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Abstract

A simple warm fluid model for the longitudinal motion of a coasting beam is proposed. It
foresees accurately the rise time of the instability and the frequency shift when the working point
of the machine is far outside the stability region. The model takes into account the effects of the
beam momentum spread through the fluid kinetic pressure. The closure of the fluid model is
obtained by imposing that the “heat flux” is zero in the equation for the energy conservation. The
proposed model provides accurately the growth times and the frequency shift for the longitudinal
instabilities obtained by using the kinetic model, the SCOP-RZ/PATRIC PIC code as well as for
that observed at the ESR in 1997.

1. Introduction

The study of coherent instabilities of particle beams in circular accelerators and storage rings,
caused by the interaction with self-induced electromagnetic fields, has received recently new
attention in connection with the research on high-current machines operating below transition
energy [1].

The mechanism of the longitudinal instability in a coasting beam is intrinsically of fluid
nature, see, for instance, the comprehensive review in [2]. By making use of the cold fluid model
it is possible to describe the initial phase of the instability growth. In particular, it is possible to
give simple analytical expressions for the rise time and the frequency shift of the unstable slow



wave as functions of the beam parameters as well as of the total impedance, [2]. Indeed, these
formulae are reliable only far outside the stability region corresponding to the initial beam velocity
distribution.

This limit of validity is due to the fact that in the cold fluid model the “slowing” effect of the
Landau damping is absent (e.g., [2], [3]). The mechanism of beam stabilisation, known as Landau
damping, gives rise to a finite stability region in the impedance plane, and can be in no case
predicted by a model where the wave-particle interaction is not taken into account. In other words,
we must never expect that a fluid model can give as a result the existence of a stable beam even
when the resistive part of the impedance is different from zero.

Anyway even quite far outside the stability boundary the cold fluid model still causes an
underestimation of the rise time and of the absolute value of the frequency shift.

In this paper we propose a warm fluid model in which the effects of the beam momentum
spread are taken into account through the “ kinetic pressure” of the beam. The closure of the fluid
model is obtained by imposing that the “heat flux” is zero in the equation for the energy
conservation. The pressure effect on the beam dynamics plays the same role as the beam space
charge impedance. In particular, we show that the effect of the initial pressure cannot be neglected
when the Keil-Schnell impedance (e.g., [2]) is of the same order of magnitude as the total
impedance. Finally we apply these results to the ESR storage ring and we find a good agreement
between the results obtained with our model, those obtained with kinetic model, the PATRIC PIC
code as well as that observed at the ESR in 1997.

2. Review of the kinetic model

Let us consider a coasting beam moving in a circular machine, (i.e., a storage ring or a
circular accelerator), with nominal longitudinal velocity Uy and nominal circular “equilibrium”
orbits with radius rg; Cy = 27r is the circumference length. In the following we will always use
the symbols 6 and r for the azimuthal and radial co-ordinates, respectively. Furthermore, with
o and ¢ we will indicate the angular frequency, @ = 6, and the total energy of the particle;
w, = Uy / ry is the nominal angular frequency. The radius of the equilibrium orbit of the particle
depends on the angular frequency, r = r(w), according to the momentum compaction and slip
factors, and the revolution frequency of the generic particle depends on its energy £, according to
the frequency dispersion of the ring @ = w(&), (e.g., [2]).

We start describing the beam by means of the distribution function g(6,w;t) in the phase
space (6,w) where w is defined as

wee) 22|t 25 (1)
& O(E)

Let us suppose that the longitudinal component E = E(6,r;t) of the electric field acting on
the particles (due to the space charge and to the interaction of the beam with the surroundings)
depends on the radial co-ordinate r as 1/r,

E(r,6:1)= - 2(0:1) )
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where the “potential” function ¢(6;¢) is independent to the particle radius. Under this assumption



