ISTITUTO NAZIONALE DI FISICA NUCLEARE

Sezione di Napoli

INFN/TC-98/34
24 Novembre 1998

D. Anderson, R. Fedele, V.G. Vaccaro, M. Lisak, A. Berntson, S. Johansson:
MODULATIONAL INSTABILITIES AND LANDAU DAMPING WITHIN
THE THERMAL WAVE MODEL DESCRIPTION OF HIGH-ENERGY
CHARGED-PARTICLE BEAM DYNAMICS

PACS: 41.85.-p, 42.50.-p

Published by SIS—Pubblicazioni
Laboratori Nazionali di Frascati



INFN - Istituto Nazionale di Fisica Nucleare
Sezione di Genova

INFN/TC-98/34
24 Novembre 1998

MODULATIONAL INSTABILITIES AND LANDAU DAMPING WITHIN
THE THERMAL WAVE MODEL DESCRIPTION OF HIGH-ENERGY
CHARGED-PARTICLE BEAM DYNAMICS

D. Anderson!, R. Fedele?, V.G. Vaccaro?,
M. Lisak!, A. Berntson!, S. Johansson'

! Department of Electromagnetics, Chalmers University of Technology,
S-41296 Géteborg, Sweden

2Dipartimento di Scienze Fisiche, Universitda di Napoli ”Federico II”
and INFN Sezione di Napoli, Complesso Universitario di M.S. Angelo,
Via Cintia, I-80126 Napoli, Italy

Abstract

Within the framework of the thermal wave model (TWM), it is shown that the
longitudinal coherent instability in the presence of a non-negligible resistive part
of the coupling impedance can be described in terms of a modulational instability
associated with the nonlinear Schrédinger equation (NLSE). Furthermore, by using
the Wigner transform to carry out the analysis in phase-space, the role of Landau
damping is considered in connection with the above instability, showing that TWM
is capable of reproducing all the results of the conventional theory of the coherent
instability as well as of predicting new results (in particular, the possible existence
of a quantum-like Landau damping), connected with the crucial role of thermal noise
introduced by the emittance in the resonance condition between waves and particles

in the beam.



1 Introduction

Nonlinear collective effects that take place in particle beam dynamics constitute, at the
present time, a very large body of the accelerator phenomenology [1, 2] . In particular,
coherent instabilities have already been recognized to be very important for the practical
design of accelerating machines in their pioneering investigations [3] . Today, accelerator
physics provides for a very well established theory and very powerful methodologies for
describing coherent instabilities [4] as well as designing the machines (f.i., see [5]). In
this context, very important subjects of both plasma theory (such as Landau damping [6]
and plasma wave instabilities (7, 8]) and control system theory (such as Nyquist diagrams
(2, 9, 10]) are regularly applied.

Furthermore, recently discovered new phenomena, deeply connected with nonlinear
collective phenomenology of particle beams [11, 12] , represent new important insights to
be included in the above theoretical descriptions.

On the other hand, recently, new approaches for describing the nonlinear collective
particle beam dynamics in this more extended way have been proposed [13, 14, 15, 16] ,
and it seems that, in principle, they may include the above new phenomena. In particular,
the Thermal Wave Model (TWM) [17] , which basically is a quantum-like description of
the classical charged-particle beam dynamics, seems to be suitable for correctly describing
coherent instabilities [16, 18] but which also yields new insights and predictions that go
beyond the present conventional theory.

TWM has been formulated in a way which is fully similar to the one that Gloge and
Marcuse [19] used to transit from electromagnetic optics to wave optics. In fact, using the
classical correspondence between electromagnetic optics, electron optics, and quantum
mechanics, the TWM formulation has been developed to transit from geometrical electron
optics [20] to a wave-like (or quantum-like) electron optics, and has been applied to a
number of problems of beam transport and dynamics in both conventional and plasma-
based accelerators [16, 18, 21, 22, 23] . In the TWM description, the beam properties are
described by a complex valued beam wave function (BWF) which satisfies a Schrodinger-
like evolution equation where the beam emittance plays the role of Planck’s constant.
The square modulus of the BWF represents the beam density profile.

