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Abstract

We reconsider the problem of BRST quantization of a mechanics with infinitely reducible
first class constraints. Following an earlier recipe [Phys. Lett. 381 105 (1996)], the original
phase space is extended by purely auxiliary variables, the constraint set in the enlarged space
being first stage of reducibility. The BRST charge involving only a finite number of ghost
variables is explicitly constructed.
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The problem of infinitely reducible first class constraints originated from the super-

string theory where a fully satisfactory covariant quantization seems to be an unsolved

problem yet. Taking a simpler mechanics analogue in four dimensions these look like

p
2
= 0; (p��

n
pn) _� = 0; (�

n
p��pn)� = 0; (1)

where (pn; p��; p�� _�) are momenta conjugate to the variables parametrizing a conventional

R
4j4 superspace (xn; ��; �� _�) and �

n
� _� are the Pauli matrices. Owing to the null vector pn

entering the problem, only half of the fermionic constraints is linearly independent. In

particular, the identity

(p��
n
pn) _�Z1

_�� + Z1

�
p
2
� 0; (2)

where Z1

_�� = (~�npn)
_��
; Z1

� = p�
�, holds. On the constraint surface not all of the

functions Z1

_�� prove to be independent

Z1

_��
Z2� _� � 0; Z2� _� = (�npn)� _�: (3)

Apparently, this process can be continued, the system at hand being infinite stage of re-

ducibility [1]. It is worth mentioning that, although the correct counting of degrees of

freedom can be achieved in the course of BRST quantization by making use of Euler’s

regularization [2], the expression for the BRST charge involves an infinite ghost tower [3]

and, hence, looks formal.

A recipe how to supplement infinitely reducible first class constraints up to a con-

straint system of finite stage of reducibility has been proposed recently [4]. It suffices to

extend the original phase space by purely auxiliary variables (�n
; p�m),(��

; p��), (�� _�;

p��
_�), with � being a real boson and (�; ��) a pair of complex conjugate fermions. These

are required to satisfy reducible constraints like those in Eq. (1) (one can check that

the number and the class of the constraints are just enough to suppress dynamics in the

sector [4])

p�� = 0; (��n�n) _� = 0; (4)

p�� _� = 0; (�
n
���n)� = 0; (5)

p�n = 0; �2 = 0; 1 � �p = 0: (6)

Beautifully enough, in the extended phase space the reducibility of the original constraints

(1) can be compensated by that coming from the sector of additional variables to put the

fermionic constraints in the irreducible form

�� _� � (p��
n
pn + p��

n�n) _� = 0; (7)

�� � (pn�
n
p�� + �n�

n
p��)� = 0; (8)
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�	 _� � (��n�n + p��
n
pn) _� = 0; (9)

	� � (�n�
n��+ pn�

n
p��)� = 0; (10)

while in the bosonic sector one has

p
2 = 0; (11)

~p�m � p�m � (p��)pm � (p�p)�m = 0; (12)

p�p = 0;�2 = 0; p�� = 0; 1 � �p = 0: (13)

The equivalence to the initial constraint set seems to be more transparent if one makes use

of the identity

p�
� = � 1

2�p
p
2
p�

�
�

1

2�p
�2

�
�
�

1

2�p
�� _�(~�

m
pm)

_�
�

1

2�p
�	 _�(~�

m�m)
_��
;

(14)

and its complex conjugate. In the new basis the constraints (7),(8),(11), (12) are first

class, whereas Eqs. (9),(10) and (13) involve second class ones. In order to explicitly

decouple ~pn
�
= 0 from the second class fermionic constraints it suffices to redefine them

like ~pn
�
= 0! ~pn

�
�

1

2
��

n~�mp�pm �
1

2
p��~�

m
�
n ��pm

= 0. As the Dirac bracket associated with the second class constraints is introduced, this

seems to be inessential here.

Residual reducibility proves to fall in the bosonic sector. Due to the identities (in

what follows the symbol� denotes an equality up to a linear combination of second class

constraints)

~p�� � 0; ~p�p � 0; (15)

there are only two linearly independent components entering Eq. (12), the system in the

extended phase space being first stage of reducibility.

It is the purpose of the present Brief Report to explicitly construct the BRST charge

associated with the constraint set (7)–(13), thus giving an efficient way to cure the infinite

ghost tower problem intrinsic to the original system (1).

