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Abstract

We investigate the phenomenological constraints on a model where, besides the
standard model Higgs sector, there is an effective new strong interaction acting on
the third generation of quarks and characterized by a θ-like term. This θ term
induces electroweak symmetry breaking and leads to dynamical spontaneous CP
violation. We show that the constraints coming from K physics and the electric
dipole moment of the neutron impose that the new physics scale should be of the
order of 35 TeV. Contrary to naive expectations, the predictions of the model for B
physics are very close to the standard model ones. The main differences appear in
processes involving the up quarks such as D0 − D̄0 mixing and in the electric dipole
moment of the neutron, which should be close to the experimental limit. Possible
deviations from the standard model predictions for CP asymmetries in B decays
are also considered.



1 Introduction

The fact that the top quark is much heavier than the other quarks, mt = 174.3±5.1 GeV
[1], is suggestive of a new dynamics at the electroweak scale, where the third generation
may be playing a special role. In particular, effective four-fermion interactions [2] can lead
to the formation of quark-antiquark bound states which in turn can dynamically trigger
the breaking of the electroweak symmetry [3, 4]. This is the basic idea of top-quark
condensation as well as of technicolor models, i.e. the Higgs sector of the standard model
is just an effective Ginzburg-Landau-type description of low-energy physics represented
by a composite isodoublet scalar field (or fields) [5].

In the above framework, a particularly interesting scenario is provided by models
where the top quark mass arises mostly from a tt̄ condensate, generated by a new strong
dynamics, plus a small fundamental component, generated by an extended technicolor
or Higgs sector [6]-[10]. Such a structure for the top quark mass avoids the problems
usually found in pure (minimal) top-quark condensation scenarios, which assume that the
tt̄ condensate is fully responsible for the electroweak symmetry breaking [4], thus leading
to a too large mt value (mt � 220 GeV) and a very large scale for the new dynamics
(Λ ∼ 1015 GeV) with significant fine tuning.

Along this line, a dynamical scheme was proposed in Ref. [11], where it is assumed
that the third generation of quarks does indeed experience new forces, symmetric in t and
b, and that these new forces also generate a strong CP phase θ. It is then possible to
show that, in such a scenario, the θ term triggers the breaking of the symmetry between t
and b and induces a large CP -violating phase in the Cabibbo-Kobayashi-Maskawa (CKM)
matrix, due to the smallness of the mb/mt mass ratio [11]. In this model one expects to
have a richer low-energy phenomenology when compared to the standard model (SM),
which could lead to potentially interesting effects, specially in K and B physics.

The purpose of this paper is to study the low-energy phenomenological implications
of the model proposed in [11] and, in particular, its implications for K and B physics.
We will show that new observable effects arise due to the fact that the third generation
of quarks experiences new strong forces which in turn lead to scalar flavour-changing
neutral current (FCNC) interactions at tree level. These FCNC interactions result from
the fact that both the up and down quark mass matrices receive contributions not only
from Yukawa interactions with the standard Higgs but also from interactions involving
the third generation quark-antiquark bound states.

The present and near future experiments at B factories and the large hadron col-
lider (LHC) will certainly improve the bounds on many of the CP -violating and flavour-
changing processes, which are forbidden or strongly suppressed in the SM. Therefore it is
particularly interesting to determine possible experimental signatures in models involving
new FCNC physics.
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2 The model

In this section we shall briefly present the main features and physical consequences of the
model in question. A more complete and detailed analysis can be found in Ref. [11].

We consider a standard model Higgs sector in combination with an effective new strong
interaction acting on the third generation of quarks and characterized by a θ term. We
require that this new strong interaction conserves the isospin symmetry between t and
b quarks. Moreover, if one assumes that the electroweak symmetry breaking is induced
by radiative corrections due to top-quark (and possibly, bottom-quark) loops, the quartic
self-interactions of the Higgs field may be neglected. In this case, the relevant classical
Lagrangian for the fundamental scalar field H is given by

LH = DµH
†DµH −m2

HH
†H +

(
htψ̄LtRH + hbψ̄LbRH̃ + h.c.

)
, (1)

where H =

(
H0

H−

)
, H̃ =

(
H+

−H0∗

)
and ψL =

(
tL
bL

)
; ht and hb are the Yukawa

couplings and Dµ is the usual covariant derivative of the SM.
Next one assumes that the interactions acting on the members of the third generation

of quarks are strong enough to form quark-antiquark bound states at the electroweak
scale. The latter can be described in terms of two complex doublet scalar fields

Σt =

(
Σ0

t

Σ−
t

)
∼ tRψ̄L , Σ̃b =

(
Σ+

b

−Σ0∗
b

)
∼ bRψ̄L , (2)

and the corresponding effective Lagrangian then reads:

LΣ = DµΣ
†
tD

µΣt +DµΣ
†
bD

µΣb −m2(Σ†
tΣt + Σ†

bΣb) + g(ψ̄LtRΣt + ψ̄LbRΣ̃b + h.c.) . (3)

The effects of a new strong CP phase θ can, in principle, be described through an
arbitrary function of detU , where

U ∼
(

t̄LtR t̄LbR
b̄LtR b̄LbR

)
=

(
Σ0

t Σ−
b

Σ+
t −Σ0∗

b

)
. (4)

In analogy with QCD [12] we shall assume the Lagrangian form1

Lθ = −α

4

[
iTr
(
lnU − lnU †)+ 2θ

]2
, (5)

which typically arises as a leading term in a 1/N - expansion.
The total effective Lagrangian of the model is then given by

L = LH + LΣ + Lθ , (6)

1Another simple choice is given by the ’t Hooft determinant, i.e. Lθ = αeiθ detU + h.c..
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with LH , LΣ and Lθ defined by Eqs. (1), (3) and (5), respectively. Notice that if ht = hb
the Lagrangian (6) conserves an “isospin” symmetry. However, as shown in [11], the
angle θ provides a dynamical origin for both CP violation and isospin breaking, once
the neutral components of the three doublets H , Σb and Σt acquire nonzero vacuum
expectation values (VEV’s).

Denoting the VEV’s of the neutral components of the fields by

〈
H0
〉
=

v√
2
,
〈
Σ0

t

〉
=

σt√
2
eiϕt ,

〈
Σ0

b

〉
=

σb√
2
eiϕb , (7)

the effective potential reads

V = m2
H

v2

2
+
m2

2
(σ2

t + σ2
b )− β

(
µ2
t + µ2

b

)
+ λ
(
µ4
t + µ4

b

)
+ α (θ − ϕt + ϕb)

2 , (8)

where

µ2
i =

1

2

(
h2
i v

2 + g2σ2
i + 2hivgσi cosϕi

)
, i = t, b ; (9)

β and λ are some effective quadratic and quartic couplings, respectively. All couplings
and parameters in the potential are assumed to be real and positive.