The beam instabilities occurring (for certain combinations of parameters) when the
coupling impedance between the beam and its surroundings is purely reactive, has been
recovered within the TWM approach as the classical modulational instability [16, 18] of
the corresponding nonlinear Schrédinger equation (NLSE).

However, the more general case, when the resistive part of the coupling impedance
becomes important, has not yet been analyzed within the framework of the TWM.

In this paper, we use the TWM to give a quantum-like description of the longitudinal
coherent instabilities, taking into account the resistive part of the coupling impedance.
According to the TWM, this is done assuming an evolution equation for the BWF which is
a sort of generalized NLSE including a nonlinear integral term in addition to the classical
nonlinear cubic one. In fact, the reactive part of the coupling impedance corresponds to
a nonlinear potential term in the above Schrodinger-like equation which is proportional
to the square modulus of BWF (i.e. the cubic nonlinearity of the NLSE) [16] , whilst
the resistive part corresponds to a potential term which is proportional to the integral of
the squared modulus of BWF. We show that coherent instabilities can be described in
terms of the modulational instability also in the case of non negligible resistive part of



the coupling impedance. The results obtained in the present work are in full agreement
with previous results for the coherent instability based on conventional approaches and
provide for further proof of the usefulness and consistency of the TWM approach but also
give new insight which may be connected with recent new phenomena in particle beam
dynamics [11, 12] .

In Section 2, the formulation of the problem that we want to solve in this paper is
presented. In particular, we present the appropriate NLSE to be used for the instability
analysis. In fact, in Section 3, the analysis of this equation is carried out in the con-
ventional way i.e. first the appropriate stationary solution is found. A linear equation
for small perturbations is then derived and it is shown that in the presence of a resistive
part of the impedance, the perturbations are always unstable, in contrast to the purely
reactive case where the perturbations are unstable only in certain parameter regimes. The
instability results in the general case are summarized in a conventional form given as the
contour plots in the (Z,, Z;) plane for constant instability growth rate, where Z, and Z;
are the inductive and resistive parts, respectively, of the coupling impedance. In Section
4, the above analysis is also generalized to include the effects of a finite longitudinal width
of the beam (bunched beams). This effect, which has not previously been consistently
analyzed within the TWM formalism, is demonstrated to give rise to a stabilizing effect on
the instability. The role of Landau damping is also considered, pointing out the difficulty
to derive this effect, in the configuration space, by using the present mathematical meth-
ods suitable to describe the modulational instability of the NLSE. However, this difficulty
is overcome in Section 5, where a transition to the phase space is performed by means
of the Wigner transform. The phase-space analysis, fully equivalent to the one given by
NLSE clearly show, in agreement with the conventional description, the existence of Lan-
dau damping and its stabilizing effect against the coherent (i.e. modulational) instability.
Additionally, it is shown that there exists a quantum-like effect in the interaction between
particles and collective modes in the beam which does not occur in the conventional de-
scription. This effect is due to the crucial role played by the thermal noise (through the
emittance) in affecting the resonance condition in the wave-particle interaction leading to
the Landau damping. Finally, the conclusions are summarized in Section 6.

2 The nonlinear Schrodinger equation for an arbi-
trary coupling impedance

Let us consider a charged-particle beam travelling in a circular accelerating machine. Ne-
glecting the transverse dynamics as well as the radiation damping effects, the longitudinal
evolution of the BWF, U(z, s), according to the TWM [17] , can in general be written as
[16] :
. 0¥ 1n ,0°0 G =
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where U(z, s) denotes the self consistent voltage describing in general the interaction of
the beam with the surroundings (other notation is standard, see [2, 4, 24]) .
The voltage, U(z, s), is related to the charge line density, A(z, s), according to
Z; 0A

U(z,s) = efcZ.Nz,s5) + efcE Palie e (2)




and the system is self-consistently closed by the relation

Aos) = W)l Q

(Ro being the radius of the synchronous particle orbit). Thus, using Eq.s (1)-(3), we can
write the equation for the BWF in the form:
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where the coefficients in Eq.n (4) are given by
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Our problem consists in making a stability (instability) analysis, in order to show that the
modulational instability associated with the solutions of (4) coincides with the coherent
instability, extending in this way what has been done in previous papers [16, 18] .

