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Abstract

We study the temperature dependence ofithadr’ meson masses within the framework

of U(3) x U(3)g chiral perturbation theory, up to next-to-leading order in a simultaneous
expansion in momenta, quark masses and number of colours. We find that both masses
decrease at low temperatures, but only very slightly. We analyze higher order corrections
and argue that larg®/. suggests a discontinuous drop/df, at the critical temperature

of deconfinement ., consistent with a first order transition to a phase with approximate
U(1)4 symmetry.
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1 Introduction

The fate of thd/(1) , symmetry of QCD at finite temperature is a fascinating problem [1—
3] which could also have interesting consequences for the ongoing heavy ion collisions
program and, possibly, for cosmology [4-8]. Even a partial restoratiéf bf4 symme-

try in the vicinity of the critical temperature of chiral symmetry breakihg{ 200 MeV)

could dramatically change the mass and mixing pattern of the lightest neutral me%ons (

n andn’), with signals including enhanced strangeness production or the more specula-
tive possibility of forming parity violating disorientegl condensates in heavy ion colli-
sions [7,9,10].

Our aim in the present paper is rather modest: we will study the shift of the mass of
then andrn’ mesons at low temperatures, in a regime in which the hadronic gas is mostly
composed of pions. We will work in the framework@f3) , x U(3) chiral perturbation
theory (¢ PT), in a simultaneous expansion in momenta, quark masses, number of colours
N,., and temperatur@.

Our motivation for doing this investigation was threefold. First, the predictions of
xPT in a pion thermal bath, although limited in scopeTfto< few f,, are essentially
model independent (see for instance, the review of Smilga [11] and references therein).
Given the phenomenological success of the lakgesxpansion in vacuum, one might
perhaps hope that the predictions of the present work are as robust. Next, we wanted
to see to which extent the results derived in Ref. [12] could be amended. As us, the
authors have computed the shiftiof, andM,, at low temperatures using the Di Vecchia-
Veneziano-Witten effective lagrangian (DVW) [13—-15], but only to leading ommg, ~
T?. However, it was not clear to us whether the leading order DVW lagrangian was a good
approximation for this problem. Although the parameters of the lagrangian can be fitted
to the observed mass and mixing pattern ofitlagdr’ mesons to within 0% [16,17], the
decay rates predicted fof — nz are off the experimental values by a factor of about
40. This issue, which is obviously relevant in order to determine the shift/pfin a
pion bath, is however easily cured at next-to-leading order in the Isygxpansion [18,

19]. As we will show, next-to-leading order corrections are also quite important at finite
temperature, but not to the point of dramatically changing the conclusion of Ref. [12]: at
low temperatures)/,, stays essentially constant. Finally, we wanted to see what the large
N, expansion could teach us about the fate oflthi¢) 4 symmetry at finite temperature.

At zero temperature, in the confined phase of QCD, I&fgarguments predict thaﬂg, x

1/N.. On the other hand, at very high temperatures, in the quark-gluon plasma phase of
QCD (I' > pnaar ~ 200 MeV), instanton calculus is reliable and predicts an effective
restoration ofU (1) 4 symmetry. Because of screening, instanton effects are suppressed



at very large temperatures exp(—8xn2/g(7T)?). At large N,, the suppression is more
important, asl /g — N./\ with fixed 't Hooft coupling\ = ¢?N., and the exponential
tends to vaniskxp(—N./\) — 0 as N, increases. Because of asymptotic freedom,
growths at lower temperatures and the instanton argument breaksdown. Howexer, for
large enough, a natural assumption is that the exponential suppression holds all the way
down to the critical temperature of deconfinemént- 1.4, [7]. Although we have no
proof of this statement, such a behaviour seems natural given the large release of entropy
o N? atT, and is actually known to occur in models in two dimensions [20]. With this
assumption)M,, can be taken as an order parameterlfot ) , symmetry restoration at
Te. In Ref. [7], some information on the behaviour &f,, near7; could be extracted
assuming that thdeconfiningohase transition could be of second order at lavg¢21].
We will argue here that larg®/, favours a sharp drop af/,, at7;, consistent with first
order transition to the phase with (approximdtg) ) , symmetry.

