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Abstract

Massless neutrino exchange leads to a new long-range force between matter.

Recently, it was claimed both that the potential energy due to this interaction i)

dominates the total energy of neutron stars and ii) that it is zero. We recalculate

the energy of a neutrino propagating in a classical, uniform background of neutrons

and �nd a negligible, but non-zero contribution to the total energy of neutron stars.

We estimate the neutrino pair creation rate of a neutron star caused by a density

gradient of the background neutrons but found it too small to be observable.



1 Introduction

Recently Fischbach calculated the energy di�erence �E between a neutrino immersed in

a neutron star and in vacuum [1]. He used perturbation theory to derive the potential

energy W (k) of N neutrons due to the exchange of massless neutrinos, �E =
P

kW
(k).

The ratio of the contributions to �E from k and k + 2 body interactions found by him

equals for k� N �����W
(k+2)

W (k)

����� � 1

(k + 2)(k + 1)

�
GFN

R2

�2

; (1)

where GF is the Fermi constant and R the radius of the star. For a typical neutron star,

GFN=R
2 = O(1013) and multi-body e�ects become dominating. In particular, j�Ej ex-

ceeds the mass energy of the neutron star|an obvious contradiction to the observation of

neutron stars. The resolution of this paradox proposed in Ref. [1] is to consider a massive

neutrino. Then the neutrino can interact only with neutrons within its Yukawa radius

1=m�, and, if m� is su�ciently large, the dangerous many-body e�ects are exponentially

damped. Hereby, a lower bound for the electron neutrino mass, m�e
>� 0:4 eV, was derived

[1].

The method and results of Ref. [1] provoked some criticism. Smirnov and Vissani [2]

argued that a neutrino sea inside the neutron star [3] reduces the potential energy W (k)

because of Pauli blocking. They stressed also that the behaviour of the potential energy

W (k),

W (2k) = (�1)kj ~W (2k)j ; (2)

is unacceptable. In fact, both the increasing of jW (k)j and its oscillatory behaviour with

2k are clear signs for the breakdown of perturbation theory. Abada et al. [4] recalculated

the energy di�erence �E taking into account non-perturbatively the interaction of the

neutrino with a uniform neutron background. They obtained �E = 0 if no neutrino

sea is presented. This result would imply that neutrinos do not interact at all with the

neutron background. In view of the results of Ref. [1, 4] and the possible implications for

neutrino physics, we feel it appropriate to recalculate once again �E. Additionally, we

estimate the neutrino pair creation rate of a neutron star caused by a density gradient of

the background neutrons.

In our calculations we always assume that the neutron density nN (x) respectively

its gradient rnN(x) can be approximated locally by a constant value. This assumption

looks unproblematic because of the macroscopic size of the neutron star, neglects however

possible long-range e�ects due to massless neutrinos.

2 Neutrino energy density without neutrino sea

The energy E of a neutrino interacting with a classical background current J� of neutrons

is given by [5, 6]

E = hP 0i = i
Z
d3x h0j y(x)@t (x)j0iJ : (3)

2



Here,  is the �eld operator in the Furry picture obtained after second quantizing the

solutions of the Dirac equation

h
�@

� + im�
p
2iGFaN�J

�PL
i
 (x) = 0 ; (4)

where aN = �0:5 and PL = (1 � 5)=2 projects out the right-handed component of the

neutrinos.

Since we are interested in the infrared regime, we can assume in the following J� as

static, J� = (nN ; 0). Moreover, the neutron number density nN is also nearly homogenous.

Therefore, the solutions of Eq. (4 ) can still be characterized by the four-momentum

p� = (E;p) of the neutrino. Then, as it is well known, the only change compared to the

vacuum case is the modi�cation of the dispersion relation of the neutrino [7, 8],

E = (m2 + jpj2)1=2 � V (5)

V = �GFp
2
nN : (6)

Here, the upper sign in Eq. (5) corresponds to neutrinos and the lower sign to antineu-

trinos.