0 and w are conjugate variables. An immediate consequence of this property is that the distribution
function g(6,w;t) is solution of the kinetic equation
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where ¢ is the electric charge of the particle. We have neglected collision phenomena because they
do not play a considerable role on the time scale of the instability we are interested in (this
assumption may be always checked “a posteriori”). In this model the electric field E is the
averaged field over small phase space volumes so as to be cleaned out of the fluctuations due to the
microscopic discrete nature of the particle beam.
To derive the cold fluid model we need the kinetic description of the beam in the velocity
phase space. Let us introduce the two independent variables s and u
s=rg0, @
u=rgV.
and let be f(s,u;t) the distribution function of the beam in the phase space (s,u) (the spatial co-
ordinate s is defined on the interval (0, Cy)). The distribution function f(s,u;t) is related to the
distribution function g(6, w,t) through the relation

f(s,u,t) =———g(6,w,t). )

0

dwl

Assuming a small relative energy spread of the beam particles, we may replace @ by its nominal
mean value @, in the integral (1) and we may linearize the dispersion relation that links the angular
frequency to the particle energy,

o Ag) = @, + KyAE, (6)

where Ae =g—-¢gy, Ky =N, /(Bigy), Bo=Uy/c, 9= moczyo, n is the frequency slip
factor, my is the rest mass of the particles and ¥y =(1- ﬁg )_1/ 2, By using these approximations
we obtain for the leading term

w(g) =2m(e —€y)/ Wy, )
and

flsuit) = TZI_ 8(6,w;1). ®)
0 0

Therefore the distribution function f(s,u;t) is solution of the Vlasov equation

i af q o(s; t)af 9)
ot ds m 2mry Ou 0

To derive the equation (9) we have used the relation
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where pj is the nominal momentum of the beam particle. Furthermore, we have introduced the
“effective” particle mass

* Po
m =—-———, (11)
U

Note that below transition m” is positive.

Finally we have to specify the form of the driving term ¢ present in the Vlasov equation. In
general ¢(t) is made up of two different contributions: an external voltage acting on the beam,
which can represent either a bunching field oscillating in the RF cavity or a residual field detuned
with respect to the beam revolution frequency, and a self-voltage coming from the interaction of
the beam with the beam itself and with the surrounding environment.

It is customary to represent the latter on a given harmonic as the product of the beam current
component at that harmonic times the coupling longitudinal impedance that synthetically describes
all the mentioned interactions of the beam. Thus the electric “potential” ¢(s, ¢) is linked to the beam
electric current intensity

I(s,t) = q["uf (s, u, t)du, (12)
through the relation
O(s,t) = Y. Z(mag )L, (™™ + 8, (s,1), (13)
where ky =(wy/ug)=1/1y ,
1 Co imk ¢
I,(t)=— [ I(s,t)e"™" ¥ds, (14)
Co o

Z = Z(w) is the total longitudinal impedance of the machine and @, (s,¢) is an external voltage
i.e., it could take into account the action of an RF cavity. Using the value of the impedance
estimated exactly at ® = m@,, is in fact an approximation, since the time dependence of the beam
current signal makes it not purely oscillating at the multiples of the revolution frequency but at
shifted values.

The potential ¢(z) depends only on the total impedance of the machine Z, on the applied RF
voltage and on the beam current intensity, therefore it is completely determined by fluid variables.

In this paper we analyse the situation where no external voltage is acting on the beam and
the only electromagnetic force that determines the beam evolution is the one associated to the beam-
beam and the beam-environment interaction.

The impedance Z(®) consists of the space charge impedance Z fjc) of the beam itself and the

impedance of the surroundings Z{$*"/:

Z,, =20 4 7w, (15)



where [2]
205) = —imX . (16)

The reactance X, in the relation (16) is the space charge reactance of the beam, which does not
depend on the wave number m if it is not too high (for ESR must be m << 10%).