Our paper is organized as follows. In the next section, we briefly reUiésy;, x
U(3)r xPT, which extends the framework of the larye DVW effective lagrangian be-
yond leading order. For definitiveness, we refer to the recent analysis of HerreoaySikl”
et al. [22]. We then discuss the implications of these corrections at low temperature, in
presence of a pion thermal bath. Most formulas are relegated to the appendix. In the last
section, we speculate on the effect of higher order corrections in the Narggpansion
and draw the conclusions.

2 Sketch ofU(3), x U(3)g chiral perturbation theory

At low energies and temperatures, the dynamics of QCD is governed by an approximate
SU(3) L x SU(3)g chiral symmetry which is spontaneously broken to the diagShaB)

in vacuum. If the mass of the up, down and strange quarks were vanishing, the symmetry
would become exact and there would be eight massless Goldstone bosons. Phenomeno-
logical lagrangians, which treat the mass of the quarks as small perturbations, provide a
powerful framework, known as Chiral Perturbation Theory?("), to study the properties

of the lightr, K, andn mesons [23,24]. The’ meson doesn’a priori fit in this frame.

It is substantially heavier than the other eight light mesons, and, in vacuum, would stay
so even in the chiral limit of zero quark masses, because it receives most of its mass from
the U(1) , anomaly through non-perturbative instanton-like effects [25]. The effect of
the axial anomaly can however be conveniently turned off by going to the limit of large
number of coloursV, [26—28]. At infinite V. and in the chiral limit, the global symmetry
becomed/(3), x U(3)g, spontaneously broken in vacuumif@3), with nine massless
Goldstone bosons. Like chiral symmetry breaking effects by finite quark massés,



suppressed contributions can be systematically introduced as perturbations in an effective
lagrangian, an approach which has been quite fruitful [13,14,19,29]. A systematic anal-
ysis of next-to-leading corrections, includid®p*) operators, has been initiated in the
recent [18,22,30]. We refer to these latter works for more details and follow their conven-
tions for ease of reference. We will work in Euclidean spacetime with mefyic= 6,

and use the imaginary time formalism to compute the thermal corrections.

2.1 Leading order

The leading order effective lagrangian is well-known [13-15]. In the notation of [22] it is
written as

2

Lo = L (wX? + @U10,0) ~ U+ X1D)) ®

whereU is theU(3) matrix
U = V2l 2)

with ® the pseudoscalar meson matrix

SR R K
—_ .0 2
K K Y v
andf = f, = 92.4 MeV at leading order. The mass matrix is
x = 2 Bdiagm,, mg, ms) , (4)

but we shall neglect isospin breaking effects, (= my = m). The constanB is related
to the value of thégq) condensate)/? = 2mB = —2m(qq)/f? at leading order. The
combination

X(z) = (logU(z)) + ibqcp = 1 ?Uo + qep (5)

is invariant undet/(3), x U(3) g transformations{log ') — (log(grUg})) + 2i(c) and
fqcp — bqop — 2(a). Because of this, any arbitrary function &f cana priori enter
in the construction of the effective lagrangian, with thus little predictive power. This is
where the largeV. expansion comes to the rescue by limiting the number of operators that
can contribute at each level of approximation. In the chiral limit/{:, — 0), Eq. (1)
gives

M}, = —3ug (6)

n



which is the celebrated Veneziano-Witten relation for three massless flavours [27,28],
with vgy = —27/f% ~ 1/N., wherer is the topological susceptibility of pure Yang-Mills
theory. The rationale df(3), x U(3)r xPT is to count powers of?, m,, and1/N, on

the same leveD(¢) [22,29]:

O(8) ~ p* ~my ~ 1/N, . @)

According to this counting rule, the leading order lagrangian (1)(§°) becausef? ~
O(N,) L.

At leading order, there are four unknown parameters in the lagrangjangs;, and
the combinationsn B andm B (or x = m,/m — 1). On the other hand, we have at our
disposal seven observableg;, fx, the four masses of the light mesons, and#he’
mixing angled. UsingM,, as input and the formulae given for reference in the appendix,
one obtains

o= 2=k
2mB = M2,
(8)
x ~ 24.1,
V02 ~ —0.22 GeV?,
which predict that ~ —20° and
M, ~ 494.4 MeV . 9)

Remarkably, the latter number is only 10% off the experimental valye= 547.3 MeV.
It is however known that adjusting the parameters cannot improve the prediction because
the ratio)/? /M, has an upper bouAd16]. One has to take into account next-to-leading
order corrections to reach agreement [17].

