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Abstract

It is shown that the standard classical picture of charged-particle beam transport
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1 Introduction

Quantum formalism for describing a number of macroscopic systems, such as plasmas,
linear and nonlinear electromagnetic (e.m.) radiation beam propagation (for instance,
optical fibers, transmission lines), e.m. traps, charged-particle beam transport, etc., have
received a great deal of attention during the last two decades [1]. For these non-proper
quantum systems, it is appropriate to say quantum-like description instead of the proper
quantum one, because the physics involved, which is basically classical, can be fully de-
scribed by formally replacing the Planck’s constant with a suitable fundamental parameter
of the particular system considered. A quantum-like theory of light rays was, for exam-
ple, constructed by Gloge and Marcuse [2] in order to recover wave optics starting from
a formal quantization of geometrical optics based on Fermat’s principle. In particular,
this procedure has allowed to recover, in paraxial approximation, the Schrédinger-like
equation for the e.m. field, the so-called Fock-Leontovich equation [3], widely used in
linear and nonlinear e.m. radiation optics [4]-[6]. The transition from geometrical optics
(the analogous of classical mechanics) to wave optics (the analogous of wave mechanics) is
performed by introducing some correspondence rules, fully similar to the Bohr’s ones, in
which % is replaced by A/2, the inverse of the wavenumber (/27 = 1/k). In particular,
in this context the paraxial approximation (the analogous of the non relativistic approx-
imation of quantum mechanics) describes the radiation beam transport in an arbitrary
medium and the corresponding quantum-like formalism (a quantum-like uncertainty prin-
ciple included) and Fock-Leontovich equation can be fully recovered by formally replacing
h with A/2m in the non relativistic quantum mechanics [2]. This fruitful procedure has
provided for transferring algorithms and many solutions of quantum mechanics to radia-
tion beam physics, especially for optical fibers [7, 8], coherent and squeezed states theories
[9]-[14], Schrédinger cat states [15, 16], and phase-space investigations within a Wigner-
like picture [17] in which a quasi-classical distribution, fully similar to quantum Wigner
transform [18] governs the paraxial e.m. ray evolution.

More recently, a procedure ala Gloge and Marcuse has allowed to construct a, quantum-
like model of charged-particle beam transport in both real space and phase space, called
Thermal Wave Model (TWM) [19]. This model has been applied to a number of problems
of charged-particle beam optics and dynamics [20]-[25]. It assumes that the particle
beam evolution is governed by a Schrédinger-like equation for a complex function, the
so-called beam wave function (BWF) whose squared modulus is proportional to the beam
density where Planck’s constant is replaced by the beam emittance [26]. In particular, in
TWM framework, a Wigner-like transform seems to be useful and appropriate to give the
quantum-like phase-space description of particle beams [25].

In this paper, we want to suggest an approach alternative to the one ala Gloge and
Marcuse given by TWM. By starting from the electronic ray concept given in electron
optics, we review the standard electronic ray approach to charged-particle beam optics
and dynamics and introduce an effective description of the transverse beam dynamics
which takes into account the thermal spreading among the electronic rays. In the follow-
ing subsections we start from the electronic ray concept and introduce the paraxial-ray
approximation. In section 2, the paraxial-ray equation is solved for the case of a lin-
ear lens (Hill’s equation), while in section 3 the statistical description of electronic rays
allows us to obtain some important results such as the virial description of the beam
and a quantum-like uncertainty relation. A Liouvillian description of the electronic rays



is performed in section 4, where, in paraxial approximation, we show that an effective
description can be given in terms of a quasi-distribution in the phase-space which plays
the role analogous to the one played in quantum mechanics by Wigner function for pure
states [18]. An analysis of the quantum-like corrections that the above effective approach
gives is presented in section 5 where a comparison with the classical approach up to the
4th-order moment-description of the system for an arbitrary potential is performed. It is
shown that for diluite beams and in paraxial approximation the discrepancies are negli-
gible. Finally, in section 6 we summarize the conclusions and give some remarks that are
relevant for charged-particle and e.m. beam transport as well as for quantum optics and
very recent investigations in constructing positive definite distribution functions such as
the one used in symplectic tomography [27, 28, 29].

1.1 The concept of electronic rays

It is well known that electron optics [30] has been developed by using the similarity
between charged-particle motion and the behaviour of the light rays in geometrical optics.
For nonrelativistic particle motion, this analogy shows that potential energy and particle
trajectories play the role fully similar to the ones played by refractive index and light
rays, respectively. In particular, this similarity allows us to introduce the concept of
electronic rays. On the basis of this optical language, refraction and reflection laws for
electronic rays can be introduced and their formulation is fully similar to the one that is
used for light rays. The basic electron optics concepts have been developed in connection
with the first experimental investigations of charged-particle motion (ions and electrons)
in oscilloscopes and mass spectrometers. However, electron optics have been rapidly
developed and applied to electron microscopy [31], electro-optical transducers [32], particle
accelerators [33, 34], etc. .

