simple sum of the \almost-

covariant" actions). Because of the presence of the SU(2)diag gauge �elds in (5.39) which

couple to the physical bosonic �elds of q(1;1), such couplings should be very restrictive.

Let us summarize the above ways of descending from the \master" conformal BW

multiplet to the BW-I multiplet.

A. The (32 + 32) �eld representation. This option corresponds to the use of the pure

gauge nonlinear multiplet N (2;0), N (0;2) as the conformal compensator. One imposes

the covariant constraints (5.2) which imply some speci�c form for the analytic vielbeins

H(4;0), H(0;4); H(2;2); ~H(2;2). After properly �xing the gauges, one ends up with the BW-I

multiplet and an additional (32+32) o�-shell U(1) gauge multiplet (5.14) represented by

the analytic super�eld strength H(2;2) (5.12). The general action of the TM-II super�elds

q(1;1) in the background of this representation is given by eq. (5.22). No action for the

compensator N (2;0), N (0;2) itself is assumed. A version with the additional constraints

(5.15) yields the pure BW-I multiplet, with no extra multiplets.

B. The (64+64) �eld representation. This case corresponds to assuming an invariant

action for the N (2;0), N (0;2) compensator. It is constructed using two copies of such

super�elds (eqs. (5.28), (5.30)). Only one set from this pair is the genuine compensator.
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As in the previous case, after gauging this compensator away, one ends up with the BW-I

multiplet and the (32+32) multiplet (5.14). One more (32+32) o�-shell multiplet is ~N (2;0),
~N (0;2) (5.29),which is the remnant of the two original copies of N -multiplets.

C. The (40+40) �eld representation. In this scheme, in order to construct the invariant

action for the compensator N (2;0), N (0;2), one uses the hypothetical \almost-covariant"

action for one TM-II multiplet q(1;1) which is a gauged extension of the N = (4; 4), SU(2)

WZW action (2.17). The invariant action of two multiplets is given by (5.31). After

gauging away the N -compensator, one is left with the (0+0) BW-I multiplet, the (32+32)

U(1) multiplet (5.14) and the (8+8) TM-II multiplet q(1;1).

D. The (16+16) �eld representation. This option is di�erent from the preceding ones,

as it uses q(1;1) as a compensator for the SG-I group. The invariant action (5.32) is

given by the di�erence of two \almost-covariant" q(1;1) actions. In the gauge with all

possible symmetries of the \master" SG group being compensated for, the surviving �eld

representation consists of the BW-I multiplet, the (8+8) SU(2) gauge multiplet (5.39)

and the extra (8+8) TM-II multiplet q(1;1) which was added to set up the action (5.32).

There still remain the questions as to, how to descend to another, smaller conformal

N = (4; 4), SU(2) SG group, i.e. the SG-II group, and how to reproduce the known

[5]-[9] and, perhaps, the new N = (4; 4) Poincar�e SG multiplets, by continuing the above

process of compensation.

The answer to the �rst question is as follows. As was already mentioned, there should

be a \democracy" between di�erent SU(2) factors in the automorphism group SO(4)L�

SO(4)R of the N = (4; 4), 2D Poincar�e superalgebra. This implies the existence of

\mirror" counterparts of the superconformal matter multiplets discussed so far, such that

the roles of the SU(2) groups acting on the doublet indices i; a and i; a are switched. An

example of such a correspondence is the TM-I multiplet [26, 27, 21], the o�-shell �eld

content of which is given by qia;  
i

k; �
a

b ; Fia that should be compared with the �eld content

of TM-II (5.34). A similar mirror counterpart should exist for the nonlinear multiplet

N (2;0); N (0;2). It is natural to call the latter NM-II, with respect to the N = (4; 4); SU(2)

SG-II group acting on the harmonic variables. Then, with respect to the same SG group,

the mirror counterpart can be called NM-I. It seems plausible to conjecture that these

mirror TM-I and NM-I multiplets (being, in fact, TM-II and NM-II with respect to the

N = (4; 4); SU(2) SG-I group), can be employed to compensate the \master" conformal

SG group just down to the SG-II group, quite analogously to how TM-II and NM-II can

be used for compensating the \master" group down to the SG-I group. Some of these

mirror matter multiplets, in the rigid case, admit a description in the SU(2) � SU(2)

harmonic superspace [32], so we can hope to �nd their locally supersymmetric versions,

cousins of the actions considered above.

