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Abstract

We present a recent analysis of "0=" in the 1=Nc expansion. We show that the 1=Nc

corrections to the matrix element of Q6 are large and positive, indicating a �I = 1=2

enhancement similar to the one of Q1 and Q2 which dominate the CP conserving ampli-
tude. This enhances the CP ratio and can bring the standard model prediction close to the
measured value for central values of the parameters.
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1 Introduction

Direct CP violation in K ! �� decays was recently observed by the KTeV and NA48

collaborations.[1,2] The present world average [2] for the parameter "0=" is Re "0=" =

(21:2� 4:6) � 10�4. In the standard model CP violation originates in the CKM phase, and

direct CP violation is governed by loop diagrams of the penguin type. The main source

of uncertainty in the calculation of "0=" is the QCD non-perturbative contribution related

to the hadronic nature of the K ! �� decay. Using the �S = 1 effective hamiltonian,

H�S=1

eff
=
GFp
2
�u

8X
i=1

ci(�)Qi(�) (� < mc) ; (1)

the non-perturbative contribution, contained in the hadronic matrix elements of the four-

quark operators Qi, can be separated from the perturbative Wilson coefficients ci(�) =

zi(�)+ �yi(�) (with � = ��t=�u and �q = V
�

qs
V
qd

). Introducing hQiiI � h(��)IjQijKi,
the CP ratio can be written as
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! =ReA0=ReA2 = 22:2 is the ratio of the CP conserving K ! �� isospin amplitudes;


�+�0 encodes the effect of the isospin breaking in the quark masses.[3] "0=" is dominated

by hQ6i0 and hQ8i2 which cannot be fixed from the CP conserving data.[4,5] Beside the

theoretical uncertainties coming from the calculation of the hQiiI and of 
�+�0 , the analy-

sis of the CP ratio suffers from the uncertainties on the values of various input parameters,

in particular of the CKM phase in Im�t, of �QCD � �
(4)

MS
, and of the strange quark mass.

To calculate the hadronic matrix elements we start from the effective chiral la-

grangian for pseudoscalar mesons which involves an expansion in momenta where terms

up to O(p4) are included.[6] The method we use is the 1=Nc expansion.[7,8] In this ap-

proach, we expand the matrix elements in powers of the momenta and of 1=Nc. For the

1=Nc corrections we calculated chiral loops as described in refs. [9,10]. Especially impor-

tant to this analysis are the non-factorizable corrections, which are UV divergent and must

be matched to the short-distance part. They are regularized by a finite cutoff �c which is

identified with the short-distance renormalization scale. The definition of the momenta in

the loop diagrams, which are not momentum translation invariant, is discussed in detail

in ref. [9]. Other recent work on matrix elements in the 1=Nc approach can be found in

refs. [11,12].

For the Wilson coefficients we use the leading logarithmic and the next-to-leading

logarithmic values.[4] The absence of any reference to the renormalization scheme in the
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low-energy calculation, at this stage, prevents a complete matching at the next-to-leading

order.[13] Nevertheless, a comparison of the numerical results obtained from the LO and

NLO coefficients is useful as regards estimating the uncertainties and testing the validity

of perturbation theory.

2 Analysis of "0
="

Analytical formulas for all matrix elements, at next-to-leading order in the twofold ex-

pansion in powers of momenta and of 1=Nc, are given in refs. [9,10]. In the pseudoscalar

approximation, the matching has to be done below 1 GeV. Varying �c between 600 and

900 MeV, the bag factors B(1=2)
1 and B

(1=2)
2 take the values 8:2 � 14:2 and 2:9 � 4:6;

quadratic terms in hQ1i0 and hQ2i0 produce a large enhancement which brings the �I =

1=2 amplitude in agreement with the data.[10] Corrections beyond the chiral limit were

found to be small.

For hQ6i0 and hQ8i2 the leading non-factorizable loop corrections, which are of

O(p0=Nc), are only logarithmically divergent.[9] Including terms of O(p0), O(p2), and