The general statement from which we recover the above optical description is the
so-called Hamilton’s principle:

5/p@=0, (1)

fully similar to Fermat’s principle of geometric optics:
5/n®=0. (2)

1.2 The paraxial electronic-ray approximation

When the potential is a function of the coordinates, it corresponds to an inhomogenous
refractive index, and the electron trajectory through this inhomogenous potential region
corresponds to a light ray through an inhomogeneous medium.

In case we have several particles moving together in an arbitrary potential, each par-
ticle trajectory is an electronic ray.

In order to consider a charged particle beam as a special case of the above particle
system, we introduce the so-called parazial electronic ray approzimation [33]. In this case,
the system has a special direction, the instantaneous propagation direction, say z, and
the following conditions hold:

dz dy

$EE<<1,yEE<<1, (3)



where = and y are the transverse (with respect to z) coordinates in the comoving frame.
In other words, paraxial approximation corresponds to a very small deviation of the elec-
tronic rays from the propagation direction. Note that in principle the beam particles
may have a relativistic motion along z (longitudinal motion) but, in order to be consis-
tent with the paraxial approximation, their transverse motion must be non relativistic
(ve = /v +v? K c). At instant ¢ a surface orthogonal to all the electronic rays can be
constructed. This surface is analogous to the one that in e.m. optics is obtained by taking
constant the phase at each time: in fact, at each instant, it is orthogonal to all the light
rays, and the initial surface transforms during the e.m. propagation. Correspondingly, the
surface orthogonal to the electronic rays transforms during the particle motion: let us call
it etkonal surface of the particle system. If a ¢ = 0 the eikonal surface has finite curvature
radius p (0 < p < 00), thus the electron ray will converge (diverge) in correspondence
of surface concavity turned forward (backward) the propagation direction. Consequently,
the beam will be focussed (defocussed) and p plays essentially the role of focal length
of the device which produced the initial electronic ray convergence (divergence). Such
devices are usually called lenses and typically they produce electric forces (electrostatic
lens) or magnetic forces (magnetic lens) on the beam particles [30, 33, 34].

Let us consider a beam so diluite that the space charge effects can be considered
negligible. If the thermal spreading of the particle velocity is negligible, in the case of
aberrationless focusing, the particle converge in one point F only (focal point). Conse-
quently, in the limit of p — co, without thermal spreading, the beam remains unchanged
(not focussed, not defocussed).

Of course, if the thermal spreading is taken into account, the above circumstances
will be modified. In fact, the beam will not focus at only one point and, with the initial
condition p = oo, the electron rays will diverge and the beam naturally defocuses.

In order to go deep into the thermal spreading among the electronic rays, in the next
section we consider the single particle motion in a linear lens and in the section later a
statistical treatment of the electronic rays will be performed.

2 Single particle-motion (single electronic ray)

Let us consider for simplicity the particle motion in the 2-D case: for instance, the y-
component of the particle motion is neglected. Typically, the hamiltonian for the z-
component motion of a single charged-particle with rest mass my is given in the following
dimensionless form in the comoving frame:

?

H = 5 + Ulz,z) , (4)

where p = & is the canonical conjugate momentum. Note that (4) describe a 1-D motion

(along z) of a classical particle when z plays the role of a time-like variable and U is an

effective dimensionless potential energy, which can be expressed in terms of a polynomial

form in z of arbitrary degree N as:

ko(2) | ki(2) 2 ka(2) 5, ka(2) 4 N __kn

T T+ o & + T + ar c +"'=E"=°(n+1)!

{7 has been made dimensionless dividing the effective energy potential of the system by

the relativistic longitudinal energy mgyoc? = mc? (70 being the longitudinal relativistic

U(z,z) =

$n+1 . (5)



factor) . In particular, for a pure quadrupole-like potential (linear lens) (5) becomes

H = %i + k—léz—)xz . (6)
Let us consider the equation of motion which follows from (6) (the Hill’s equation 33, 35]):
i+ k()z =0 (7)

where p = —k,(z)z. The general solution of (7) can be put in the following form
z = V2E(z) cos(¢(z) — o) = V2E(z) cos Ad(z) (8)

where ¢o is an arbitrary constant and E(z) is a function defined unless an arbitrary
constant factor. By imposing that (8) is a solution of (7), we easily obtain the following
conditions