The minimization of the potential implies the following system of equations:

AHv = ghtItσt cosϕt + ghbIbσb cosϕb ,

Atσt = ghtItv cosϕt ,

Abσb = ghbIbv cosϕb ,

ghtItvσt sinϕt = −ghbIbvσb sinϕb = 2α (θ − ϕt + ϕb) , (10)

where

AH = m2
H − h2

t It − h2
bIb ,

Ai = m2 − g2Ii ,

Ii = β − 2λµ2
i . (11)

The mass parameters mH and m are chosen such that the quantities AH , At and Ab

defined in Eqs. (11) are always positive.
If the parameter α is large, α � βm2

t , then the last equation in (10) implies the
constraint

θ � ϕt − ϕb . (12)

Furthermore, if θ = 0, it is easy to show that ϕt = ϕb = 0 is the only solution of the
equations and therefore CP is conserved.

A simple analytical solution can be given for the isospin symmetric case ht = hb �= 0
and assuming β � 2λm2

t . In this case It � Ib , At � Ab and therefore sin 2ϕt � − sin 2ϕb.
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Clearly the large splitting between the physical values of the bottom and top masses
(mb � mt) requires σb � σt and thus ϕt � 0, ϕb � −π/2, which in turn demands that
the CP -violating phase θ be close to π/2. In other words, the presence of a phase θ close
to π/2 induces both isospin breaking and CP violation with

σb � σt �= 0 , v �= 0 , ϕt � σb/σt , ϕb � −π/2 + σb/σt . (13)

The actual values of the VEV’s can be determined from the physical values of the
masses mb, mt and mW . For small values of v, i.e v � σb, σt , one has the simple
expressions

σb � mbv0√
m2

t +m2
b

, σt � mtv0√
m2

t +m2
b

, tanϕt � mb

mt
, (14)

where v0 =
√
v2 + σ2

t + σ2
b = (

√
2GF )

−1/2 � 246 GeV, GF is the Fermi coupling constant.
The mass spectra of the neutral and charged (pseudo) scalars are easily found. In the

neutral sector, it is straightforward to find the linear combination corresponding to the
Goldstone boson eaten up by the Z0 gauge boson. For α very large, one of the eigenvalues
of the mass matrix will be proportional to

√
α and therefore the corresponding linear

combination of the fields will decouple from the theory. The remaining 4×4 mass matrix
can be easily diagonalized. One finds that the standard Higgs scalar h has a mass given by
mh � 2g

√
λ mt , two of the remaining masses are proportional to

√
β and thus are quite

large. Finally the mass which corresponds mainly to a b̄γ5b bound state is very sensitive
to the difference ht − hb, but as soon as ht and hb differ (as expected from higher order
corrections) it will also get a contribution proportional to

√
β. In the charged sector one

of the eigenstates is eaten up by the W gauge boson through the usual Higgs mechanism.
For the isospin symmetric case hb = ht, we find that one of the charged Higgs masses
is very small, i.e. a new pseudo-Goldstone boson appears as it happens in the neutral
sector. Nevertheless, radiative corrections yield hb �= ht and therefore this mass will get a
large contribution proportional to

√
β.

To conclude this section let us comment on the origin of CP violation in the present
model. As shown in Ref. [11] the new interaction characterized by a θ �= 0 term induces
a CP -violating effect which filters down to the SM only if mb/mt �= 0. Moreover, this
new source of CP violation can be in principle responsible for what is observed in the
K0 − K̄0 system, since it leads indeed to a sizeable CP -violating phase in the CKM
matrix, δKM � −(ϕt + ϕb) � π/2.

3 The structure of flavour-changing interactions

In general, the presence of more than one Higgs doublet in the SM leads to FCNC in-
teractions at the tree level, which are mediated by the physical neutral scalars. Such
interactions are severely constrained by the smallness not only of the CP -violating pa-
rameter εK but also of the K0−K̄0 and B0− B̄0 mixing. The model we are considering is

5



effectively equivalent to a three Higgs doublet model with a specific structure for Yukawa
couplings. It is therefore straightforward to determine the form of the induced FCNC
interactions by generalizing the results obtained in the two Higgs doublet case [13].

Let us consider 3 Higgs doublets Φj and make the decomposition:

Φj = eiαj


 φ+

j

1√
2
(vj +Rj + iIj)


 , j = 1, 2, 3 , (15)

where Rj , Ij are real fields and vje
iαj denote the VEV’s of the Higgs fields. The Yukawa

couplings of the Higgs fields to the quark weak eigenstates are given by

LY = −(ūLd̄L)Φ1g
d
1dR − (ūLd̄L)Φ2g

d
2dR − (ūLd̄L)Φ̃1g

u
1uR − (ūLd̄L)Φ̃3g

u
3uR , (16)

where Φ̃ ≡ iσ2Φ
∗ and gu,di (i = 1, 2, 3) are the Yukawa coupling matrices. The quark mass

matrices are easily obtained,

Mu =
1√
2
v1g

u
1 +

1√
2
e−iα3v3g

u
3 , (17)

Md =
1√
2
v1g

d
1 +

1√
2
eiα2v2g

d
2 , (18)

where the phase α1 has been put equal to zero by an appropriate redefinition of the fields.
To single out the pseudo-Goldstone boson G0 we introduce the new fields φ0, R, R

′
,

G0, I and I
′
defined through the transformation

 R1

R2

R3


 = O


 φ0

R
R

′


 ,


 I1

I2
I3


 = O


 G0

I
I

′


 , (19)

with

O =


 v1/v0 v2/v

′
v1v3/v0v

′

v2/v0 −v1/v
′
v2v3/v0v

′

v3/v0 0 −v′
/v0


 (20)

and v2
0 = v2

1 + v2
2 + v2

3 , v
′2 = v2

1 + v2
2 . In terms of the new fields, the scalar couplings to

the down quarks can be written as

Ld
Y = − 1

v0

d̄LMd dR(φ
0 + iG0)− d̄L

(
gd1
v2

v′ − gd2
v1

v′ e
iα2

)
dR

R+ iI√
2

− v3

v0v
′ d̄LMd dR(R

′
+ iI

′
) + h.c. . (21)
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We notice that the couplings to the fields φ0, G0, R
′
and I

′
are flavour-conserving

while the couplings to R and I are flavour-violating. Similarly, for the couplings to the
up quarks one obtains

Lu
Y = − 1

v0
ūLMu uR(φ

0 − iG0)− ūL

(
gu1
v2

v′

)
uR

R− iI√
2

− ūL

(
gu1
v1v3

v0v
′ − gu3

v
′

v0

e−iα3

)
uR

R
′ − iI

′

√
2

+ h.c. , (22)

and thus the couplings of φ0, G0 conserve flavour while the couplings of R,R
′
, I, I

′
do

violate flavour.
It is useful to obtain the scalar-quark couplings in terms of the quark mass eigenstates.