3 Instability analysis and its comparison with con-
ventional approaches

According to the previous Section, in the case of p = 0, Eq.n (4) has already been
investigated for the stability of small perturbations on a stationary background solution.
Thus, we directly consider here the case p # 0. In this case (4) includes the resistive

integral nonlinearity.
(2). It is easy to show that a stationary CW-solution of Eq.n (4) exists of the form

U(z,s) = Uy(z,5) = Yo ™), (8)

where the phase ¢o(z, s) varies as

®o(z,8) = Mis + A3s® + vas (9)
with . )
M =—kU2 d3=-—p¥2 and v= ga,u2 = ga/f\llg . (10)

(7). The dynamics of small perturbations on the stationary solution is
investigated by writing

U(z,s) = (Uy + §FU(z,s)) e (11)



Separating k into real and imaginary parts, according to k = k, + ik;, we obtain from

Eq.n (23)
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from which we can solve for k; to obtain
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We note that when y = 0, Eq.n (26) reduces to

(a?)® [2xW2 2cW2
k? = 5 0 1) when > 1, (27)
and
9 2603
ki = 0 when oz < 1, (28)

as it should [16] . It follows directly from Eq.n (26) that k? > 0, whenever u # 0, i.e.
the CW-solution is always unstable when resistive effects are included. This is in full
agreement with the result obtained by the conventional approach for a coasting beam, see
e.g. [16] .

Furthermore, if we consider the instability growth rate, k;, as given, we can view Eq.n
(26) as a relation between u and &, or equivalently, between Z; and Z,. Since x ~ Z; and
K ~ Z,, it is convenient to introduce in Eq.n (26) the normalizations

_ 2 W2 Z;
Z; = 0 ~ 2 2
af)? m (29)
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Eq.n (26) can then be rewritten in the lucid form:

— — 1
Z,‘ = ]. + ki2 —_ TZ,- . 32
P (32)

This implies that the curves for constant instability growth rate are parabolas in the (Z,,
Z;) (or equivalently (Z,, Z;) ) space.

For a comparison with results found for the coherent instability obtained by conven-
tional techniques, it is convenient to rewrite the dispersion relation obtained by the TWM

approach, Eq.n (23), as
K =k + Kk, (33)



where
o= (o), (34)
and
K = —2a0° (n + %) 02 (35)
Using the fact that
5t ik = Fe]);% (Z,- + iQLROZ,.) , (36)

and noting that [2, 4] @ = —n/Ry, wo = 21 /Ty, and Ry = fc/wo, we can rewrite k? as
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In the high current limit, when k? >> k2 (as studied in [16, 18]) , the dispersion relation,
Eq.n (33), reduces to

Ko~ kY (38)

which is identical to the result obtained by conventional techniques [2, 4] .

The present analysis includes the stabilizing influence of the linear dispersion on the
modulational instability. However, in the appropriate limit of a high current beam, the
predictions of the TWM approach and conventional approaches agree completely, not
only for the case of a purely reactive impedance as shown previously [16] , but also in
the general case when the impedance contains a resistive part as well as a reactive part.
This result provides further proof that the TWM approach is a convenient and alternative
description of the dynamics of high energy charged-particle beams in accelerators.

4 Effects of finite beam energy spread on the modu-
lational instability

When analyzing the effect of finite beam energy spread on the coherent modulational
instability, it is more convenient to use a slightly different approach. Instead of the
approach used in Section 4, we will start by separating ¥(z,s) into real amplitude and

phase according to: .
U(z,s) = A(z,s) e®=9) (39)

Inserting this ansatz into Eq.n (4), and separating real and imaginary parts, one obtains
the following system for A and O:

A, = (24,0, + AO,,) (40)

_ A:c:c 2 2 :1:2 /
—G)s—a(A—@z)-I-riA-l—u/OAd:c. (41)

In this case, the zero-order solutions for Ag and ©¢ are determined by

AOs = a(QAOIOOIL‘ ‘|‘ AOGOxz‘) ) (42)



AO:z:z:
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In the CW-case, Ay = constant = Ao, = Aoz = Aos = 0 and Op(z,s) must satisfy
simultaneously two equations, viz