According to the general recipe [1] the nilpotency equation to determine the BRST

charge should be solved under the Dirac bra-

cket associated to the second class constraints. Evaluated in specific coordinate sectors

this reads (only the brackets to be used below are explicitly given here)

f�
�
; p��g =

1

2
�
�
� �

2

�
�p(�nm)�

�
�n

p
m
;

f�
�
; �

�
g = 2

�
p
2(�nm)

��
�n

p
m
;

fp��; p��g =
2

�
�
2
(�nm)���

n
p
m
; (16)
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f�n
; p�mg = �

n
m + 2

�
p
2�n�m +

2

�
�2

p
n
pm �

2

�
�p(pn�m + �n

pm);

fp�n; p�mg =
2

�
p
2(�np�m � �mp�n) +

2

�
pp�(pn�m � pm�n) +

2

�
p�(p�npm � p�mpn)�

i

�
(�2

� ��2)�nmkl�
k
p
l
;

f�
n
;�

m
g = 0; (17)

f�
�
; p��g = �

�
�; f�

�
; �

�
g = 0;

fp��; p��g = 0; fpn; pmg = 0; (18)

plus complex conjugate expressions for the pairs (��; p��),(��; p��).

In the cross sectors the only non vanishing brackets are (in what follows we will not

need the explicit form of the brackets involving x
n–variable, these are omitted here)

fp�n; �
�
g = 1

�
p
2(�n�

� + (��n~�
k�k)

�
)

+ 1

�
pn(��

k�k~�
m
pm)

�
�

1

�
�p(��n~�

k
pk)

�
; (19)

fp�n; p��g =
1

�
�2(pn�� + (��n~�

k
pk)�)

+ 1

�
�n(��

k
pk~�

m�m)� �

1

�
�p(��n~�

k�k)�; (20)

plus complex conjugates.

Given the Dirac bracket, the algebra of the first class constraints is easy to evaluate

f~p�n; ~p�mg � Unm
k
~p�k + Unmp

2
;

f~p�n;��g � Un�
��� + Un�p

2
;

f~p�n; �� _�g � Un _�
_� �� _� + Un _�p

2
; (21)

with all other brackets vanishing. The structure functions entering Eq. (21) are given by

Unm
k = 2

�
((�np

2
� pn)�m

k
�

(�mp
2
� pm)�n

k);

Unm = i
�
(p��� p�� ��)�nmkl�

k
p
l
;

Un�
�
= 1

2
(�n~�

k
pk)�

�
+ 1

�
�np

2
��

�
+
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1

�
(�np

2
� pn)(�

k
�k~�

l
pl)�

�
;

Un� =
1

2
(�np��)� �

1

�
�n(p

k
�kp��)� +

1

�
(�np

2
� pn)(�

k
�kp��)�; (22)

and Un _�

_� = (Un�
�)

�

, Un _� = (Un�)
�. Worth noting also is the orthogonality of the struc-

ture functions obtained to the vectors pn;�n which holds on the second class constraints

surface.

Having evaluated the structure functions, we are now in a position to construct the

BRST charge. Associated with the first class constraints (7),(8),(11),(12) are the primary

ghosts (minimal sector) (C _�
; �P _�), (C�

; �P�),

(C; �P),(Cn
; �Pn). These have the standard properties

�(CA) = �( �PA) = �A + 1;

gh(CA) = �gh( �PA) = 1: (23)

To compensate the overcounting in the sector (Cn
; �Pn) (only two components enter-

ing Eq. (12) are linearly independent) one further introduces the secondary ghosts [1]

(C1
; �P1), (C2

; �P2), these obeying

�(C1;2) = �( �P1;2) = 0;

gh(C1;2) = �gh( �P1;2) = 2: (24)

The nilpotency equation on the BRST charge

f
min;
ming � 0; (25)

should then be solved under the boundary condition


min = ��C
�
+ �� _�C

_�
+ ~p�nC

n
+ p

2
C

+ �Pn�
n
C

1 + �Pnp
n
C

2 + : : : ; (26)

which, through (25), automatically generates both the algebra (21) and the identities (15).