In the down quark sector we find

Ld
Y = − 1

v0
d̄LDd dR(φ

0 + iG0)− d̄LNddR
R + iI√

2
− v3

v0v
′ d̄LDd dR(R

′
+ iI

′
) + h.c. , (23)

where Dd = U †
dLMd UdR = diag(md, ms, mb) and

Nd = U †
dL

(
gd1
v2

v′ − gd2
v1

v′ e
iα2

)
UdR =

√
2 v2

v′v1

Dd − v
′

v1

eiα2Gd
2 , (24)

Gd
2 ≡ U †

dLg
d
2UdR . (25)

In the up quark sector the couplings to the scalars in the quark mass eigenstate basis are
given by

Lu
Y = − 1

v0
ūLDu uR(φ

0 − iG0)− ūLNuuR
R − iI√

2
− ūLN

′
uuR

R
′ − iI

′

√
2

+ h.c. , (26)

where Du = U †
uLMu UuR = diag(mu, mc, mt) and

Nu =
v2

v′ U
†
uLg

u
1 UuR , (27)

N
′
u = U †

uL

(
v1v3

v0v
′ g

u
1 − v

′

v0
gu3 e

−iα3

)
UuR , (28)

which can be rewritten as

Nu =
v2

v2
1

√
2Du − v2v3

v2
1

e−iα3Gu
3 , (29)

N
′
u =

v3

v0v
′

√
2Du −

(
v2
3

v0v
′ +

v
′

v0

)
e−iα3Gu

3 , (30)

Gu
3 ≡ U †

uL g
u
3 UuR . (31)
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The Yukawa coupling matrices gd2 , g
u
3 have a very simple form in the present model,

namely,

gd2 =


 0 0 0

0 0 0
0 0 gb


 , gu3 =


 0 0 0

0 0 0
0 0 gt


 , (32)

and therefore the matrices Gd
2, G

u
3 defined in Eqs. (25) and (31) are given by

(
Gd

2

)
ij
= gb (U

∗
dL)3i (UdR)3j , (33)

(Gu
3)ij = gt (U

∗
uL)3i (UuR)3j . (34)

These matrices completely determine the structure of tree-level FCNC interactions in the
model. Without further assumptions we cannot predict the size of such interactions. We
shall assume that the quark mass matrices Mu,d are hermitian2 and that the CKM mixing

matrix V ≡ U †
uLUdL is dominated by UdL, i.e. UuL � 11, as favoured phenomenologically.

Under the above “reasonable” assumptions, the off-diagonal elements of Nd in Eq. (24)
are entirely predicted in terms of V since from Eq. (33) we obtain

(
Gd

2

)
ij
= gbV

∗
3iV3j . (35)

Finally, new contributions to flavour-changing processes will be also induced by the
couplings of the heavy charged Higgs fields to the quarks. Such contributions corre-
spond to Feynman box diagrams with W -boson and charged Higgs particle exchanges.
To determine the magnitude of these couplings, let us introduce the new charged fields
G+, H+

1 , H
+
2 through the decomposition

 φ+
1

φ+
2

φ+
3


 = O


 G+

H+
1

H+
2


 , (36)

where the matrix O is given by Eq. (20) and G+ corresponds to the pseudo-Goldstone
boson. Going to the physical basis for the charged Higgs fields, the couplings to the dR
and uR quarks are given by

L+
Y =−

√
2 ūLMd dRG

+ − ūLA
d
1dRH

+
1 − ūLA

d
2dRH

+
2

−
√
2 d̄LMu uRG

− − d̄LA
u
1uRH

−
1 − d̄LA

u
2uRH

−
2 + h.c. , (37)

2According to the polar decomposition theorem, the mass matrices Mu,d can always be written as a
product of a hermitian matrix and a unitary matrix. The latter can be rotated away by a redefinition of
the right quark fields. Notice however that the form of the coupling matrices gd

2 and gu
3 given in Eq. (32) is

in general not invariant under such a transformation. Here we shall assume that the quark mass matrices
are hermitian in the basis where the couplings have the special form (32). Our analysis can be easily
extended to a more general case.
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where we have introduced the coupling matrices

Au
i = e−iα2

(
gu1O1(i+1) + gu3 e

−iα3O3(i+1)

)
, (38)

Ad
i = eiα3

(
gd1O1(i+1) + gd2e

iα2O2(i+1)

)
, i = 1, 2 . (39)

After performing a rotation to the quark mass eigenbasis we obtain

Au
i = V †e−iα2

[√
2

v1

DuO1(i+1) +Gu
3e

−iα3

(
O3(i+1) − v3

v1

O1(i+1)

)]
, (40)

Ad
i = V eiα3

[√
2

v1
DdO1(i+1) +Gd

2e
iα2

(
O2(i+1) − v2

v1
O1(i+1)

)]
, (41)

with Gd
2 , G

u
3 defined in Eqs. (25) and (31), respectively.

It is clear that in order to analyze the charged Higgs contributions to the relevant
flavour-changing processes we need to know the structure of the unitary matrices UuL, UuR.
To be able to predict the size of such contributions, we shall assume that the up quark
mass matrix Mu is approximately given by the texture zero structure [14],

Mu =


 0 a 0

a b c
0 c d


 . (42)

In this case

UuL ∼ UuR ∼

 1

√
mu/mc

√
εmum2

c/m
3
t

−√mu/mc 1
√
εmc/mt√

εmu/mt −√εmc/mt 1


 , (43)

where

ε ≡ d−mt

mc

. (44)

Such a choice is of course in agreement with our previous assumption of the matrices UuL

and UuR being close to the identity matrix.
Under the above conditions, the coupling matrix Gu

3 defined in Eq. (34) takes the
simple form

Gu
3 = gt


 εmu/mt −ε√mumc/mt

√
εmu/mt

−ε√mumc/mt εmc/mt −√εmc/mt√
εmu/mt −√εmc/mt 1


 . (45)
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In the context of our model, where the hierarchy v � σb � σt is expected among the
VEV’s, Eqs. (20), (40) and (41), together with (45) and (35), yield

Au
1 �

√
2

v
V † eiϕb


 0 0 0

0 mc(1− ε e−ϕt) −√
εmcmt e

−iϕt

0 −√
εmcmt e

−iϕt mt(1− e−iϕt)


 , (46)

(Ad
1)ij �

√
2

v
eiϕt

3∑
k=1

Vik
[
(Dd)kj −mbV

∗
3kV3je

−iϕb
]
, (47)

Au
2 � Au

1 , Ad
2 � Ad

1 , (48)

after the corresponding identification v1 = v, v2 = σb , v3 = σt and α2 = −ϕb , α3 = ϕt .
In particular, this implies that the contributions to flavour-changing processes coming
from the charged Higgs H+

2 will be strongly suppressed, provided that the Higgs mass
mH+

2
� mH+

1
. In what follows we assume that the latter condition is satisfied. Moreover,

we shall discuss two limiting cases: ε � mu/mc � 0, which corresponds to b � mc in
Eq. (42), and ε � 1, i.e. b � mu � 0.