Equation (3) can be rewritten as

E =
Z
d3x @ttr

n
0SF (x; x

0)
o
x0&x

; (7)

where SF (x; x
0) is the Greens function of Eq. (4). Now we evaluate the energy di�erence

�E =
Z
d3x

Z
dp4

(2�)4
(�ip0)e�ip(x�x0) tr

n
0
h
SF (p)� S

(0)
F (p)

io
x0&x

(8)

between a neutrino propagating in a neutron background [10],

SF (p) =
1

(p0 � V )0 � p �  �m + i"
PL ; (9)

and a neutrino propagating in the vacuum,

S
(0)
F (p) =

1

p=�m + i"
PL : (10)

Performing �rst the x and then the p integral results in

�E = � i

2�

Z
dp0 p0e�ip

0(t�t0) tr
n
0
h
SF (p

0; 0)� S
(0)
F (p0; 0)

io
t0&t

: (11)

Although each of the two contributions to the energy di�erence �E is UV-divergent, a

�nite �nal result for �E can be obtained combining the two fractions before integrating.
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Performing �rst the subtraction regularizes the integral, because then its leading term in

p0 vanishes,

�E = � iV

�

Z
dp0 p0e�ip

0(t�t0) (p0)2 � p0V +m2

[(p0 � V )2 �m2 + i"][(p0)2 �m2 + i"] t0&t

: (12)

The �nal integral can be done with the help of the residue theorem (cf. Fig. 1) and gives

independently of the neutrino mass m

�E = V � �19 eV nN

0:3 fm�3 : (13)

This result could be expected in virtue of Eq. (5). Since �E is the energy di�erence of

one neutrino, we obtain the total contribution �M of neutrinos to the self-energy of a

neutron star with radius R � 10 km as

�M =
4�

3
R3n��E � �42 kg n�

3� 10�22 fm�3 : (14)

Obviously, �M is negligible for a realistic value (cf. next sections) of the neutrino density

n�.

Finally, we want to comment on the possible source of error in the results of Ref.

[1, 4]. In Ref. [1], the 8th order term of perturbation theory W (8) was used to estimate

�E. Since
P

kW
(k) is divergent and alternating, any result obtained in a �nite order of

perturbation theory is meaningless. By contrast, the authors of Ref. [4] used the same

non-perturbative method as we did. However, they made { as apparent from their Eq. (8)

{ the limit x0 & x before integrating over x. Then, they argued that after regularization

their d4p integral vanishes due to the antisymmetry of the integrand. However, this is not

true because of the presence of the factor p0e�ip
0(t�t0).

3 Neutrino energy density with neutrino sea

Loeb proposed �rst that neutrinos1 with energies below � 50 eV are bounded inside

neutron stars, while antineutrinos are repelled [3]. Qualitatively, this result follows directly

from Eq. (5) considering a neutron star as potential wall with depth V and radius R,

and simply assuming that all the levels with energy [0; V ] are occupied. However, one

should note that neutrino states with energy V < E < �m� do not have an exponentially

damped wave function for r > R, and are resonances instead of true bound states.

To account for a possible neutrino sea inside an neutron star, we can apply either the

imaginary or the real-time formalism of �nite-temperature �eld theory. We use the latter

since it is easier in this formalism to separate the medium from the vacuum e�ects. Then

1In Ref. [9], it is argued that only Dirac neutrinos are trapped while Majorana neutrinos can leave
freely the medium.
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the thermal neutrino propagator SF (p; �) is given by

SF (p; �) =
h
(p0 � V )0 � p � 

i h 1

(p0 � V )2 � jpj2
+ 2�i�((p0 � V )2 � jpj2)f(p0)

i
PL ; (15)

where � = 1=T is the inverse temperature and f(p0) is the distribution function of the

neutrinos. To simplify the notation, we have setm = 0. In the case of thermal equilibrium,

f(p0) is the Fermi-Dirac distribution function

fD(p
0) = fD;�(p

0) + fD;��(�p0) = �(p0 � V )

e�(p
0��) + 1

+
�(�p0 � V )

e��(p
0��) + 1

: (16)

Note that the edge between particles and antiparticles is shifted by V . Inserting the

thermal propagator into Eq. (7), performing �rst the x integration restricted to the volume

V of the neutron star and then the p0 integral results in

�E�=V =
Z

d3p

(2�)3
[(jpj+ V )f�(jpj+ V ) + (�jpj+ V )f��(jpj � V )] (17)

=
Z

d3p

(2�)3
[E�f�(E�)� E��f��(E��)] (18)

= hE�i� � hE��i�: (19)

In the last step, we denoted the thermal average with the (anti-)particle distribution

functions by h: : :i�. Also in this case, the result obtained has a very plausible form.

To obtain a numerical estimate for �E�, we follow Ref. [3] and assume a degenerated

neutrino sea with n� � 3� 10�22 fm�3 and Fermi momentum pF � 50 eV. Furthermore

we set n�� = 0 and obtain

�E�=V �
�
V +

3

4
pF

�
n� � 5:5� 10�21

eV

fm3

n�

3� 10�22 fm�3 : (20)

For a neutron star, the thermal contribution �E� is dominated by the contribution of the

kinetic energy of the neutrinos and therefore positive. However, since the number density

of neutrinos is much smaller than the number density of neutrons, n�=nN � 10�21, the

thermal contribution �E� is irrelevant compared to �E. Finally, we want to remind that

{ as mentioned in the introduction { the results obtained in section 2 and 3 are only valid

for an uniform neutron background, i.e. in the limit of an in�nite neutron star.