. I
E*A¢ = const. = 50 , (9)
and
E+kE b _ 0 (10)
By A
Moreover, it is easy to prove that = and p satisfy the following quadratic form:
I
J(2,p,2) = 7(2)a’ + 2a(2)zp + B(2)p" = 5 (11)
where
Iy | E? EE 1 dE? E?
)= — 4+ — =—— = ———— Z2)= — 12
7( ) 4E2 + 1'0 ? a(Z) [0 210 dZ I ﬁ( ) [0 b ( )

are called Twiss parameters [35]. Note that J(z,p, z) is an invariant for the hamiltonian

(6), namely: o7

5 T {J,H} =0 , (13)
where {...} denotes the classical Poisson brakets [36]. It is worth noting that the invariant
which is quadratic form in coordinates and momentum for parametric classical oscillator
is known as Ermakov invariant [37] and its quantum analogous was found by Lewis [38]
and discussed in [39]. It is easy to see that the determinant of the matrix associated with

the quadratic form (11) is conserved:

7,3—012=% . (14)

Thus, from (12)-(14) we obtain the identity

L _ (g B g (ppy (15)
4 4FE? ’
and the following inequality, which will be used later

s [g 12 [0



3 Statistical description of electronic rays

The results of the previous section can be used now to statistically describe the spreading
among the electronic rays in a linear lens.

First of all, we observe that solution (8) is typically considered in particle accelerators
for the case of a very smooth ki(z) compared to the variation of the phase advance
Ag¢(z) [33, 40]. Also the amplitude E(z) is typically a very slow function compared to
A¢(z) [33, 40]. It is easy to see that in this circumstances the paraxial approximation is
naturally satisfied. In fact, for an arbitrary initial transverse-space particle distribution,
the most of particle trajectories remains confined in a limited region (if suitable stability
conditions hold). Consequently, in the statistical description it can be assumed that this
region represents a sort of mean spread for the generic particle position or, equivalently,
a mean spot for a generic electronic ray corresponding to the most probable phase-space
accessible region. This way, we can introduce also the average of an arbitrary observable.
In particular, in order to estimate the above spot size we have to compute the following
r.m.s. definition: .

o= (2% == Iim ~ /OTz?(t) it (17)

T—o0
Since z(z) contains a fast-period dependence on z, one can replace the (17) with an
average on the phase

2 _ g2y _ 1o,
U”_<x)—‘)7r/() z“* dAg (18)

<

which gives (the average is performed only on the fast time scale, where E(z) is almost
constant)

o7(z) = () = E*2) . (19)

T

Consequently, the instantaneous amplitude of solution (8) of the electronic ray equation
in a linear lens corresponds to the statistical estimate of the transverse beam spot size
0. Similarly, we define the r.m.s. of the electronic ray slope p = dz/dz = V2E cos A¢—
(Io/ﬁE) sin A¢, obtaining:

. I} do,\? I?
20\ = (n2\ — P2 o _ z 0 5
a,(2) = (p°) E° + AE? < dz ) 40,2 (20)
For the observable zp the statistical average gives
_ _ 5 1d,, 1 do?
gmp = (zp) = EE = 35 (%) = 34, (21)
and, finally, the mean value of the energy (6)
(. 2 1 ok (2)
H(z) =(H) = = |E* + =% ~kE? = 24 2052
(z) =(H) 2( +4E2)+2k1E Y T 5% (22)

or, equivalently

1 (do,\® 12 1 . _
H(z) = E(dz) + 301 + 5/»31(,2)0I ) (23)




Consequently, the hamiltonian H defined by (23) has now the meaning of averaged total
energy associated with the transverse motion of the beam particles. It is very easy to
prove the following very important relationships

d2 2

d:; + dki(2)0? = 4H . (24)
and

dH ou 1.

Remarkably, (24) and (25) describe statistically (virial description) the behaviour of the
paraxial electronic rays in a linear lens of strength k,(z). But some additional information
can be obtained from (19)-(21). In fact, the quantities (z?), (p?), and (zp) are the elements
of the diffusion matriz whose determinant essentially defines the squared of the diffusion
coefficient. Let us introduce the following quantity proportional to this coefficient and
called r.m.s. emittance [41, 42]:

i (26)

€
5 = (e ) = (ap)’]
Note, results (19)-(21) show us that both in the linear lens and in vacuo € is an invariant
and coincides with Iy:
I2 .Y
7 = @) - (@) (27)
For an arbitrary potential, € is not necessarily preserved. Remarkably, from (26) in
particular we have:

osop 25 (28)