4 New physics and εK, ∆mBd, ∆mBs, ∆mD

Within the SM, the CKM matrix is constrained by unitarity and experimental data.
These constraints are usually expressed in terms of the Wolfenstein parameters A, ρ and
η [15], and presented as a unitarity triangle in the complex plane (ρ̄, η̄) (see Fig. 1 below)
[1, 16]. They can be summarized as follows [17, 18]:

¿From semileptonic K and B decays we have3

|Vus| = λ = 0.2205 ± 0.0018, |Vcb| = 0.040 ± 0.002,

|Vub| = (3.56 ± 0.56)×10−3, A =
|Vcb|
λ2

= 0.826 ± 0.041, (49)

which implies

Rb ≡
√
ρ̄2 + η̄2 =

1

λ

∣∣∣∣VubVcb

∣∣∣∣ = 0.39 ± 0.07 , (50)

with ρ̄ = ρ(1 − λ2/2) , η̄ = η(1 − λ2/2) . The above results are extracted from tree
level decays with large branching ratios and therefore their determination is essentially
independent of physics beyond the SM.

Next, for the CP violating parameter εK (and assuming εK � ε′),

εK � eiπ/4√
2

Im
(
MK

12

)
∆mK

, MK
12 =

〈K0|Heff(∆S = 2)|K̄0〉
2mK

, (51)

3All our input parameters are taken from [1, 17].
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the calculation of the box diagrams describing the K0 − K̄0 mixing in SM gives

εSM
K = eiπ/4CεB̂KIm(λt)[Re(λ

∗
c)(η1S0(xc)− η3S0(xc, xt))−Re(λ∗

t )η2S0(xt)] ,

Cε =
G2

Fm
2
W f 2

KmK

6
√
2∆mK

= 3.84×104 , λi = (V ∗
isVid) , xi =

m2
i

m2
W

. (52)

Comparing this result with the experimental value |εK | = (2.280 ± 0.013)×10−3, one ob-
tains a constraint in the form of the hyperbola

η̄
[
(1− ρ̄)A2η2S0(xt) + Pc(ε)

]
A2B̂K = 0.226 . (53)

In the above formulas, Pc(ε) = 0.31 ± 0.05 summarizes the charm-charm and charm-top
contributions in the SM, B̂K = 0.80 ± 0.15 is a nonperturbative parameter, the correction
factors η1 = 1.38 ± 0.20, η2 = 0.57 ± 0.01, η3 = 0.47 ± 0.04 describe the short-distance
QCD effects, fK = 160 MeV is the kaon decay constant, mK = 497.672 ± 0.031 MeV
is the kaon mass and ∆mK = (3.489 ± 0.008)×10−12 MeV is the mass difference in the
K system. The gauge independent functions S0 which govern the FCNC processes are
approximately given by

S0(xt) = 2.46
( mt

170GeV

)1.52

, S0(xc) = xc ,

S0(xc, xt) = xc

[
ln
xt
xc

− 3xt
4(1− xt)

− 3x2
t ln xt

4(1− xt)2

]
, (54)

where mc = 1.30 ± 0.05 GeV and mt = 165 ± 5 GeV correspond to the running quark
masses defined as mq ≡ mq(m

pole
q ).

Substituting the numerical values for the parameters in Eq. (53) the εK constraint
reads

η̄[(1− ρ̄)(0.91 + 0.16
− 0.14 + (0.31 ± 0.05)] = 0.41 + 0.15

− 0.10 . (55)

Next, the amplitude for the ∆B = 2 transition in the B0
d,s − B̄0

d,s systems is given in
the SM by

MSM
12 (Bq) =

〈B0
q |Heff(∆B = 2)|B̄0

q 〉
2mBq

= κq(VtbV
∗
tq)

2 , q = d, s , (56)

κq =
G2

F

12π2
m2

WηBmBqf
2
Bq
B̂BqS0(xt) ,

so that the mass differences are

∆mBq = 2|MSM
12 (Bq)| = 2|κq(VtbV ∗

tq)
2| . (57)

Here ηB = 0.55 ± 0.01 is a QCD correction coefficient, mBd
= 5.28 GeV and mBs =

5.37 GeV are the B-meson masses and the factor fBqB̂
1/2
Bq

measures the hadronic un-

certainties. Recent lattice QCD estimates give fBd
B̂

1/2
Bd

= 200 ± 40 MeV and ξs ≡
(fBsB̂

1/2
Bs

)/(fBd
B̂

1/2
Bd

) = 1.14 ± 0.08.
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Combining the experimental value ∆mBd
= 0.471 ± 0.016 ps−1 with Eq. (57) we can

determine the parameter

Rt ≡
√

(1− ρ̄)2 + η̄2 =
1

λ

∣∣∣∣VtdVcb

∣∣∣∣ =
[ |Vtd|
8.8×10−3

] [
0.040

|Vcb|
]
= 0.98 + 0.37

− 0.22 . (58)

On the other hand, the measurement ∆mBs > 12.4 ps−1 allows us to determine Rt in a
different way, namely,

Rt =
1

λ

∣∣∣∣VtdVts

∣∣∣∣ = ξs
λ

√
mBs

mBd

√
∆mBd

∆mBs

< 1.03 + 0.15
− 0.14 . (59)

Fig. 1 summarizes the constraints given by Eqs. (50), (55), (58) and (59) in the plane (ρ̄, η̄)
within the SM. The dot-filled area corresponds to the presently allowed region if no new
physics beyond the SM is invoked.
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0
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↓
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/ V
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|

← ∆ m
B

d

∆ m
B

s

 →

Figure 1: Constraints on the plane (ρ, η) coming from the measurements of |Vub/Vcb|
(dashed), εK (solid), ∆mBd

(dot-dashed) and ∆mBs (dotted) within the Standard Model.
The dot-filled area corresponds to the presently allowed region.

The model of interest to us and presented in Section 2 contains new physical fields
when compared to the SM. As the masses of such fields are expected to be much larger than
mW , their contributions to charged current tree level decays should be negligible. They
can however significantly contribute to quantities such as εK and ∆mBd,s

, thus playing an
important role in the determination of the unitarity triangle. To establish their impact,
first we shall compute the new contributions to εK ,∆mBd

and ∆mBs coming from the
FCNC processes induced by the heavy neutral Higgs field. Then we shall compare these
contributions with the ones induced by the new heavy charged Higgs fields. As we shall
see, if the mass scale for the heavy charged Higgs (mH+) is of the same order than the
scale for the heavy neutral Higgs (mH0), new physics contributions are always dominated
by tree-level FCNC effects. Finally, new contributions to the ∆mD mass difference are
also expected and they are discussed at the end of this section.
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4.1 FCNC contributions

Since the couplings of down quarks to the neutral scalar fields R and I are flavour-violating
(cf. Eqs. (23) and (24)), they will induce a tree-level FCNC contribution to K0 − K̄0

mixing. In the framework of our model such couplings are determined by Eqs. (24), (35)
and given by

Γd
ij = −

√
v2 + σ2

b

v
eiϕb (Gd

2)ij � −
√
2mb

v
eiϕb V ∗

3iV3j , (60)

where we have used the fact that v � σb, mb � gb σb/
√
2. To estimate the hadronic

matrix elements it is customary to use the so-called vacuum insertion approximation [16].
In this approximation, the new physics contribution to the matrix element M12 of the
transition K0 − K̄0 will be given by