— @37,) + KAS + p /oz Al da' . (43)

901:1: =0 ) (44)
—0gs = —a@2, + kAL + pz A2ds . (45)

Integrating Eq.n (44) we obtain
Oo(z,8) = Ms + A3s® + vas | (46)

where Aq, A3, and v are given by Eq.s (10). The equation for the perturbations read
(SAS = « (251417@0;,; + A05®m) 3 (47)
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Since Oy, = vs, we can assume

A, 60 ~ = (49)

which implies that Eq.s (47) and (48) can be written as

§A; = —a(2isvQ0A + A0%60) (50)
2

—60, = a(—ﬁ—éA — 2iusﬂ5®) + 2kAg0A + 2 H-;—;l—g JA . (51)
0

The terms proportional to 2isv§da can be transformed away, cf Eq.s (20), and the remain-
ing system becomes

§A, = —aAgN?60 | (52)
2
50, = (=2 4 ond + 2 P sa (53)
Ao )

and finally assuming s-variation according to exp(iks) we obtain the dispersion relation:
af? . pAZ
k2 = aQ2 (T — 2K,A(2) — 2'L _STO) B (54)

i.e. the same result as in Eq.n (23). In the case of finite beam energy spread, new terms
appear in the linearized equations for 64 and 60, Eq.ns (50) and (51). One stabilizing
effect is proportional to Ags;/Ao = —F/a?, where a is the characteristic longitudinal
width of the beam and F' is a form factor of order unity) which depends on the actual
longitudinal density profile. Including this term, the dispersion relation becomes:

F K . AL
2 202 [ 02 L LV T k]
kE* = o*Q (Q + = 2aA0 2 0 ) . (55)



Eq.n (55) can be written in the form as Eq.n (33), i.e. as
K =k + K, (56)

where k} is defined as before, Eq.n (35), but where k% now includes a contribution from
the beam energy spread and is given by

K = <a2ﬂ2)2(1 + %) . (57)

This implies that the curves in the (Z,, Z;) plane corresponding to constant growth rate,
k;, still are parabolas, viz

Z; =TI + k& - =2Z. 28
e (58)

but where however now P
=1+ S (59)

The result expressed by Eq.s (58) and (59) which implies that the finite longitudinal
length of the beam provides a stabilizing effect on the instability which manifests itself by
an upward shift of the parabolic level curves, thus extending the stability region upward
along the Z; axis.

However, contrary to the results reviewed in [16, 18] , the level curves remain parabolic
and no two-dimensional stability region appears around the origin in the (Z,, Z;) plane.
The reason for this discrepancy is that the present analysis of NLSE, which properly
recovers the coherent instability in terms of the modulational instability in the CW case,
does not reproduce the Landau damping for the case of a finite beam length. In fact, for
moderate instability growth rates, Landau damping will be strong enough to deform the
level curves away from parabolic form and even create a region of stability around the
origin of the (Z,, Z;) plane. However, for stronger instabilities, Landau damping will be
negligible and the level curves regain their parabolic shape and conform with the present
predictions. This explanation is amply confirmed by a comparison with the contour plots
presented in [2, 4] . Nevertheless, in the next section, we show that the present quantum-
like description is indeed capable of reproducing also Landau damping, provided that
the instability analysis is carried out in the phase space. This is done using the Wigner
transform [25] . It should be emphasized that what is done in the phase space in terms of
this transformation should be fully equivalent to the analysis in the configuration space
in terms of the NLSE. A more rigorous analysis of the modulational instability for the
generalized NLSE will be given in a forthcoming work.