3. The equations of the fluid model with temperature

In order to deduce from the kinetic model the equations for the dynamics of the macroscopic
fluid quantities characterising the beam, such as the distribution of its line density, the mean
velocity and the current intensity along the ring, we have to calculate the momenta of Vlasov
equation (9) by multiplying it with powers of the velocity u and integrating over the velocity
space. With this regard, we firstly remind how the numeric line density n(s,#) and the mean
velocity U(s,t) of the beam are related to the distribution function f,

n(s,t)éfmf(s,u,t)du,

r uf(s,u,t)du (17)
U(st)s —=———.
n(s,t)
The beam current intensity I(s,?) is given by
I(s,t)=qn(s,t)U(s,t) = qUyn(s,t). (18)

In equation (18) we have approximated the actual averaged velocity of the beam with the nominal
mean velocity Uy because in our case the shifting of the actual mean velocity from the nominal one
is very small compared with Uj.

Let us start with the zero-order moment obtained by multiplying by u®=1and integrating on
the velocity space. The first term of equation (9) becomes

a\_on
<o7t>_c?t' (19

the second

< af>=%(nU), (20)
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and the third

T <i>_Li*¢(s, (s, =0, @b

m’ 2mry \ou/ 2mrym

where the symbol (f) indicates j'f:: fdu, namely the averaging over the velocity space. Since no
particles can have infinite velocity, f falls very rapidly as u — feo. By using the expressions
(19)-(21), from equation (9) we have the continuity equation in the configuration space s



Z +Z(nU)=0. (22)

If we multiply now equation (9) by u and then integrate it on the velocity space the first term
becomes:

(vZL)=200). 23)

the second
20f\_ 9 oy, 9, 0
(2= as(nU )+ as<(u Uyr), (24)
and the third
__‘1__‘1’_(“@): g n (25)
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In this way we get the equation of the “momentum” conservation

%(m*nU)+%[(m*nU)U+H]:— " qno, (26)

where the new “macroscopic” quantity I1(s,¢) given by
(s, t) = (m"(u—Uf) 27)

takes into account the effects due to the spread in the longitudinal velocity of the particle beam. The
quantities P(s,t)=m *n( 5,t)U(s,t) and Il(s,t) may be considered, respectively, as the longitudinal
line momentum density and the longitudinal “kinetic pressure” of the beam. The pressure
contribution in (26) may be interpreted as the additional momentum flux due to the particle motion
relative to the mean one.

Of course we need now one more equation in order to express the dynamics of the kinetic
pressure. In the cold fluid approximation we would have simply closed the system with the
assumption IT — O working as a constitutive relation. But if our aim is to try and set up a more
precise fluid model that takes into account the presence of a finite beam energy spread, then we
have to proceed with at least one further step in the hierarchy of the momenta equations and
introduce only later an external assumption in order to close our resulting model. Therefore, we
multiply now equation (9) by u* and then average it on the velocity space; the first term becomes:

< 8t> 8t(m v ) B’ (28)

the second

< * 33€> as[(m ‘U +31)U + @] (29)



and the third
9_F(s,t )<u2 i> =2nU-L_E(s,1). (30)
m du m

After summing up these last three terms and by making use of the first two equations of the
fluid model, that is (22) and (26), so as to express by means of spatial partial derivatives the time
partial derivatives dn/dt, dU/dt and dU?/dt, we finally obtain the equation of “conservation of
energy” in the simple form:

d (H ) 2 (H ) 1 JO
—| = |+U=—| = |+—=——=0 31
or\n? os\n>) n® o Gh
Here O(s,t), defined as
O(s,1)=(m" (- U)’f), 32)

takes into consideration the flux of “disordered” kinetic energy due to the disordered motion,
namely that associated to the disordered part of the particles longitudinal motion. Then, the
quantity ©(s,t) may be considered as a “heat flux”. Now we assume that during the beam motion
there's no heat flux, that is @ — 0. Under this assumption we get the closed system of partial
differential equations in the unknowns n(s, ¢), U(s,t) and IIs,t):