At leading order, the only coupling betweghand the pions is from the quark mass
term in the lagrangian (1) and is thus chirally suppressed. The amplituge-fomr is

'Note that the field expansion éf brings further powers of/f ~ 1/v/N.. TheO(4) counting is to
be understood to hold at the operator level.
2AssumingM,, = 0 to simplify, Eq. (1) gives

M2 3—y—/9+2y+y2
P VoV VY (10)
Mg 3—y+/9+2y+y?

wherey = 9uvga/2(M32 — M?2). This ratio reaches a maximumat= —3 (note thatyy, < 0) corresponding
to

M,
T <0.518, (11)
n'
to be compared with the measured rati6 /M, ~ 0.571. Taking into accound/, # 0 improves things,
but not enough.



then
M2

A= ﬁ (2\/§ cos(20) — Sin(20)) . (12)
The corresponding decay rates
L(n — nr’7%) = 1.0keV,
(n" — nr'n®) (13)
(= nrtn™) = 1.9keV 2 x T (y — nr'70) ,
are however much smaller than the experimental ones,
Do (n' — nron?) = 42.04+4.2keV
b(n n ) (14)

Peop(n = nrtn™) = 889+ 7.6keV .

We will not speculate on the reasons for this well-known discrepancy (see Refs. [19,31]
for a more recent discussion), but simply note that within the present framework, this
issue can also be resolved at next-to-leading order [18,19]

2.2 Next-to-leading order

In our case, at next-to-leading ordé?(¢), only a few more terms can be added to the
lagrangian (1) [22]:

Lnro = Lro

+ L (= vs XU = XTU) + vio (UT0,U)(U0,U) as)

+ivs0 (U19,U)000cp + veo dubacndubfaen )

— MyO¢— M30;3+ Ls O5 — Lg Os

where theD, ; 5 s areO(p*) operators whose coupling constants @gV..):

O = (0,U8,U'0,U8,U")
O; = (0,U'9,U0,U9,U) , (16)
05 = (0U'0,U(UTx +x'0)) ,
Og = (XTUX'U+UWUTY) .

The couplings,, vs0, anduvgy are not independent and either one of them can be
set to zero by an appropriate change of variablggf — no/f + r6qcp. We shall

3Note that the amplitude (12) is constant and vanishes in thedimit= m, = 0, for anym,. However,
general arguments [19] (and a fit to experimental data) indicate thatfo= m, = 0, the amplitude
should behave likel = constx p$3> .p$3>, wherepgrl’Q) are the momenta of the outgoing pions, and where
the constant is vanishing as the strange quark mass goes to zero. As shown in Ref. [19], this behaviour
can be easily accommodated by introducing higher-order terms, an approach that is systematized by the
6 expansion [18]. The smallness of the leading order contribution is then considered as a mere accident,

related to the smallness of the rafi6? /M7 .



choosevyy = 0. Moreover,vsy andwvgy Will not appear in our calculations and can be
discarded. AO(§), the only coupling related to the breakingléf1) , symmetry is thus
v31 ~ O(1/N,). Note that the corresponding operator is also chirally suppresseg

At next-to-leading order, seven unknown parameters enter in the definition of the
meson mass matrixy, vos, vs1, Lss, together with the quark masses andm; (see
appendix for details). These can be expressed in terms of seven independent observables:
Jrr Ji» M, My, M, M;, and then—n’ mixing angled [30]. At this level, largeN,
xPT is thus not predictive. The strategy adopted in Ref. [30] was to imposexfigt
corrections are not too large so that the laigexpansion makes sense. For mixing angle
in the range0° < 6 < 24°, the fit gives [30]

0.980 < 2mB/M? <0.988,
18.3 < x <209,
0214 GeVZ < Juge|  <0.239 GeV?, (17)
1.351073 < Ls < 1.571073,
—0.164 < vy < —0.161 .

together withf = 90.8 MeV andL; = 2.0 102 which are fixed byf, and fx. Note that
if vo2 does only change by about 10%, the shiftinis quite large~ 20-25.