5 The quantum-like Landau damping and its role in
the instability analysis

We want to transit from the longitudinal instability description in configuration space,

with the equation
. 0¥ €2n? 9?v
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where

_ an “ / '
U(z,s) = EO[J’CTO/O U(',s) dz (61)

(see also Eq.n (1)), to the one that may be carried out in the phase space. To this end,
let us introduce the following Wigner-like function [26] :

1 * Yy ) ( Yy ) .pYy
= = - = — 2
) 5 €|77|/— 1 (:1:—{- 2,3 Uz 2,3 exp 161’] dy (6 )

where p = dz/ds = —ngli(z,s)/(2mEoRp) is the momentum conjugated to z. The follow-
ing normalization condition is also assumed:

pw(x7p?s

/ pu(z,p,8)dz dp=1 . (63)

We observe that, if ¥ satisfies the (60), thus p,, satisfies the following von Neumann-like
equation [26] :

d 9 en O .en 0 B
{8S+pa$+_[U <x+158_) —U(:E—Z?%):l}pw =0 ’ (64)

which can be cast in the form:

3&+ Opw i¢<€ >2a ety Gractly
9s "oz (2a+ 1)1\ 2 dgotl Gpratl

(65)
By using (61), (65) becomes:

0pw Opw ( ) ) (617)2& Pty ety
0s TP Oz 2w Eo Ry Z 2a-|—1 2 dg2a+l gpatl (66)

a=

The beam current is now introduced as follows [2] :

I(II),S) = Qﬂc’\o /_ pw(m,p,s) dp ’ (67)
where )g is a positive constant. Note that the Fourier transform of U(z,s) and I(z,s)
are connected by the coupling impedance Z.

Linearizing around the equilibrium state (i.e., py, = po(p), Y = Uy =0, and [ = Iy =

0):
Pw(xapvs) = PO(P) + P1($,P,3) ’ (68)
U(:E,S) = Lll(:c,s) ’ (69)
I(:I:,S) = II(IE,S) ’ (70)
we have:
Ip dp _( qn ) = (=1) <€_77>2a MUy (2041)
9s Pz ~ \2rBoRe §(2a+1)! 2) Ggreril® ’ (71)
hz,s)=efedo [ pi(e,ps)dp (72)
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where potY) = d2e+1p) /dp2atl | By assuming for p;, U, and I; solutions of the form:
P1(-’I7,p, S) = ﬁI(XaPaw) exp ('LX"I: - iws) ’ : (73)
Ui(z,s) = Ui(x,w) exp (ixz —iws) (74)
Ii(z,s) = fl(x,w) exp (ixz — ws) (75)

respectively, and introducing the impedance definition, we finally get the following dis-
persion relation:

1 =

oo 92) — _ 2

i0Z(x,w) / po(p+enx/2) — po(p—enx/2) dp , (76)
—o0 enx XP — w

where ap = ¢*Bendo/ (27 Eo Ry).

A preliminary analysis of this dispersion relation can be carried out as follows.

e We can take the limit of small x, but keeping € and w finite (f.i., von/c = w/x >> 1).
Since in this case

2) — - 2
po (p+ enx/2) po (p — enx/2) ~ dpo/dp (77)
enx
Eq.n (76) becomes:
_ © dpo/dp
1 = 1a0Z(x,w dp 8
0Z(x,w) /_oo P — w P (78)

which coincides with the dispersion relation of the conventional theory [2] and, thus,
reproduces all the coherent instability results for coasting beams of the conventional
theory for small x but including the Landau damping.

e Eq.n (76) shows the existence of new effects which should be significant for large y
that are not included in the conventional theory. In this preliminary analysis we only
point out that Landau damping is intrinsically included in the TWM description of
coherent instability. Generalizing the conventional theory, TWM seems to show the
existence of a quantum-like Landau damping. However, this very novel subject will
be investigated more carefully in a forthcoming work.

e In order to recover, as an example, some of the results given in the previous sections
in terms of NLSE in the configuration space, let us consider the case of monochro-
matic beam, which means:

po(p) o é(p) . (79)

In this case, although the instability is present, Landau damping is not working
due to the absence of the momentum spread. In fact, the dispersion relation (76)
becomes now:

19 Z(x,w) 1 1
1 = — + , 80
enx ax?/2+w  enx?/2+w (80)
which can be cast in the form:
2,2 4
Wt = 21X +iaoxZ . (81)

4



— 12—

Expressing both w and Z in their complex representations, viz
w = wr + wy and Z = Zp + 1Z; , (82)

we get the following relation:

8o w? en’y
Zr = ——27% + L 83
! 4(4)% R + 50 + 4 ’ ( )

where do = aox = ¢*Benx Ao/ (21 EoRp), which is formally identical to (32) given in
Section 4. In particular, for small x (83) becomes, still in accordance with Section
4, the following relation:

&Z}%_}_w_%

Zr & —
! 4(4)% 50 ’

(84)
which is in full agreement with the corresponding instability equation for a monochro-
matic coasting beams given by conventional description [2, 4] .