To clarify the second question, let us come back to the action (5.32) and assume that

the \master" conformal SG group is reduced in it \by hand" to the SG-II one (taking for

granted that a nonlinear version of the truncation conditions (4.17) exists). One of the

q(1;1) super�elds can still be used as a compensator. The linearized, purely shift part of

the transformation laws of its components, under the action of the residual group (4.20),
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can be obtained by the substitution of (4.16) into (5.36)

� q̂ia = �
1

2
cia (@++�

++ + @���
��)� c aj �

(ji)
L � cib �

(ba)
R ;

�  a
+ i = 2i c ai @++�

+ i
i ; � �i� a = 2i cib @���

� b
a ;

� Fia = 0 : (5.40)

One sees that the two chiral SU(2) s are reduced to the diagonal SU(2), like in the case

(5.36), (5.37), (5.38), by gauging away the triplet part of q̂ia. However, the singlet part

cannot be gauged away; it becomes just the third component of zweibein. Analogously,

 a
+ i, �

i
�a, together with h

+ ii
�� ; h

� aa
�� from the BW-II multiplet (4.19), are combined into

the 16-component N = (4; 4) Poincar�e SG gravitino (the indices i and a now refer to the

same diagonal SU(2)). Eventually, bearing in mind the auxiliary �eld Fia, we end up just

with the (8+8) o�-shell content of the minimalN = (4; 4), 2D Poincar�e SG representation

[5, 6]. However, recalling that the invariant action (5.32) includes one more q(1;1), the total

o�-shell representation for this case is (16+16). This o�-shell content coincides with that

of the \TM N = 4 superstring" considered in [7].

Analogously, one can use the nonlinear multiplet NM-II as a compensator from N =

(4; 4), SU(2) SG-II down to some Poincar�e SG. The resulting version involves (32+32)

o�-shell components; its interesting feature is that both conformal SU(2) symmetries turn

out to be fully compensated for, and h
(ik)
++ ; h

(ab)
�� in (4.19) (and in its left counterpart)

cease to be gauge �elds. The full o�-shell content, taking into account an additional q(1;1)

multiplet needed to construct the invariant action as in (5.31), is (40+40). This coincides

with the o�-shell content of the \relaxed hypermultiplet N = 4 superstring" of ref. [7].

It is interesting to inquire whether the latter representation is indeed identical to ours.

At last, one can start from the action (5.28) and recover a version of Poincar�e SG

with (64+64) o�-shell �elds. Once again, in this version both SU(2) symmetries are fully

compensated for.

In accord with the previous discussion, various mirror versions of the Poincar�e SG can

be obtained, starting from the N = (4; 4), SU(2) SG-I and making use of the multiplets

TM-I and NM-I as compensators. The various patterns of descent from the \master" N =

(4; 4) SG to the SG-I described above, as well as their hypothetical mirror cousins, seem

also to admit further compensations down to the N = (4; 4) Poincar�e SG representations,

along similar lines. New possibilities can arise while simultaneously using both types of

matter multiplets, i.e. the types I and II, as compensators.

Finally, let us note that there exists a dual version of the rigidly supersymmetric q(1;1)

actions, including the N = (4; 4) WZW one (2.17), in terms of unconstrained SU(2) �

SU(2) harmonic analytic super�elds with in�nite numbers of auxiliary �elds [14]. This

should obviously generalize to the case of local SUSY, which in turn suggests the existence

of new versions of Poincar�e N = (4; 4), 2D SG with in�nite sets of auxiliary �elds.

A thorough analysis of all these possibilities can be a good program for a future study.
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6 Conclusions

In this paper we constructed a new sort of N = (4; 4), 2D conformal SG gauge mul-

tiplet, i.e. the Beltrami-Weyl multiplet, starting from the group of di�eomorphisms in

the SU(2)� SU(2) analytic harmonic superspace. This multiplet can be regarded as the

result of gauging the most extensive rigid N = (4; 4) superconformal 2D group, i.e. the

product of two light-cone copies of the in�nite-dimensional \large" SO(4)�U(1) , N = 4

superconformal group. The previously known N = (4; 4) conformal SG groups and the

corresponding Weyl multiplets were argued to follow from the new \master" SG group

and BW multiplet upon their various truncations and compensations, with making use

of the appropriate superconformal matter multiplets. Also, various versions of N = (4; 4)

Poincar�e SG can be recovered.

There still remain a few important conceptual and technical points to be fully elabo-

rated on. This concerns, before all, constructing the full nonlinear version of the \almost-

covariant" q(1;1) action (5.25) and the nonlinear completion of the constraints (4.17),

(4.15), as well as revealing the component �elds structure of the locally supersymmetric

super�eld actions presented. An important problem is to incorporate into the present

scheme mirror counterparts of the superconformal multiplets employed in this paper and

to study the relevant compensation patterns. Di�erent N = (4; 4) SG-matter couplings

correspond to various versions of N = (4; 4) superstrings [7]. It would be interesting to

inquire the quantum properties of the systems described here, e.g., along the lines of refs.