(on 9
2 % 1w
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It is useful to reformulate the fluid equations (33) in such a way as to hide the “fast”
component of the dynamics, that is the one due to the beam revolution around the ring - its
characteristic time being 27/ @, - and provide the only “slow” components of the beam evolution.
For this purpose we perform the following linear transformation of variables:

U= UO + V,
(34)
s= Uyt +x.
By applying this transformation to the system (33) we obtain
(oA 3
—+—(AV)=0
5 axa(v ) 9 I
9 3 q
—+V—+S-—I(RA |=~- T ,t 35
1o dx A 8x( ) 27y m viL )
% + a_R =0
| ot ox




where A(x,t), V(x,t), R(x,t) are given by

A(x,t)=qn(x + Ugt,t), V(x,t)= U(x + Vot,t)= Uy, R(x,1)=I(x + Ugt,t)/ A(x,1),  (36)

Y(x,t) is
w(x1)=Uy Y Z(mvy)A, ()™, (37
and
17 -
Ap(t) = [A(x, )™ dx. (38)
09

The quantity A(x,t) represents the linear charge density. The equations (35) have to be solved
with the boundary conditions

(A(x=0,t)= A(x = Cyp,t)

V(x=0,t) =V(x=Cyt), 39

\R(x =0,t)=R(x = Cy, 1)

coming from the periodicity of the structure, and given initial conditions.

4. Linear analysis of the adiabatic fluid model

Let us perform now a linearization of the equations of the system (35) in order to find out
which new terms are introduced by our considering the particle beam as a fluid with its own
momentum spread and not purely cold. We expect this to modify the way the rise time of an
instability must be evaluated; what is interesting, then, is to see how, and to which extent, the
formulae for the characterization of e-folding time and frequency shift of an instability change after
taking into account the term due the pressure gradient in the momentum conservation equation and
treating it by means of the third equation of our system. Therefore we write

A(x,t)= Ay + SA V=6V IT= I, + 811, (40)

and then substitute these perturbed quantities in the equations of motion, keeping only the terms
where the perturbations appear with a unitary power (linear terms):

A . I8V
A =0
o 0Ty

IV __g ool 1 g
ot Ay x 2mpm

z(éﬂ_a_ﬂ_oé_A):O

| o

= V(xt) (41)

i3 3
Ay Ay Ag
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Observing that the third equation easily provides

oIT =311, i—A +const. , (42)
0

we finally find the system for the perturbations in velocity and density:

98A , , 98V
ot 0 o

doév q UQ Gmn*ﬂo JdA qUO : (surr) —imkes
T o X |5 =22 mvy)A, (t)e ™05,
ot m 27[( UOA%) € ox 27rym % m ( 0) m( )

=0,

(43)

From the last equation it becomes clear that the influence of the pressure term acts in the linear
regime exactly as a further contribution to the space charge impedance seen by the beam. In other
words, one could take into account the fact that our beam has got a finite spread in the velocities by
considering in the classical fluid equations a modified space charge impedance, which is the sum
of the one relative to the cold fluid model and a second term depending on the initial beam pressure
and, consequently, on the initial beam momentum spread. Thus the second equation of system
(43) suggests the definition of a sort of “kinetic” reactance according to:

67m "I,
Xpin =———7— (44)
Aoy
If we now introduce the beam longitudinal temperature

qlly

Ty = , 45
07 Ak (45)

we can then rewrite the kinetic reactance as

X = 67{"1) , (46)

ql,

and the total modified space charge impedance will simply become:

Xeq - Xsc + inn = X.\'c + GE[E&J (47)

qly

From the definition of IT , Eq. (29), it is straightforward to find out that the relation between the
value of I, or equivalently of Ty, and the beam initial velocity spread is the following:

)= AOAV%IWHM ) 48)
21In(2)

This last equality allows us to evaluate the quantity I from the observables Av yyuy and A,.
Now assuming that §A and &V have a space-time dependence of the kind