Mnew
12 (K) =

< K0|Hnew
eff |K̄0 >

2mK
= −e2iϕb

f 2
KmKB̂Km

2
b

4v2m2
H0

(V ∗
tdVts)

2

[
1

6
+

(
mK

md +ms

)2
]
,

(61)

where Hnew
eff is the effective ∆S = 2 Hamiltonian induced by the neutral Higgs exchange. It

is now straightforward to compute the FCNC contribution to the CP -violating parameter
εK defined in Eq. (51). We obtain

εH
0

K = −C(0)
ε |Vus|2|Vcb|4

{[
(1− ρ)2 − η2

]
sin 2ϕb + 2η(1− ρ) cos 2ϕb

} m2
b

m2
H0

, (62)

where

C(0)
ε =

mKf
2
KB̂K

4
√
2∆mKv2

[
1

6
+

(
mK

md +ms

)2
]
� 6.8×1012

[
GeV

v

]2

, (63)

with ms(mc) = 130 MeV, md(mc) = 8 MeV. Substituting the central values |Vus| =
0.2205, |Vcb| = 0.040, mb = 4.25 GeV in Eq. (62) and assuming ϕb � π/2, we find

εH
0

K � 30.6 η (1− ρ)

[
GeV

v

]2 [
TeV

mH0

]2

. (64)

A lower bound on the scale of the heavy neutral Higgs can be then obtained by
requiring the new physics contribution (64) to be smaller than the SM contribution, i.e.
|εH0

K | < |εSM
K |. Since for the central values of the parameters, the contribution to εK in

the SM (cf. Eq. (52)) is approximately given by

|εSM
K | � 5.2×10−3η (1.34− ρ) , (65)

we find for 0 � ρ � 0.3,

mH0 � 65TeV

[
GeV

v

]
. (66)
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In particular, for v =
√
2mc � 1.84 GeV we obtain

mH0 � 35TeV . (67)

New FCNC contributions induced by the heavy neutral Higgs field H0 in the mass
differences ∆mBq (q = d, s) are easily obtained from the previous results on εK . For the
matrix elements Mnew

12 (Bq) we have

Mnew
12 (Bq) = −e2iϕb κ(0)

q (V ∗
tqVtb)

2 m2
b

m2
H0

, (68)

κ(0)
q =

f 2
Bq
B̂BqmBq

4v2

[
1

6
+

(
mBq

mq +mb

)2
]
,

with

κ
(0)
d � 0.09GeV

[
GeV

v

]2

, κ(0)
s � 0.12GeV

[
GeV

v

]2

. (69)

This implies

∆mH0

Bd
= 2|Mnew

12 (Bd)| = 2κ
(0)
d |Vus|2|Vcb|2

[
(1− ρ)2 + η2

] m2
b

m2
H0

� 3.84×102 ps−1
[
(1− ρ)2 + η2

] [GeV

v

]2 [
TeV

mH0

]2

, (70)

∆mH0

Bs
= 2|Mnew

12 (Bs)| = 2κ(0)
s |Vcb|2 m2

b

m2
H0

� 1.02×104 ps−1

[
GeV

v

]2 [
TeV

mH0

]2

. (71)

These FCNC contributions to ∆mBq are to be compared with the SM contributions
given by Eq. (57) and which can be approximately written as

∆mSM
Bd

� 0.48 ps−1
[
(1− ρ)2 + η2

]
, ∆mSM

Bs
� 13.04 ps−1 . (72)

We have then

wq ≡
∆mH0

Bq

∆mSM
Bq

=
κ

(0)
q

κq

m2
b

m2
H0

� 0.19

[
GeV

v

]2 [
65TeV

mH0

]2

� 0.19 , (73)

if the lower bound given in Eq. (66) for mH0 is satisfied. We see that the contributions to
∆mBq coming from the neutral Higgs are much smaller than the SM ones. In Fig. 2 we

illustrate our results for mH0 = 35 TeV and v =
√
2mc. We notice that while εK is quite

sensitive to new physics, the constraints coming from B0 − B̄0 mixing practically do not
change when compared to the SM results.
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Figure 2: Constraints on the plane (ρ, η) after including the new FCNC contributions
induced by the heavy neutral Higgs H0. The curves are given for mH0 = 35 TeV, v =√
2mc and we assume mH+

1
� mH+

2
� mH0 . The dot-filled area corresponds to the region

allowed by the present experimental bounds.

4.2 Charged-current contributions

The main contributions to flavour-changing processes induced by the charged Higgs field
H+

1 are described by box diagrams where H+
1 and the W gauge boson are circulating

inside the box4. Their computation is also straightforward.
For the new physics contribution to the amplitude M12 in the K0− K̄0 system we find

Mnew
12 (K) =

√
2GFm

2
WmKf

2
KB̂K

24π2v2
[λ∗

tΓttft + λ∗
cΓccfc + (λ∗

ctΓct + λ∗
tcΓtc)fct]

m2
t

m2
H+

,

ft = −xt
2

[
1 + ln xt − 3

xt − 1
+

3 lnxt
(xt − 1)2

]
, fc = −2xc (1 + ln xc) ,

fct =
√
xcxt

[
2xc ln xc

xt
+

3

2

ln xt
xt − 1

+
1

2
ln
xH+

xt

]
,

Γij = gid g
∗
js , λij = V ∗

isVjd , i = c, t , (74)

with λi and xi defined in Eq. (52). Moreover, according to Eq. (46),

gtα = −V ∗
cα e

−iϕt

√
εmc

mt
+ V ∗

tα(1− e−iϕt) , (75)

gcα = V ∗
cα(1− ε e−iϕt)

mc

mt

− V ∗
tα e

−iϕt

√
εmc

mt

, α = d, s, b .

4As discussed at the end of Section 3, the contributions coming from the charged Higgs field H+
2 can

be neglected if mH+
2
� mH+

1
(cf. Eq. (48)).
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Therefore, the charged Higgs contribution to εK reads

εH
+

K = C(+)
ε [Atft + Acfc + Actfct]

m2
t

m2
H+

, (76)

where

At = Im(λ∗
tΓtt) , Ac = Im(λ∗

cΓcc) , Act = Im(λ∗
tcΓtc + λ∗

ctΓct) ,

C(+)
ε =

GFm
2
WmKf

2
KB̂K

24π2v2∆mK

� 0.93×109

[
GeV

v

]2

. (77)

When the texture parameter ε = 0 , the coefficients Ai in Eq. (76) are approximately
given by

At � 4(1− cosϕt)|Vcb|2(1− ρ)J , Ac � 0 ,

Act � 2
mc

mt

(1− cosϕt)J , J = |Vus|2|Vcb|2η , (78)

while for ε = 1 they are

At � Ac � J
mc

mt
, Act � 2J(1− ρ)

mc

mt
. (79)

We can now give a numerical estimate of the above contributions. Using the fact that
cosϕt � 1−m2

b/(2m
2
t ) we obtain

εH
+

K

∣∣∣
ε=0

� −0.016 η (1− ρ)