Because they have four derivatives, the operatgyend O; do not contribute to
the meson mass matrix in vacuum. However, they give the dominant contributions to the
decayn’ — nrnw [18]. This is essentially because the extra derivatives introduce large
amplification factorsex (M, /M,)?, with respect to the leading order amplitdd&he
observed decay rates are well reproduced with

My, ~ 121073,

18
M; ~ —0.41073, (18)

values which can be independently inferred from the knéwnL., and L3 of SU(3) x
SU(3) xPT (in the nomenclature of Gasser and Leutwyler [24])

Thus all the parameters of the next-to-leading order effective lagrangian are fixed
by low-energy phenomenology.

4This may actually casts some doubts on the validity 8" for such processes as one could expect
higher-order effects to give non-negligible contributions to the degay nmx. One may nevertheless
hope that the largé/. expansion is still reliable and that these correctionsldré. suppressed. Whether
this is true is unfortunately hard to check as we would evidently have too few hadronic data to completely
fit the parameters of the effective lagrangian at higher orders ifi &x@ansion. Of course, this is precisely
why the largeN, expansion is invoked in the first place.

SAccording to Ref. [18] My = 2(Ly + Ls) + O(N?) andM; = L3 + 2Mo.



3 M ina pion thermal bath

In Ref. [12], the leading order lagrangian (1) has been used to study the shiff ahd

M,, at one-loop in a pion thermal bath. The effect they found is very tiny, @&-~at200

MeV the relative mass shifts are ord}(0.1%). The reason for this is easy to understand.
Then andn’ mesons receive most of their mass from the topological susceptibilityterm

vg2 and/or from the strange quark mass, while the pion thermal corrections only modifies
the tiny contribution from the pion mass temn A/2. Thermal kaons could give a larger
effect,oc MZ, but the density of these is exponentially suppressed at low temperatures,
x exp(—My/T). One might wonder whether next-to-leading order corrections could
directly affect the contribution of the leading ord€r1), breaking termug,. As we

have seen in the previous section, five extra operators appear at next-to-leading order in
the largeN. expansion and, of these, only the one with couptingis related tolU (1) 4
symmetry breaking. Unfortunately, this term is also chirally suppressed,, and its
contribution is onlyO(vs; M2T?/ f2). At temperatures of interest, this is small compared

to vg2, but of the same magnitude as the leading order thermal correction. The other four
operators will also contribute, but in a less interesting way, as they are invariant under
U(1) 4. Furthermore, their effects are alsoM?.

We have computed the shift of the mass)aindr’ at one-loop, at next-to-leading
order in the expansion ih We havenottaken into account two-loop corrections from the
leading order lagrangian. Although it is not clear whether this is legitimate numerically
speaking, neglecting these is however consistent with the rules of Mrgdiral per-
turbation theory. Indeed, the natural extension pbwer-counting to finite temperature
5

O(8) ~p* ~my~1/N, ~T*. (19)

Atleading order);, = O(5) ~ 1/N. and the one-loop thermal correctiomisM 72/ f?
~ 3. At two-loop, using the leading order lagrangian, the shiftdsM?2T*/f4 ~
5°, while at one-loop using the next-to-leading order lagrangian, the shift is typically
v M2T?/ f? ~ §* (usingvs; ~ 1/N,) and thus dominant. Consistency thus requires to
neglect the two-loop contributions. This greatly simplifies the calculations which are a bit
cumbersome, but otherwise straightforward.

The relevant diagrams are those of Fig. 1, where the loops contain only pions. At
next-to-leading order there are two related thermal loops:

WD) =T / ek 1 (20)
= e R M2
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Figure 1: One-loop pion corrections fd, and M, at low temperature. The black box
represent insertions of next-to-leading order operators.
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Figure 2: Leading order (solid line) and next-to-leading order (dashed line) contributions
to M, (T'). Both curves are normalized fd,,(0).

with K2 = k2 + k2, whereky = 2wnT, with n integer, are the Matsubara frequencies and

Bk K?
=7 Z / (27)3 K2+ M2’ (21)

n=—oo

with I,(T) = —M?2I,(T). As usual, we drop the ultraviolet divergent part of the pion
loops as these can in principle be reabsorbed in vacuum parameters, including next-to-
next-to-leading order counter-terms. The sum ovean then be readily evaluated using
standard techniques [32],