O6A(x,t) =A,,ei(Aw'_"k°x) +c.c.,

— 10—

. (49)
8V(x,t)= B, A% ) ¢ ¢,
we obtain for the complex frequency Aw = Aw, + iAw;
A®, = @, L(\/z% Iy z,.)
2R,
] Y (50)
2
Aw,; = 2, 5113_(“/2% +Z% + z,.)
L<0 i
where
Z, = Re{Z"" (nw, )}, (51)
Z; =Im{Z"" (nwy )} - mX ,,, (52)
and the characteristic resistance R is given by
1 |m U3
Ry = 47:-/2—|—°. (53)

aly
A useful way of writing the equivalent space charge impedance may be as in the following:

X oy =Xy +31|Zgs), (54)
where
2mpofelrl( 6
Zys = 0_7ﬂ)c_n(_£] (55)
qIO Po HWHM

is simply the Keil-Schnell impedance (e.g., [2]) relative to the case under consideration (form
factor around the unity - initial velocity beam distribution assumed Gaussian). In conclusion the
pressure effect on the beam dynamics plays the same role as the beam space charge impedance.
This effect cannot be neglected when the Keil-Schnell impedance is of the same order of magnitude
as the total impedance.

5. Application to the ESR beam and conclusions

In the case of the ESR the total impedance acting on the beam has a real part, which is mainly
the resistive part of the cavity impedance, and an imaginary part, which is given by the sum of the
imaginary part of the cavity impedance and the space charge reactance from the beam itself. Thus
the impedance of the surrounding may be represented as

Z{e) = R, : (56)
1+ iQ( Mm% _ L]
©, may

where R,, Q and @, are, respectively, the shunt resistance, the quality factor and the fundamental
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eigenfrequency of the RF cavity. In Table I the beam and machine parameters relative to the
instability measurements that were carried out at the ESR in February 1997 are summarized [4].

Table I
Ekin 340 MeV/U
Y 1.36
(Ap/p)FWHM 11-107°
Zys 220
vo/2n 1.886633 MHz
o 17.22 m
n -0.367
Io 0.366 mA
Xse 670
R, 1300
Q 50

Here we refer only to the rise times and the frequency shifts obtained by the linear kinetic
theory because they agree very well with those obtained by using the PATRIC PIC code, as well
as with that observed at the ESR in 1997, [4] and [5]. The curve of the instability rise times versus
cavity frequency offset Af = (a)0 - wc)/ 27 (2 infig. 1) was calculated from the intersections of
the rise time trajectories with the cavity detuning curve plotted in the impedance plane; similarly,
the curve of the expected unstable wave frequency shifts versus frequency offset (2 in fig. 2) has
been evaluated from the intersections of the lines Aw, = const. with the cavity detuning curve
plotted in the impedance plane. These two curves, along with the points that come from the beam
simulations with the PATRIC code, are given in [5].

Tp=56 meV
o kinetic model
100 @)

90

80 7 :
70 “*/
60 9/

50 P el
40 | \\D_( /
30 Lo
20
-20 -10 0 10 Af(kHz)20

Fig. 1 — Comparison of the growth times obtained by means of the warm fluid model with those
obtained by means of kinetic and cold fluid model.
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If we had assumed a cold fluid model for our beam and we had applied the formulae (50)
with an impedance that was purely the sum of the cavity impedance (function of the cavity
frequency offset Af ) and the space charge impedance not corrected, we would have found curves
(dotted lines in figures 1 and 2) 7, vs Af and A®, vs Af lying below the ones estimated with the
kinetic model; 7, =1/|A®,| is the growth time of the instability. The error in the estimation of the
instability rise times and frequency shifts reaches down to 30-40% in the central part of the curves,
where we are far enough from the stability boundary, and yet it is quite high to be tolerated. If we
apply the correction due to the pressure we found out that the resulting 7, vs Af and Aw, vs Af
curves (full lines in figures 1 and 2), are in very good agreement with the points estimated with the
kinetic model. This means that the correction introduced in the space charge reactance, which is to
be replaced by the sum of the old one plus the kinetic reactance (46), allows us to predict the right
instability parameters in case the working point lies far outside the stability region.