[
GeV

v

]2 [
TeV

mH+

]2

, (80)

εH
+

K

∣∣∣
ε=1

� −2.55 η (23.6 + ρ)

[
GeV

v

]2 [
TeV

mH+

]2

. (81)

If we require that |εH+

K | < |εSM
K | , where εSM

K is given in Eq. (65), then we can find the
following lower bounds on the charged Higgs mass for 0 � ρ � 0.3,

mH+ � 1.5TeV

[
GeV

v

]
for ε = 0 , (82)

mH+ � 101TeV

[
GeV

v

]
for ε = 1 . (83)

This in particular implies for v � √
2mc ,

mH+ � 800GeV if ε = 0 , mH+ � 55TeV if ε = 1 . (84)

Let us now consider the charged Higgs contributions to B0
d,s − B̄0

d,s mixing. Their
computation is analogous to the one in the K0 − K̄0 system. We obtain

Mnew
12 (Bq) = κ(+)

q

[
A

(q)
tt ft + A(q)

cc fc + (A
(q)
ct + A

(q)
tc )fct

] m2
t

m2
H+

, (85)

κ(+)
q =

√
2GFm

2
WmBqf

2
Bq
B̂Bq

24π2v2
, A

(q)
ij = VibV

∗
jqgiqg

∗
jb , q = d, s ,
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with

κ
(+)
d � 0.95×10−4 GeV

[
GeV

v

]2

, κ(+)
s � 1.26×10−4 GeV

[
GeV

v

]2

, (86)

fi and gij defined in Eqs. (74) and (75), respectively.
For ε = 0 the amplitude (85) is dominated by the top quark contributions described

by the coefficient A
(q)
tt . We have

A
(q)
tt � 2(VtbV

∗
tq)

2 (1− cosϕt) � (V ∗
tq)

2m
2
b

m2
t

. (87)

The top-charm terms proportional to A
(q)
tc will however give an important contribution to

the amplitude in the case of ε = 1 . In the latter case we find for the relevant coefficients:

A
(q)
tt � V ∗

tqV
∗
cqV

2
tb (1− e−iϕt)

√
mc

mt
� iV ∗

tqV
∗
cq

mb

mt

√
mc

mt
,

A
(q)
tc � (V ∗

cq)
2V 2

tb

mc

mt

� (V ∗
cq)

2mc

mt

. (88)

Therefore, the new contributions to the mass differences ∆mBq will be given by

∆mH+

Bd

∣∣∣
ε=0

= 2κ
(+)
d |Vus|2|Vcb|2

[
(1− ρ)2 + η2

] |ft| m2
b

m2
H+

� 1.65 ps−1
[
(1− ρ)2 + η2

] [GeV

v

]2 [
TeV

mH+

]2

, (89)

∆mH+

Bs

∣∣∣
ε=0

= 2κ(+)
s |Vcb|2|ft| m

2
b

m2
H+

� 22.4 ps−1

[
GeV

v

]2 [
TeV

mH+

]2

. (90)

Comparing these values with the SM result given in Eqs. (72) we arrive at

∆mH+

Bq

∆mSM
Bq

� 1.55

[
GeV

v

]2 [
1.5TeV

mH+

]2

. (91)

We see that for mH+ close to the lower bound (82) the charged Higgs contributions to
B0

d,s−B̄0
d,s mixing are of the same order of magnitude than the SM ones. A slightly higher

value of mH+ is required if we impose ∆mH+

Bq
< ∆mSM

Bq
. From Eq. (91) it follows then

mH+ � 1TeV for ε = 0 , (92)

with v � √
2mc .
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In the case of ε = 1 we have

∆mH+

Bd

∣∣∣
ε=1

= 2κ
(+)
d |Vus|2

∣∣∣∣−iVcb(1− ρ+ iη)

√
mc

mt
ft +

mc

mb
fct

∣∣∣∣ mbmt

m2
H+

� 140 ps−1
∣∣∣1.8− η + 0.7 ln

(mH+

TeV

)
+ i(1− ρ)

∣∣∣ [GeV

v

]2 [
TeV

mH+

]2

, (93)

∆mH+

Bs

∣∣∣
ε=1

= 2κ(+)
s

∣∣∣∣−iVcb
√
mc

mt
ft +

mc

mb
fct

∣∣∣∣ mbmt

m2
H+

� 3.8×103 ps−1
∣∣∣1.8 + 0.7 ln

(mH+

TeV

)
+ i
∣∣∣ [GeV

v

]2 [
TeV

mH+

]2

. (94)

Comparing these contributions with the SM result (72) we find:

∆mH+

Bq

∆mSM
Bq

� 0.15 , (95)

for mH+ � 55TeV and v � √
2mc as given by the bound (83).

In Fig. 3 we illustrate the constraints on the (ρ, η)-plane for mH+ = 2 TeV, v =
√
2mc

and the parameter ε = 0. We assume mH0 � mH+ and thus, only the contribution
coming from the flavour-changing charged current is taken into account. The dot-filled
area corresponds to the allowed region. A similar plot is given in Fig. 4 for the case ε = 1
and mH+ = 80 TeV.

4.3 FCNC and ∆mD

In the up quark sector, D0 − D̄0 mixing is perhaps one of the most interesting processes
given that this process is highly suppressed in the SM: ∆mSM

D < 10−15 GeV. To estimate
the size of FCNC contributions to the mass difference ∆mD we use the expression (29)
and the approximate form (43) for the matrices UuL, UuR. The relevant couplings are then
given by

Γu
ij = −σbσt

v2
e−iϕt(Gu

3)ij � −2mbmt

v2
e−iϕt(Gu

3)ij , (96)

where Gu
3 is given in Eq. (45) and we have used mb � gbσb/

√
2 , mt � gtσt/

√
2, gb,t � 1,

to approximate the right hand side of Eq. (96).
Keeping the dominant term we obtain

Mnew
12 (D) = −ε2e−2iϕtκ(0)

u

m2
b

m2
H0

, (97)

κ(0)
u =

4mumcf
2
DB̂DmD

v4

[
1

6
+

(
mD

mu +mc

)2
]
,

� 5.4× 10−3 GeV

[
GeV

v

]4

,
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where fD
√
B̂D � 225 MeV [19], mD = 1.86 GeV and we take mu � 5MeV. Therefore,

∆mD = 2|M12(D)| = 2ε2κ(0)
u

m2
b

m2
H0

� 4.6 ε2 × 10−11 GeV

[
GeV

v

]4 [
65TeV

mH0

]2

. (98)

Using the bound on mH0 coming from K physics (cf. Eq. (67)), one obtains the upper
limit

∆mD � 1.35 ε2×10−11 GeV . (99)

We notice that except when ε � 1, our model predicts a value for ∆mD much larger
than in the SM. This is a clear signature of the model.

Comparing the above value with the experimental limit

(∆mD)exp < 5×10−14 GeV , (100)

we find an upper limit on the parameter ε,

ε � 0.06 , (101)

which in turn translates into constraints on the texture form (42) assumed here for the
up quark mass matrix Mu.