O(p0=Nc), B
(1=2)
6 and B

(3=2)
8 take the values 1:10 � 0:72 and 0:64 � 0:42. As a result

the experimental range for "0=" can be accommodated in the standard model only if there

is a conspiracy of the input parameters.1 However, since the leading O(p0) contribution

vanishes for Q6, corrections from higher order terms beyond the O(p2) andO(p0=Nc) are

expected to be large. In ref. [15] we investigated theO(p2=Nc) contribution, i.e., the 1=Nc

correction at the next order in the chiral expansion, because it brings about, for the first

time, quadratic corrections on the cutoff. From counting arguments and more generally

from the fact that the chiral limit is assumed to be reliable, the quadratic terms (which

are not chirally suppressed) are expected to be dominant. It is still desirable to check

that explicitly by calculating the corrections beyond the chiral limit, from logarithms and

finite terms, as done for Q1 and Q2. Numerically, we observe a large positive correction

from the quadratic term in hQ6i0. This point was already emphasized in ref. [16]. The

slope of the correction is qualitatively consistent and welcome since it compensates for

the logarithmic decrease at O(p0=Nc). Varying �c between 600 and 900 MeV, the B(1=2)
6

factor takes the values 1:50 � 1:62. Q6 is a �I = 1=2 operator, and the enhancement of

hQ6i0 indicates that at the level of the 1=Nc corrections the dynamics of the �I = 1=2

rule applies to Q6 as to Q1 and Q2.

Using the quoted values forB(1=2)
6 together with the full leading plus next-to-leading

order B factors for the remaining operators [15] we calculated "
0
=". The results for the

three sets of Wilson coefficients LO, NDR, and HV and for �c between 600 and 900MeV

1For supersymmetric contributions to "
0
=" see ref. [14] and references therein.
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Table 1: Numerical values for "0=" (in units of 10�4) as explained in the text.

LO 14:8 � "
0
=" � 19:4 6:1 � "

0
=" � 48:5

NDR 12:5 � "
0
=" � 18:3 5:2 � "

0
=" � 49:8

HV 7:0 � "
0
=" � 14:9 2:2 � "

0
=" � 38:5

are given in Tab. 1. The numbers are close to the measured value for central values of

the parameters (first column). They are obtained by assuming zero phases from final state

interactions. This approximation is very close to the results we would get if we used the

small imaginary part obtained at the one-loop level.[15]

Performing a scanning of the parameters [125MeV � ms(1GeV) � 175 MeV,

0:15 � 
�+�0 � 0:35, 1:04 � 10�4 � Im�t � 1:63 � 10�4, and 245MeV � �QCD �
405MeV] we obtain the numbers in the second column of Tab. 1. They can be compared

with the results of refs. [5,17–20]. The values ofB(1=2)
6 can also be compared with ref. [11]

and those of B(3=2)
8 with refs. [12,21]. The large ranges reported in the table can be

traced back to the large ranges of the input parameters. This can be seen by comparing

them with the relatively narrow ranges obtained for central values of the parameters. The

parameters, to a large extent, act multiplicatively, and the large range for "0=" is due to

the fact that the central value(s) for the ratio are enhanced roughly by a factor of two

compared to the results obtained with B factors for Q6 and Q8 close to the VSA. More

accurate information on the parameters, from theory and experiment, will restrict the

values for "0=".

To estimate the uncertainties due to higher order final state interactions we also cal-

culated "0=" using the real part of the matrix elements and the phenomenological values of

the phases [22], �0 = (34:2�2:2)� and �2 = (�6:9�0:2)�, i.e., we replaced jP
i
yihQiiIj

in Eq. (2) by
P

i
yiRehQiiI= cos �I . The corresponding results are given in Tab. 2. They

are enhanced by � 25% compared to the numbers in Tab. 1. We would like to emphasize

that this � 25% error should be taken into account by any analysis which either does not

include final state interactions or cannot reproduce the numerical values of the phases. To

reduce the uncertainties in the 1=Nc approach it would be interesting to investigate the

two-loop imaginary part and/or to combine our calculation with a dispersive calculation

along the lines of refs. [23–25]. In order to reduce the scheme dependence in the result,

appropriate subtractions would be necessary.[11,26] Finally, it is reasonable to assume

that the effect of the pseudoscalar mesons is the most important one. Nevertheless, the

incorporation of vector mesons and higher resonances would be desirable in order to im-
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Table 2: Same as in Tab. 1, but now with the phenomenological values for the phases as
explained in the text.

LO 19:5 � "
0
=" � 24:7 8:0 � "

0
=" � 62:1

NDR 16:1 � "
0
=" � 23:4 6:8 � "

0
=" � 63:9

HV 9:3 � "
0
=" � 19:3 2:8 � "

0
=" � 49:8

prove the treatment of the intermediate region around the rho mass and to show explicitly

that the large enhancement we find at low energy at the level of the pseudoscalars remains

up to the scale � mc, where the matching with the short-distance part can be done more

safely.
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