&k 1 1 M, T &1 M,
LT = / (27)3 w exp(w/T) — 1~ 22 HE:O nKl( ) ’ (22)
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Figure 3: Leading order (solid line) and next-to-leading order (dashed line) contributions
to M, (T). Both curves are normalized fd,, (0).

wherew? = k2 + M2. For instance, fof” > M,

T2
In the sequel we simply compute (22) numerically. As the relevant formula are not par-
ticularly transparent, we have relegated them to the appendix. Fig. 2 and Fig. 3 show
the shift of M/, and M, at low temperature both at leading and next-to-leading order. To
be definite we have chosen the set of parameters corresponding:te-20°. The net
thermal effects are not dramatic: both masses decrease, but only slightly. As expected,
the shift of the masd/; is more pronounced at next-to-leading order, but the effect is
not very significant. Again, this is because, both at leading and next-to-leading orders,
the thermal corrections are chirally suppressed/>7?/ f2. For completeness, we have
also plotted in Fig. 4 the shift of the mixing angle at low temperature. As both trel
n’ masses diminish, the angle is not very much affected. It decreases a bit (toward ideal
mixing?), consistent with the relatively larger shiftf, .

L(T) (23)

4 Lessons from largeN,.?

As we have seen in the previous section, the masg of almost not affected at low
temperatures in a pion bath. This is because, at this order, the pion thermal corrections
are chirally suppressed, smaller thaff ~ 0.02 GeV?, and thus essentially negligible

10
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Figure 4: Leading order (solid line) and next-to-leading order (dashed line) contributions
to tan 20(7"). Both curves are normalized tan 26(0).

compared to the contribution from ti&1) » symmetry breaking termg, ~ 0.22 GeV?.
In particular, in the chiral limit,\/, = 0, all the corrections vanish and,, is temper-
ature independent up to next-to-leading orderiA7". In the chiral limit, the leading
contribution from pions to the shift af/,, presumably arise fror®(p*) operators liké

L~ Ni X?(0,U0,U%0,U0,U") . (25)
The coupling isO(1/N,) because there is a factor bfN? coming with X? and one of
N, from the coupling of theD(p*) operator. The best way to see this is to replace the
couplingM, ~ N, (or M3) from the next-to-leading order lagrangian by a functioXof
My — M,y(X) and expand to second order , which brings down a factor of /N?2.
Because there are at least four pions in the expansion of the operator (25), the leading
pion thermal correction ta/,, in the chiral limit is a two-loop effect,

1 718 1 7%

OM2(T) ~ — =~ — ——— . 26
77( ) Nc f6 Nél :uﬁadr ( )
5TheO(p?) operator
X2
L~ f? e (8,U70,U) , (24)

can contribute at one-loop if and onlyf2 # 0. It could contribute at two-loop order in the chiral limit

o T*, but doesn’t because pion interactions are too soft. This is a well-known feature of pion thermal
corrections which is for instance manifest in the absen@’derms in the free energy of a pion gas in the
chiral limit [33], or in the fact that massless thermal pions move at the speed of light toTotd@a4].

11



We have made the largé. dependence of the pion decay consté&mnanifest by defining
f? ~ N_unaar- Of course, the sign of the correction is not known arig could go up or
down. Also, if we compare with/7 (0) ~ pf,q./Ne, We infer thatM,, is quasi-constant
for temperatures

T < Ty~ N3 paar - (27)

In the large/N.. framework, the natural scale for deconfinemert.is- jiy.q:, Which
is also the temperature at which the pions from the hadronic gas overlap. It is natural to
assume that chiral symmetry restoration takes place at the same temperature, driven by the
release of)(V?) gluon degrees of freedom [11,35]. The estimate in Eq. (27) then seems
to imply that M, is essentially constant up to the temperature of deconfinement, since
T, > T, ~ upaa: for N, large. This conclusion is however premature because the low
momentum expansion breaks down néaand we must take into account the contribution
of operators with arbitrary number of derivatives. We claim that the dominant operators
at large/N,. are of the form

1

L~
N Ml%l;d;l

X?(0,,U0,,U"...0,U0,,U0,,U...0,U. (28)

These operators are irrelevant at low energies but become margirial~§of,.. A six-
derivative operator, for instance, first contribute at three laod§ oc 7% /(N7 pioq,)-
For comparison, the contribution of a three-loop diagram with a four-derivatives (NLO)
and a two-derivatives vertices (LO)ds 1/N. T/ f® ~ 1/N> T/ 8. .. and is subdom-
inant at largeN... For generids, the operators of Eq. (28) giveV[2 ~ T4 /(N2 3k %),
The ratio of two consecutive ternisandk + 1 becomesO(1) atT” ~ NY*jiyq., inde-
pendent ofk. Atlarge N., T. < T" < T* and the perturbative expansion still breaks
down above the temperature of deconfinement.