4 Spontaneous neutrino pair creation

Let us consider in more detail the analogy between a neutron star and a potential wall.

We keep now again the neutrino mass m� �nite and consider Dirac neutrinos. The limit
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for the electron neutrino mass is m�e
<� 5 eV. Hence the potential2 V � �50 eV is

overcritical, V < �m�e , and therefore able to produce �e��e-pairs at its interface. The

quantity characterizing this process, m2
�=jrV j, is not well-de�ned in the simple picture

of the potential wall. We assume instead that nN (x) can be approximated by nN(x) =

nN(x0)+(x�x0)rnN (x). Then we can treat locally the \electric" �eld E = �rV �@tA,

where A = (V; 0), as uniform and derive the spontaneous neutrino pair creation rate due

to a density gradient of the neutron background.

The action S(A) describing the vacuum with a potential A is given by [11, 12]

lnS(A) = Tr ln
n
S�1F S

(0)
F

o
: (21)

Here, Tr means the trace over Dirac indices and integration over the continuous variable

x. Furthermore, SF denotes the operator with matrix element hxjSF jx0i = SF (x; x
0).

Adding the transposed version of its RHS to Eq. (21), inserting CC�1 = 1 and using

C5C�1 = 5;t, C�C
�1 = �t�, we obtain

2 lnS(A) = Tr ln

�
PL(P= � A= +m� � i")(P= � A= �m� + i")PL (22)

� 1

P= �m� + i"
PL

1

P= +m� � i"

�

=
1

2
Tr ln

(�
(P � A)2 �m2

� + i"+
1

2
���F

��

�
1

P 2 �m2
� + i"

)
(23)

This is 1=2 of the corresponding result for the pair production of fermions by an uniform

electric �eld. Therefore, we can borrow the �nal QED result [12] and obtain for the pair

creation probability per unit time and volume

w =
E2

8�3

1X
n=1

1

n2
exp

 
�n�m

2
�

jEj

!
: (24)

To obtain an order-of-magnitude estimate for w, we choose a density pro�le that models

roughly a neutron star with a soft Reidl equation-of-state [13]: we assume as radius of

the star R = 10 km, a homogenous core and a crust with thickness L = 2 km, in which

the density decreases linearly to zero,

nN(r) =

(
n0 for r < R � L

n0(R� r)=L for R� L < r < R :
(25)

Then, in a volume V � 2 � 1018 cm3 of the neutron star exists a �eld jEj = V=L �
5 � 10�9 eV2 in radial direction. If m2

�
>� jEj=(n�), the creation of a ���-pair by n �eld

quanta is exponentially suppressed. But even if m� � (jEj=�)1=2 = 4 � 10�5 eV, the total
luminosity L is only

L = 2m�wV � 2:1 � 1011erg=s
�

m�

10�6eV

�
(26)

2Since the absolute value of the potential V has no physical meaning, a more correct statement is that
the potential di�erence �V = V (r < R)� V (r > R) is overcritical.
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and has therefore practically no inuence on the energy budget of the star. However,

�e��e-pair creation by neutron stars is probably the only case in the present Universe that

massive particles are spontaneously created and therefore it is interesting in its own.

5 Summary

We have recalculated the energy of a neutrino in the uniform background of classical

neutrons, both without and with a neutrino sea. In the �rst case, we found that the

energy is changed by the small amount V � �20 eV, in agreement with the well-known

result of Wolfenstein [7, 8]. Moreover, the inuence of a possible neutrino sea inside the

neutron star has an even smaller e�ect on the neutrino energy. Therefore, the contribution

of neutrinos to the total energy of a neutron star seems to be negligible. However, to

settle de�nitely the question if many-body e�ects become important in neutron stars it is

necessary to calculate �E not only non-pertubatively but to take into account also the

�nite geometry of the star [14]. We have estimated the energy-loss of an neutron star due

to spontaneous ���-pair production but found it too small to be observable.
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Im(p0)
>

Re(p0)

>

<

�m+i"
�

m� i"
�

�m+V +i"
�

m+ V � i"
�

Figure 1: Residues and contour of integration for the evaluation of �E, Eq. (12).
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