Calculating the contribution of the boundary terms into the equation (25)

f
min;
ming � 2 �Pmf�
m
; ~p�ngC

1
C

n
�

2(Un�
��� + Un�p

2)C�
C

n
�

2(Un _�

_� �� _� + Un _�p
2
)C

_�
C

n
�

(Unm
k
~p�k + Unmp

2)Cm
C

n + : : : ;

(27)
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one can partially clarify the structure of the terms lacking in Eq. (26). In particular,

extending the ansatz (26) by the three new contributions

1

2

�Pk
~Uk
nmC

m
C

n + �P�Un�
�
C

�
C

n +

�P _�Un _�
_�
C

_�
C

n
; (28)

with

~U
k
nm = Unm

k
�

2

�
p
k
(�npm � �mpn);

~U
k
nm�

m
�

2

�
f�

k
; p�ng;

~U
k
nmp

m
� 0;

(29)

one can get rid of the first term (which is a manifestation of reducibility of the constrains)

and those involving ~p�;�; ��

f
min;
ming � �Unmp
2
C

m
C

n
�

2Un�p
2
C

�
C

n
� 2Un _�p

2
C

_�
C

n
�

2 �P�Un

�
Um�



C

m
C

n
C

�
�

2 �P _�Un _

_�
Um _�

_

C

m
C

n
C

_� + : : : : (30)

In order to verify Eq. (30) a number of Jacobi identities associated to the constraint alge-

bra (21) should be used. These are omitted here.

It is instructive then to give the explicit form of the terms quadratic in the struc-

ture functions which enter Eq. (30) (Um _�

_�
Un _�

_

� Un _�

_�
Um _�

_
 is obtained by complex

conjugation)

Um�
�
Un�



� Un�

�
Um�



= f(�nm)�

�
+

1

�
(�npm � �mpn)(�l�

l~�kpk)�


+

1

�
�m(�n~�

k
pk)�



�

1

�
�n(�m~�

k
pk)�



�

1

�
(�mp

2
� pm)(�n~�

k�k)�


+

1

�
(�np

2
� pn)(�m~�

k�k)�


+

1

�
(�npm � �mpn)��



gp

2
� �mn�



p
2
:

(31)

Being factors of p2 these suggest a further amendment

�PUn�C
�
C

n + �PUn _�C
_�
C

n +

1

2

�PUnmC
m
C

n
�

1

2

�P �P��nm�
�
C

m
C

n
C

�
�

1

2

�P �P _��nm _�
_�
C

m
C

n
C

_�
: (32)
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After tedious calculations with the extensive use of Jacobi identities one can verify that

the complete BRST charge


min = ��C
� + �� _�C

_� + ~p�nC
n +

p
2
C + �Pn�

n
C

1 + �Pnp
n
C

2 +

1

2

�Pk
~Uk
nmC

m
C

n + �P�Un�
�
C

�
C

n +

�P _�Un _�
_�
C

_�
C

n + �PUn�C
�
C

n +

�PUn _�C
_�
C

n
+ 1

2

�PUnmC
m
C

n
�

1

2

�P �P��nm�
�
C

m
C

n
C

�
�

1

2

�P �P _��nm _�
_�
C

m
C

n
C

_�
; (33)

is nilpotent. Beautifully enough, only a finite number of ghost generations proved to be

needed in the extended phase space.

Finally, it is worth mentioning that a formal consideration of the present paper can

be directly applied to specific models. In particular, the superparticle due to Siegel [5],

after a proper Hamiltonian treatment, leads precisely to Eq. (1) we started with. The

latter theory has been previously considered in the alternative harmonic superspace ap-

proach [6] . This makes use of Lorentz harmonics [6] in order to extract linearly indepen-

dent components from the fermionic constraints (1) in a covariant way. Having obtained

a system of rank two, our result here is in perfect agreement with that of Ref. [6]. The

present formulation, however, has the advantage that all the variables involved obey the

standard spin–statistics relations. Furthermore, the scheme outlined in this article proves

to admit a Lagrangian formulation [4],[7], the latter seems to be problematic in the ap-

proach [6].

Another interesting approach to be mentioned is that by Diaz and Zanelli [8] who

improved an earlier (noncovariant) quantization proposal by Kallosh [9] (see also related

work [10]). The infinite proliferation of ghosts has been truncated there by imposing

appropriate conditions on the ghosts variables, the latter involving specific (covariant)

projectors. In this respect, the possibility to truncate the infinite ghost tower at the second

step following the approach by Diaz and Zanelli seems to be an interesting further point

to confirm our technique. This and other questions related to possible applications to

superparticle, superstring will be considered in a forthcoming publication [7].
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