Another set of operators could be relevant at lakjebecause the' is then rather
light, M,y ~ fin.a:/NY? < T.. Thus one should include operators that involve arbitrary
powers of they field, like

L~ fF(F) (8,LUT8,LU)

(29)
= (LQNQ + —%s L4NJ +.. ) (0,m")? + pion terms,
which contributes to the wave-function renormalization/of
0Zy ~ T /(N2 tnaar) + T /(N Hpaae) + -+ (30)
or terms of the form
£ Nty G (3 ) ~ s oLl ot (B)

12



However, a common feature of these operators is that they are very suppressed at large
N.. They become important only f&f ~ N3/2p,.4., much higher thai” so that their
contribution is subleading compared to operators like in Eq. (28).

Can we conclude anything from these considerations? In all the cases discussed
above, the leading thermal correctionsity, in the chiral limit and forV, large, become
important for temperature which are higher than the critical temperature of deconfinement
T. ~ punaar by @ factor of N7. Although the value ofy is hard to guess, as various
corrections can get mixed up, we believe it is reasonable to conjecture ibatrictly
positive. This implies that just beloW., M, (T') = M,,(0) to a very good approximation.

The standard lore is that the deconfining phase transitiah & of first order for/V,

large [35]. Because the temperature at whithdronicinteractions can affect/,, is

(very much) larger than the temperature of deconfinement, we expect that changes in
will be instead triggered by the release of the large number of gluons and will thus drop
discontinuouslwtT,, i.e.that there is a first order transition to a phase with (approximate)
U(1)4 symmetry.

This behaviour is not inconsistent with various other expectations. For three light
quark flavours, Ny > 3, the transition to the chirally symmetric phase is probably first
order while forN; = 2, the phase transition is supposed to be of second order, in the
universality class of)(4) [2]. It has been argued by Smilga that the latter behaviour is not
inconsistent with a first order deconfining phase transition at 1Aigé 1]. The reason is
that, unlike forM,,, there is an infinite subset of thermal corrections that contribute to the
same ordein N, to the shift of the quark condensate= (gq),

5 =% (1- e () 32)

2,,2
Nc Hhadr Hhadr

Even though thermal corrections are suppressed JiR€, the (unknown) functior#'(z)
may be singular near, but beloW. ~ u.q.. If, for instance,F has a simple pole at
T=Ty<T.,F~pu2.,4/(T?—T2) and the chiral phase transition is second order with
a critical region neaf ., that is of order

AT 1
T, N2

(33)

Alternatively, if U (1) 4, symmetry is effectively restored &, the largeN. behaviour (32)
is also consistent with a fluctuation induced first order phase transition.Nfo& 1

"Various arguments, including recent developments in string theory (see Sect. 6.2.2 in Ref [36]) and
lattice simulations ofV, = 4 pure Yang-Mills theory [37], favour a first order deconfining phase transition.
A case for a second order phase transition has been made in Ref. [21], in light of the structure of the
Columbia diagram.

13
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___. Nc=3

Tc

Figure 5: Plot of ther andé (ag) near the critical temperature fo¥. = 3 (continuous
lines) and possible changes fof > 3 (dashed lines).

finally, chiral symmetry is broken by the anomaly at all temperature and there is no chiral
phase transition. However, if instanton transitions are strongly suppressed just/above
chiral symmetry can be effectively restored and the phase transition is presumably first
order.