......... To=0
T0=56meV
(rad/s) o kinetic
-20
-30 e -
-40 a -
\J
-50 :
-60
-70
-80
-20 -10 0 10 Af(kHz)20

Fig. 2 — Comparison of the frequency shifts obtained by means of the warm fluid model with
those obtained by means of kinetic and cold fluid model.
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is simply the Keil-Schnell impedance (e.g., [2]) relative to the case under consideration (form
factor around the unity - initial velocity beam distribution assumed Gaussian). In conclusion the
pressure effect on the beam dynamics plays the same role as the beam space charge impedance.
This effect cannot be neglected when the Keil-Schnell impedance is of the same order of

magnitude as the total impedance.
4. Application to the ESR beam and conclusions

In the case of the ESR the total impedance acting on the beam has a real part, which is
mainly the resistive part of the cavity impedance, and an imaginary part, which is given by the
sum of the imaginary part of the cavity impedance and the space charge reactance from the beam

itself. Thus the impedance of the surrounding may be represented as

2 = & , (56)
1+ig| "% _ Dc
®, mao,

where R, Q and @, are, respectively, the shunt resistance, the quality factor and the
fundamental eigenfrequency of the RF cavity. In Table I the beam and machine parameters
relative to the instability measurements that were carried out at the ESR in February 1997 are

summarized [4].

Table I
Ekin 340 MeV/U
Y 1.36
(4 /D) pwrinm 11-107
Zys 220Q
Vo/2R 1.886633 MHz
%)) 17.22 m
il -0.367
I 0.366 mA
Xsc 670 Q
R, 1300 Q
Q 50
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Here we refer only to the rise times and the frequency shifts obtained by the linear kinetic
theory because they agree very well with those obtained by using the PATRIC PIC code, as
well as with that observed at the ESR in 1997, [4] and [5]. The curve of the instability rise
times versus cavity frequency offset Af = (wo - (oc) /27 (8 in fig.1) was calculated from the
intersections of the rise time trajectories with the cavity detuning curve plotted in the impedance
plane; similarly, the curve of the expected unstable wave frequency shifts versus frequency
offset (2 in fig. 2) has been evaluated from the intersections of the lines Aw, = const. with the
cavity detuning curve plotted in the impedance plane. These two curves, along with the points
that come from the beam simulations with the PATRIC code, are given in [5].

If we had assumed a cold fluid model for our beam and we had applied the formulae (50)
with an impedance that was purely the sum of the cavity impedance (function of the cavity
frequency offset Af) and the space charge impedance not corrected, we would have found
curves (dotted lines in figures 1 and 2) 7, vs Af and Aw, vs Af lying below the ones
estimated with the kinetic model; 7, =1/ |A a)i| is the growth time of the instability. The error in
the estimation of the instability rise times and frequency shifts reaches down to 30-40% in the
central part of the curves, where we are far enough from the stability boundary, and yet it is
quite high to be tolerated. If we apply the correction due to the pressure we found out that the
resulting 7, vs Af and Aw, vs Af curves (full lines in figures 1 and 2), are in very good
agreement with the points estimated with the kinetic model. This means that the correction
introduced in the space charge reactance, which is to be replaced by the sum of the old one plus
the kinetic reactance (46), allows us to predict the right instability parameters in case the

working point lies far outside the stability region.
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Fig. 1. Comparison of the growth times obtained by means of the warm fluid model with
those obtained by means of kinetic and cold fluid model.
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Fig. 2. Comparison of the frequency shifts obtained by means of the warm fluid model with
those obtained by means of kinetic and cold fluid model.
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