[22], [10]. Note that the rigid N = (4; 4) WZW action (2.17) admits an extension to the

N = (4; 4) WZW-Liouville one [27, 21, 30, 14], with breaking theN = (4; 4); SO(4)�U(1)

superconformal invariance down to the type-II N = (4; 4); SU(2) one. Such a Liouville

extension plays an important role in the quantum case [10]. It is of interest to inquire

whether a locally supersymmetric extension of the Liouville term can be constructed in

SU(2)� SU(2) harmonic superspace.

Acknowledgments

S.B. wishes to thank JINR-Dubna for hospitality at the early stages of this research.

E.I. thanks Jim Gates for enlightening correspondence and INFN-LNF for the hospitality

multiply extended to him during the course of this long-term work. This research was

supported in part by the Fondo A�ari Internazionali Convenzione Particellare INFN-

JINR, Project PAST-RI 99/01, RFBR Grant 99-02-18417, RFBR-CNRS Grant 98-02-

22034, NATO Grant PST.CLG 974874 and INTAS Grants INTAS-96-0538, INTAS-96-

0308.

Appendix: A simple example of the component action

Here, just to give a feeling how the locally supersymmetric actions presented in this paper

look in terms of component �elds, we quote the free part of the general conformal SG-I
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group-invariant action (4.14)

Sfree
q = �

Z
�(�2;�2) 
̂ q(1;1) q(1;1) : (A.1)

It will be convenient to choose a gauge for the analytic vielbeins which is slightly

di�erent from (4.9)

H(2;0)++ = H(3;0) i = 0 ; H(2;0)�� = i(�(1;0))2 ĥ��++(z; v; �
(0;1)) ;

H(2;1) a = i(�(1;0))2 ĥ
(0;1) a
++ (z; v; �(0;1)) : (A.2)

This gauge is also globally well-de�ned. To simplify the situation as soon as possible, we

recall that all components of the BW-I multiplet are locally pure gauge, and we choose

the additional gauge, which is admissible only locally,

h��++ = h
(ab)
++ = h

�aa
++ = 0 (A.3)

(we could alternatively choose the left counterparts of (A.3) to vanish). It is easy to show

that the full solution of the constraints (4.8) in this gauge is given by

r
(2;0) = @(2;0) + i(�(1;0))2 @++ ; r(0;2) = @(0;2) + i(�(0;1))2r�� ;

r�� = @�� + f h++�� � 2i �
(1;0)
i h

+ ki
�� u

(�1;0)
k g @++

+ f h
+ ki
�� u

(1;0)
k + �(1;0) k[h

(i
�� k) +

1

2
�
i

k @++h
++
��]

� (�(1;0))2@++h
+ ki
�� v

(�1;0)
k g

@

@�(1;0) i
: (A.4)

It is easy to explicitly check the integrability condition

[r(2;0);r(0;2) ] = 0 :

The residual gauge symmetry of (A.4) is given by (4.11), with all parameters being func-

tions of only z�� (this is just the right N = 4; SU(2) SCA-I), and by the left counterpart

of (4.11), with the parameters still being general functions of both coordinates z��. It is

easy to check that under this group

��(�2;�2) = 0 ;

so one can expect 
̂ � const in this gauge. This is indeed so, because it is easy to check

that

�(2;0) = �(0;2) = 0 (A.5)

for the vielbeins in (A.4). Then, the action (A.1) is

Sfree
q = �

Z
�(�2;�2) q(1;1) q(1;1) ; (A.6)

with

r
(2;0)q(1;1) = r(0;2)q(1;1) = 0 : (A.7)
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Being aware of the explicit expressions for r(2;0);r(0;2), it is easy to directly solve these

constraints in terms of the physical �elds of q(1;1) de�ned in (5.34) and the SG �elds. This

is rather straightforward, so we quote only the �nal form of the action. It is obtained by

substituting this solution into (A.6) and integrating there over the �'s and the harmonics:

Sfree
q =

Z
d2z

�
@++qia (r̂��q

ia + h
+ ii
��  

a
+ i) +

i

2
�
ia
�@++�� ia +

1

4
F iaFia

+
i

2
 
ai
+

�
r̂�� + ai + (h

(k
�� i) +

1

2
�
k

i @++h
++
��) +ak � 2ih+ k

�� i@++qka

��
; (A.8)

where

r̂�� = @�� + h++��@++ :

Note that (A.8) is just the action of the N = 4 chiral bosons constructed in ref. [37] (up

to switching the + and � light-cone indices), with the residual local N = 4 SUSY as the

relevant Siegel symmetry.
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