5 Conclusions

We have studied the behaviour of the mass ofrthpseudoscalar meson at finite tem-
perature using constraints from chiral symmetry and la¥g@ower counting. The main
conclusion to be drawn from this work is thaf,, is essentially unchanged at low tem-
peratures. A tentative analysis of the effect of leading higher order corrections at large
N, suggestshat M, changes discontinuously at the temperature of deconfinement. The
implications of these considerations for the real worlkl,N. = 3, are not quite clear as

we would expect the suppression of instanton effects only at asymptotically high temper-
atures. It is however striking that recent lattice simulations, With= 2 staggered [38]

and domain wall [39] fermions, both show a strong suppressidri(af 4, breaking ef-

fects at low temperaturés ~ 1.27,. Because this temperature is outside the critical
region, the order of the chiral phase transition is probably not affected. It could be of
interest to consider doing simulations with > 3, although this would probably be time
consuming, or maybe with one flavour and varidys Consider for example a plot of

14



Nc=3 Nc>>3
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Nf=3 Nf=1 Nf=3 Nf=1
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Figure 6. Columbia phase diagram as function of M, = M, (horizontal axis) and M,
(vertical axes) for N. = 3 (left, the blue dot is where QCD stands) and how it could
evolveat large NV, (right).

the  and o susceptibilities near the critical temperature as computed on the lattice [38].
Large N, arguments suggest that the curves of the susceptibilities would be flatter below
T, —because the confined phase is colder— and that splitting between = and § (a.k.a.ay)
should be narrower above T, —because U(1) 4 breaking is more suppressed, maybe like
in Fig. 5—. The Columbiadiagram could change accordingly: the critical line around the
region of small M, = M, masseswould moveasin Fig. 6.
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Appendix

5.1 Useful formulee

5.1.1 Leading order

omB = M?, (34)
2

T = 2]]\\% -2, (35)

= r (36)
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— 302

2
My, —

2MZ + M2 22
3 T3

5.1.2 Next-to-leading order

Some definitions: A, Ay are defined as

8
Iz

5

L
£2

AN = 3’031 — 12—’(}02 .

Ay = — (Mg —M2)(2Ls — Ls) ,

(M3 — M?)tan6 .

(37)

(38)

(39)

Next-to-leading order parameters: The next-to-leading order parameters can be ex-
pressed in terms of observables through

2mB

—3’002

Ls
f2

where

Ay

Ay

M2
Mﬁ(l—— z AM) )

M3 — M?2
M2
2M{§(1—AM)—2,
Ls .
(1 akea)
e 2M3% + M2
0 3
22

3

2 (M — M)Ay — (2M + MD)AN] |

1

— A
A(ME —M2) ="

M2 +3M? — 4MG + 3(Mp, — M?)sin® 6

(M3 — M3 (14 Ay — Ayx) tan 6

AMf — M3)
| 3 (M7 — M})sin 26
* 42  ME— M?

Iy

Ja
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M

I

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)



5.2 Resultsatl’ =0
5.2.1 Leading order

Mass matrix:
1
mi = S(AME - M2), (48)
24/2
mty = 2200 - a2). 9
1
mgo = §(2M}2{ + Mﬁ) - 31)02
1 2
= M+ M2) - Sy(ME - M2, (50
where
o2
= 51
V=50 - &Y
Mixing angle:
2m?2 242
tan 20 = — T80 = V2 : (52)
mgy —mgg 14y
Physical masses:
ME — M?
M, = Mi—iK?) (y+9+2y+y?), (53)
M2 - M2
My = M= =5y =9+ 2 +?), (54)
with
2
M} + M}, = m3s +mgy = 2M. — gy(Mf( — M?). (55)

5.2.2 Next-to-leading order

Mass matrix:
1 4
mi = S(AME = M2)+ S(ME — M2)Ay, (56)
22
mi, = 5 (M — M2)(1+ Ay — Ap), (57)

17



1
mgo = §(2M[2( + Mz) — 3U02
2 2
+ (MK = MDAy — S(2Mj + M)Ay

2
= @M+ M2)(1 - 20x) + (M — M)Ay

2
- gy(M?( - M?) .

Mixing angle:

2v/2 y 1 2M} + M?
tan20 = —— (14 ——Ay — (1 N
an 1—|—y<+1+y M <+1+yM?<—M3 "

Physical masses:

M3 — M?
M} = Mi—%(y+\/9+2y+y2)
(- 94y
3vV9 + 2y + y?
1 3(2MZ — 3M?) — y(2M% + M?)
_ A]\77
3 9+ 2y + y?