At this point it is worth recalling that flavour-changing contributions induced by new
physics crucially depend on the specific patterns of the fermion mass matrices. In our
analysis we have assumed a simple but quite generic Ansatz for the up-quark mass matrix,
expressed in terms of quark mass ratios and a free parameter ε. This parameter is therefore
expected to be constrained in order to avoid dangerous large contributions to low-energy
observable effects. It is clear that more specific mass matrix textures (e.g. triangular-type
textures in the up-quark sector) could lead to a natural suppression of these contributions
and the above constraints thus be avoided.

5 Electric dipole moment of the neutron

The electric dipole moment (EDM) of a fermion Ψ is defined as

iFD(k
2)Ψ(p1)γ5σ

µνΨ(p2)Fµν ,

where Fµν is the electromagnetic tensor and kµ = p2µ− p1µ. In the present model, we can
expect a large contribution to the EDM of the neutron induced by the spontaneous CP
violation if the phases ϕt,b �= 0, π. In the latter case, the exchange of the heavy neutral
and the heavy charged Higgs fields are expected to contribute to the EDM of the neutron.
For the down quark contribution with exchange of a heavy neutral Higgs the dominant
term is given by (f = d, u)∣∣∣∣FD(0)

e

∣∣∣∣
f

� |Qf |
16π2

Im(Γf
31Γ

f
13)

√
xf (x

2
f − 1− 2xf ln xf )

(xf − 1)3 mH0

, (102)
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where xd,u ≡ m2
b,t/m

2
H0 , Qu = 2/3 , Qd = −1/3 , Γd

ij and Γu
ij are defined in Eqs. (60) and

(96), respectively. Using the fact that mb � gbσb/
√
2 , mt � gtσt/

√
2 and assuming as

before gb,t � 1, we have

Γd
31 � −

√
2mb

v
eiϕb Vtd , Γd

13 � −
√
2mb

v
eiϕb V ∗

td , (103)

Γu
31 = Γu

13 � −2mb
√
εmumt

v2
e−iϕt . (104)

Since xf � 1 and sin 2ϕb,t � 2mb/mt, Eqs. (102) are approximately given by∣∣∣∣FD(0)

e

∣∣∣∣
d

� 1

12π2
|Vtd|2 m4

b

v2mtm
2
H0

� 8×10−30 cm

[
GeV

v

]2 [
65TeV

mH0

]2

, (105)

∣∣∣∣FD(0)

e

∣∣∣∣
u

� ε

3π2

mum
3
bmt

v4m2
H0

� ε×10−23 cm

[
GeV

v

]4 [
65TeV

mH0

]2

, (106)

after substituting the values mu � 5MeV, mb � 4.25GeV, mt � 165GeV and |Vtd| � 0.01.
Thus, using the lower bound on mH0 given by Eq. (67), we obtain the following upper

bounds on the electric dipole moments of the quarks:∣∣∣∣FD(0)

e

∣∣∣∣
d

� 8×10−30 cm ,

∣∣∣∣FD(0)

e

∣∣∣∣
u

� 3 ε×10−24 cm . (107)

Taking into account that mu/mc � 10−3 � ε ≤ 1 and assuming∣∣∣∣FD(0)

e

∣∣∣∣
n

�
∣∣∣∣FD(0)

e

∣∣∣∣
d

+

∣∣∣∣FD(0)

e

∣∣∣∣
u

, (108)

we conclude from Eqs. (107) that the EDM will be always dominated by the up-quark
contribution. Moreover,

10−27 cm �
∣∣∣∣FD(0)

e

∣∣∣∣
n

� 10−24 cm (109)

in the allowed range of the parameter ε. Of course, the above conclusions hold for our
specific choice of the up-quark mass matrix texture (42). If such is the case, then the
predicted EDM is expected to be very close to the present experimental limit [1]∣∣∣∣FD(0)

e

∣∣∣∣
exp

< 10−26 cm . (110)

The comparison of Eqs. (107) with the experimental bound (110) allows us to further
constrain the parameter ε. We find

10−3 � ε � 3× 10−3 , (111)
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which is more restrictive than the upper bound previously found from D0 − D̄0 mixing
(see Eq. (101)). Notice however that the constraint (111) was obtained assuming the lower
bound on the Higgs mass given by Eq. (67) and implied by εK . We could of course relax
this constraint by pushing the heavy neutral Higgs mass to a higher scale, but then the
“raison d’être” of our model would be lost and its predictions would be close to the SM
ones. From a phenomenological point of view we find more plausible to fix the Higgs
scale from the constraints coming from K and B physics and, in particular, from the CP -
violating parameter εK . Other constraints, such as the EDM of the neutron, will then
give us a hint on what kind of quark mass matrix textures are favoured in the theory.

Let us now consider the charged Higgs contributions. In this case the dominant con-
tribution is coming from the diagrams with a top quark circulating inside the loop. The
photon line can be attached to the Higgs line or to the quark line. Therefore we have∣∣∣∣FD(0)

e

∣∣∣∣
H+

� 1

16π2
Im
[
(Ad

1)31(A
u
1)13
]{

QH−

√
xu (x

2
u − 1− 2xu ln xu)

(xu − 1)3

+ Qu

√
xu (x

2
u − 4xu + 3 + 2 lnxu)

(xu − 1)3

}
1

mH+

, (112)

with xu now defined as xu ≡ m2
t/m

2
H+ , QH− = −1; Au

1 and Ad
1 given by Eqs. (46) and

(47), respectively. Since

(Au
1)13 �

√
2

v
eiϕbV ∗

tdmt(1− eiϕt) � −i
√
2

v
eiϕbV ∗

tdmb , (113)

(Ad
1)31 � −

√
2

v
ei(ϕt−ϕb) Vtdmb , (114)

we obtain ∣∣∣∣FD(0)

e

∣∣∣∣
H+

� 3

8π2

m2
bmt

v2m2
H+

|Vtd|2 � 2× 10−22 cm

[
GeV

v

]2 [
TeV

mH+

]2

. (115)

Imposing the experimental constraint given in Eq. (110), we get a stronger constraint
on mH+ than the lower bound (82), namely,

mH+ � 140TeV

[
GeV

v

]
. (116)

In particular, for v � √
2mc we obtain

mH+ � 75TeV . (117)

We also remark that in leading order this bound is independent of the texture parameter
ε .
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6 FCNC in top decays: the example t → q γ

The FCNC decays t → q γ and t → q Z are strongly suppressed in the SM at the level of
10−12. Observation of any of these events would be an indication of physics beyond the
SM. It is of particular interest to study the order of magnitude that our model predicts
for such processes. The amplitude of t → q γ can be parametrized as

Mγ ≡ q̄(p1)

[
i(A +Bγ5)σ

µν qν
mt

]
t(p2)Aµ , (118)

where Aµ is the photon field and qµ ≡ p2µ − p1µ. The decay width of this process is given
by