6 Conclusions, remarks, and perspectives

In this paper, an investigation of longitudinal coherent instability has been carried out
within the context of TWM. The interaction of the beam with its surroundings (and
with itself) has been expressed in terms of a (nonlinear) potential in a Schrodinger-like
equation.

The corresponding equation for the beam wave function constitutes a new generalized
Schrodinger equation, which, as far as we know, has not been analyzed before. In this
paper, this equation has been analyzed for the stability of small perturbations of a con-
stant amplitude backgroud beam. The above investigation is inserted in a field already
explored of several nonlinear phenomena described by different kinds of NLSE. In partic-
ular, we have reviewed the main results concerning the longitudinal coherent instability
for a coasting beam in the conventional machines when the interaction between the beam
and the surroundings is modelled in terms of a purely reactive impedance [16, 18] . In this
case the instability reduces to the classical modulational instability of the conventional
Schrodinger equation for cubic nonlinearity.

However, in this paper we have extended this problem to the more general case of
non-negligible resistive part of the coupling impedance for coasting beam as well as for
beams with finite size. In the first case, we have found that the perturbation are always
unstable and the instability growth rate is found in terms of the real and the imaginary
parts of the coupling impedance (Zg and Zj, respectively).

The results are summarized in terms of curves in the (Z,, Z;) plane, corresponding to
constant instability growth rate. These curves are found to be parabolas, in full qualitative
as well as quantitative agreement with results of previous conventional techniques for
analyzing coherent instabilities of high-energy charged-particle beams.

In the second case, the analysis has been extended to include the effects of a longitudi-
nal extent of the background beam. This is shown to give rise to a stabilizing effect on the
modulational instability, but does not, within the present analysis, change qualitatively
the form of the curves for constant instability growth rate, which remains parabolic.
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On the other hand, in the conventional approaches, it has been found that for a finite
energy spread of the beam, Landau damping will become an important effect and will
deform the level curves for small instability growth rates, even to the point of creating
a two-dimensional region of stability around the origin in the (Z,, Z;) plane. However,
for stronger instabilities, Landau damping becomes negligible and the level curves regain
their parabolic form.

However, if the analysis within configuration space, as expresses by the NLSE, is
generalized into a phase space description by means of a Wigner-like formalism, the TWM
approach predicts new important results concerning coherent instabilities for the beam
dynamics. In fact, we have shown that the results of instability given by the conventional
theory can be recovered also for finite energy spread, provided to transit to the phase
space. The resulting phase-space description is fully equivalent to the one given by the
NLSE in the configuration space, although it seems to be simpler in the phase space. This
way, we have given a preliminary phase-space description of the collective interaction of
the beam with the surroundings, modelled in terms of an arbitrary coupling impedance.
With this analysis we have obtained a linear dispersion relation which shows the existence
of a more general Landau damping (we have called it quantum-like Landau damping) which
for the case of small x reproduces all the results of the conventional theory.

Remarkably, in the limit of ¢ — 0, the dispersion relation (76) coincides exactly,
for arbitrary x, with the one given by the conventional theory. However, € cannot in
principle be reduced to zero, because it accounts for the thermal noise which is very
important and competes with the resonance in the wave-particle interaction (i.e. Landau
damping). Consequently, TWM takes realistically into account, due to the thermal noise,
eventual displacements from the exact resonance condition. Since the inhomogeneity wave
parameter is x, the variation of po(p) cannot be estimated in regions of momentum space
with size smaller than €|n|y. This limitation transforms the usual derivative appearing in
the conventional theory, as given by (78), into the finite difference ratio as give in (76).

In future work the explicit dispersion relation for the case of arbitrary y should be
found for several distribution functions po(p).

We conclude that the presently obtained results further validates the TWM approach
as a consistent alternative description of the dynamics of high-energy charged-particle
beams in accelerators.
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