M2 — M2
My = M= ="y =9+ 2+

9+y 2 2
1 M2 — M)A
+ <+3 9+2y+y2>( i = M)A
1 32M%E — 3M?) — y(2ME + M?) A
3 VOt 2y + 2 Mo

) (Mz — M)Ay

<2M?< + M? —

<2M; M

with

2
MZ MG = M Sy(MF — M)

2
+ 2(My — M3 Ay — §(2Mf( + M)Ay .
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(59)

(60)

(61)

(62)



5.3 Resultsatl’ # 0
531 Leading order

Mass matrix:
M
mgs(T) = mgg(O) 2—fQ (1),
2 2 M2
mg(T) = mg(0) — \/—?ﬂQ (1),
M2
meo(T) = mg(0) — —5-1(T),
where
Bk 11 ~ 1
I(T E/ h cw= R+ M2 B=
) (27?)3w65“—1’w M, T
M, T i 1 (nM ) Moo T?
= _ — .
212 —=in 12
Mixing angle:

2v2 y 3 M? 1

tan29(T):tan29(O)+1+y1+y1M2 MQfQI(T)'
Physical masses:
3 M? 94y
2 _ 2 YT
3 M? 94y
M2(T) = M2(0)— ==ZI(T
1) = a0 - 5 (1- 52
with
2 2 2 2 3M2
M (T) + M, (T) = M, (0) + M.,(0) — B f2 (7).
5.3.2 Next-to-leading order
Mass matrix:
M? 2M? 3
W) = w0) - D) (14 g (A S

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)



Mixing angle:

tan 20(T)

(1

Physical masses:

M,(T)

2

M
24— (Mo + M3)> ,

JE (71)

M3 2M?2 3
m§m)‘V@FI”7O*3M§tWﬁ(AP+§AM)

: yM%—M?))

M
A 24— ( M, M. 1
N+ (Mo + 3)( 32

IE (72

2

M, 202
- () (1 x

NSV VE

2y M3z — M?
3 M? ’

3

2

M
2AN + 24—7T(M0 + Mg) <1 —

I 73

2V2 y 3
1+yl+yd M

2M? 3
Vv A ZA
+ M%—Mﬁ( Pty M)

M? 1
—— —I(T) x

= tan20(0) + S VEN

2
- A
1+y M

2Mj — (L +y) M7 |
M — M2 N

fug ).

1—y 3
+ ——An+
N 0+
2

1+y
M M2 —
+2%%%+m%’<

Y)y

(74)

f2 M2

3 M2

4 f2
9+y

1+ A
(( 3¢@?@¢@J "

273 +y) + (9 + y)y?
30+ 2+ P

9+y
7)1+
( )< 3vVI9+ 2y +y?

= M;(0)

202
M2 = M?

3
(1
+2< +
2y? AM?

— M?
™) A
EEC R P T ER VE ) M)

_ %(H B+y)(O+y) +B+yy)
6y M?

(9 + 2y + y2)3/2
A
O T2y + R ME - Mﬁ) N
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M? 94y
+ 24=I(My+ Ms) {1+
7z Mot 3)< 3O+ 2y + 12

4 3+y MZ — M2
__y 1+ 2 K 2 ? (75)
9 VI+2y+y M

™

3 M? 94y
M2(T) = M*(0)—=-=—ZI(T)|1-

2 M2 9+y
+ o ([1- Ap
MZ = M2 3V + 2y + 17
3 213 +y) + (9 +v)y?
I
2 3(9 + 2y + y2)3/2

5y’ AMj — M |
39+2y+92)% M "

4 (1 B+ +y) +B+yy)
3 (9 + 2y + y?)3/2

6y M A
O+2y+ 232 Mz —M2) Y

M? 94y
+ 4= (My+ Ms) (1 -
fg( 0 3)< 3v9+ 2y + 42

4 34y M2 — M2
——y(1- s | —— , (76)
9 VOt 2y +y M

™

with

ME(T) + M(T) = M2(0) + M2(0) — gﬂjf—j (T)

3 4
(AP + éAM) — §AN

202
MZ — M2

2

M? 4 M3 — M?
+ 24— (Mo + Ms) (1 - §yl(]\472>> : (77)

T T
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