Γ(t → q γ) =
mt

8π

(|A|2 + |B|2) , (119)

and is dominated by the process t → bW ,

Γ(t → bW ) =
GF

8
√
2π

|Vtb|2 m3
t

(
1− m2

W

m2
t

)(
1 +

m2
W

m2
t

− 2
m4

W

m4
t

)
. (120)

Once the coefficients A and B are known, it is straightforward to compute the branch-
ing ratio corresponding to the process t → q γ . Recently, an experimental limit on this
process has been reported [20]

B(t → qγ) < 0.032 , (121)

which can be translated into a limit on the parameters A and B,

|A|2 + |B|2 < 6.5× 10−3 . (122)

This limit should improve with the future LHC, which is expected to decrease the above
bound by two orders of magnitude [21]

B(t → q γ) < 10−4 , (123)

i.e.

|A|2 + |B|2 < 2×10−5 . (124)

In our model one expects that a such process will be induced by one loop diagrams
as is the case for the EDM. Moreover, both contributions, with a heavy neutral Higgs
exchange and with a charged Higgs exchange, should be taken into account. One expects
then using the bounds given by Eqs. (67) and (117),

A ≈ B � m2
b

m2
H0

� 10−8 (125)
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for the neutral Higgs exchange, while

A ≈ B � m2
t

m2
H+

� 5× 10−6 (126)

for the charged Higgs exchange.
Since the above bounds are further multiplied by additional suppression factors coming

from the CKM matrix, we can conclude that the prediction of the present model for the
process t → q γ is out of the reach of the next future colliders.

7 Implications on CP asymmetries

As discussed in Section 4, if mH+ � mH0 then the flavour-changing charged Higgs contri-
butions to ∆mBd,s

are negligible. In order to study the implications of the model on CP
asymmetries, we shall assume that new physics appears only through tree-level FCNC
effects.

An easy way to parametrize the effects of new physics on B0
q − B̄0

q mixing is by
introducing the parameters r2

q and the phases 2θq through the relation

M12(Bq) = MSM
12 +Mnew

12 ≡ r2
qe

2iθqMSM
12 (Bq) . (127)

On the other hand, from Eqs. (56) and (68) we have

M12(Bq) = (1− wqe
2iϕb)MSM

12 (Bq) , (128)

with wq defined in Eq. (73). Comparing Eqs. (127) and (128) we find the relations

r2
q =
√

1− 2wq cos 2ϕb + w2
q , tan 2θq =

−wq sin 2ϕb

1− wq cos 2ϕb

. (129)

Within the SM, the CP asymmetry aψKs in B0
d (B̄

0
d) → ψKS decays is related to the

angle β of the unitarity triangle,

aψKs = sin 2β , β = arg

[
−VcdV

∗
cb

VtdV ∗
tb

]
. (130)

While global analyses of the CKM unitarity triangle yield the values

(sin 2β)SM =




0.75± 0.06 [22] ,
0.73± 0.20 [23] ,
0.63± 0.12 [24] ,

(131)

the recent experimental measurements of the above time dependent CP asymmetry give

(sin 2β)ψKS
=




0.12± 0.37± 0.09 (BABAR) [25] ,
0.45± 0.44± 0.08 (BELLE) [26] ,
0.79± 0.42 (CDF) [27] .

(132)
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The above experimental values imply the average

(sin 2β)ψKS
= 0.42± 0.24 . (133)

Although the SM estimates are consistent with the present experimental results, the small
values of sin 2β found by BABAR and BELLE collaborations might indicate the presence
of new physics contributions.

If the new physics modifies the phase of the mixing amplitude, then the asymmetry
will also get a contribution from the θd phase,

aψKs = sin 2(β + θd) . (134)

Moreover, if we assume that the θ term in Lagrangian (6) is the only source of CP
violation in our model, then ϕb � −π/2 +mb/mt . In this case Eqs. (129) imply

rd �
√
1 + wd , tan 2θd � 2wd

1 + wd

mb

mt

. (135)

We see that the new phase θd is suppressed by the ratio mb/mt . Using the upper bound
wd � 0.19 given by Eq. (73) we find

rd � 1.1 , rs � rd , tan 2θd � 0.008 . (136)

Although these predictions are consistent with the global average (133), we notice that
the deviations from the SM predictions are very small in this case and, consequently, it
is not possible to achieve consistency [18] with the small values reported by the BABAR
collaboration [25].

In order to illustrate the dependence of our result on the strong CP phase θ, let us
assume that CP violation in the CKM matrix is independent of the value of θ. In other
words, let us assume that besides the angle θ, there exist other sources of CP violation
and we consider θ as an arbitrary parameter. Of course, when θ is different from π/2,
the isospin symmetry between the top and bottom quarks has to be explicitly broken in
the effective Lagrangian (3). From the minimization of the potential (cf. Eqs. (10)) and
taking mb � mt, one easily finds

ϕb � −θ + mb

mt

, ϕt � mb

mt

. (137)

At first order in mb/mt we obtain in this case:

rd =
√

1− 2wd cos 2θ + w2
d , tan 2θd =

wd sin 2θ

1− wd cos 2θ
. (138)

It is interesting to study how the angle θd varies as a function of θ. The extrema values
for θd are obtained when cos 2θ = wd and this implies

rd =
√

1− w2
d , tan 2θd = ± wd√

1− w2
d

. (139)
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With wd � 0.19 as given by Eq. (73) we have then

rd � 0.98 , | tan 2θd| � 0.19 . (140)

Thus, if the strong CP phase θ is assumed to be a free parameter of the model, the
constraint (136) on the new physics contribution to the CP asymmetries in B decays
is relaxed and we can reach a rather sizeable phase θd � 6◦. This in turn would allow
to accommodate [18] the present experimental measurements, including the small values
obtained by BABAR and BELLE collaborations.

8 Conclusion

In this paper we have studied the phenomenological constraints on a model where CP
violation is dynamically induced by a strong CP phase θ [11]. The most promising tests
for the model are given by the new experimental prospects to measure ∆MD or to improve
the experimental limit on the electric dipole moment of the neutron.

Contrary to naive expectations, the fact that the new force responsible for the elec-
troweak symmetry breaking and for the spontaneous CP violation is only sensitive to
the third generation of quarks does not imply that the most stringent constraints come
from processes involving the heavy flavours (t and b). We have shown that the stringent
constraints on the scale of new physics come from K physics and from the electric dipole
moment of the neutron. This means that even if FCNC processes are naturally suppressed
in the model by the CKM matrix elements, this suppression is not strong enough to allow
for a mass scale of the heavy Higgs to be of the order of few TeV.
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Figure 3: Constraints on the plane (ρ, η) after including the new flavour-changing charged
contributions induced by the heavy charged Higgs H+

1 . The curves are given for mH+
1
=

2 TeV, v =
√
2mc and the parameter ε = 0. We assume mH+

1
� mH+

2
� mH0 .
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Figure 4: As in Fig. 3, but taking the parameter ε = 1 and mH+
1
= 80 TeV.
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