We would like to stress that (16) represents a tautology, whilst statistical form (28)
actually represents a sort of uncertainty relation even if the particle beam is a classical
system. Furthermore, it is clear that (28) defines the transverse beam emittance as the
manimum reachable uncertanty. By using (19)-(25), it is easy to see that this minimum
is reached at the equilibrium condition (do,/dz = 0). At the equilibrium the phase-
space distribution for a sufficiently diluite beam is Gaussian in both configuration and
momentum space. Le us take this two equilibrium distribution for the dimensionless
hamiltonian (6), namely given by

n(O)(p) — n(o) exp | — P2 29
P po €XP 252 ’ (~ )
p0

where 02, = kgT/(mc?) = (p*).=0, (kp and T being the Boltzmann constant and the
transverse temperature of the system, respectively), and

2
(0) _ (0 _z
ny’(z) = ny exp[ 203] , (30)

where 0§ = (22).20. Note that (zp) = (zp),.o = 0. Consequently, at the equilibrium,
(27) gives
(31)



which proves that the minimum product of the uncertainties is given at the equilibrium
states and numerically coincides with half of the beam emittance, and now it is easy to
prove that [33]:

2 mc?

which shows explicitly the thermal nature of the beam emittance; vy = (kgT/m)!/?
represents the transverse thermal velocity of the system. Consequently, € scales as /7.
The above results clearly show that, if the temperature of the system is not negligible, the
electron rays are affected by a diffusion whose effect is to spread out them while the beam
is propagating. This effect produce a dispersion among the electron rays whose tendency,
due to the potential U(z, z), is to be ordered. To see more evident this diffusion effect, let
us consider the special case of U(z,z) = 0 (i.e. the beam is travelling in vacuo). In this
case, (23) and (25) imply that H is a positive constant given by

1/2
- (2 s = e (32

1 (do,\* | & 33
%zid +8—U—2=constant, (33)

T

and, consequently, (24) becomes

22
dda; = 4H = constant (34)
which, for the intial condition o.(z = 0) = 0y and d,(z2 =0) = 0, gives
€2
ol(z) = o + 2Hz2 = o + —z . (35)
20§
This means that, while the beam is travelling from z = —|z|, the electronic rays will not
focus in a one point only. Starting from an initial spread 7 = 0..(—|z|) = oo (1 S —4— )1/2,

in case of focusing the electron rays will reach the minimum spot o and then the beam will
diverge giving greater values of the spot. We want to point out that, since the particle
are moving in vacuo, their trajectories must be straight. Even if the electron rays are
straight, their mixing is due to the thermal spreading (diffusion) in such a way to produce
the beam envelope described by (35) which represents a hyperboloid of rotation around
the z-axis. The entity of this ray mixing is the order of < —;— ~ —!L It is easy to see that
in the present 2-D case the eikonal surfaces reduces to a c1rcular line (but in 3-D it is a
spherical surface).

For particle beams in the accelerators, typically vp/c is much less than 1. In fact,
transverse particle motion is classical whllst the longitudinal one is relativistic. So, the
condition vi/c << 1 is thus equivalent to consider in vacuo the envelope function E( z)
slowly varying with respect to the oscillating term cos A¢ .This is in fact consistent with
the above paraxial approximation.

4 Liouvillian description

The statistical description presented above, allows us to understand that, for particle
beams with finite emittance (temperature), the determination of an electromc ray at the



arbitrary z-position of the transverse plane given at each z is affected by an intrinsic
uncertainty that cannot be reduced to zero. Only when the transverse temperature is
exactly zero, the electronic ray mixing (diffusion) disappears and finding an electronic ray
at a given transverse position is a deterministic operation based on simple geometrical
arguments.

However, for finite-beam emittance, the intrinsic uncertainty on the transverse position
at each z cannot allow for resolving among two or more rays in the sense that they are
indistinguishable within this uncertainty which must be the order of o, (z). In particular,
at the focal point, it would be 0. Consequently, for a finite emittance, we need to assign
a probability (in principle positive and finite) of finding an electronic ray at the transverse
location z in the plane for given z. This probability distribution, say P,(z,z;¢), would
be both depending on the (transverse) emittance ¢ (i.e. transverse temperature) and
normalized in the z-space, namely

/ Pi(z,z;¢)dz = 1 (36)
—00

with the following physical meaning. Multiplying P(z, z;€) by the total number of the
beam particles, one obtains the transverse particle beam density (i.e., the electronic ray
density with respect the transverse direction).

In order to give the transverse beam dynamics description in terms of this probability
distribution, let us start from Liouville equation for the electronic rays. To this end, we
introduce the phase-space density distribution p(z, p, z) in such a way to have for a generic
observable f(z,p) the following average:

(f@.p)) = [ f(z,p) p(z,p,7) dodp (37)
provided that the following normalization condition holds
[ pa.pz)dzdp = 1 . (38)

By definition p is constant of motion, and consequently must obey to the following equa-
tion (Liouville equation) [43]:

dp

bl H} =
5, + i} =0, (39)
where H is the hamiltonian for an arbitrary potential given by (4). By using the Hamil-
ton’s equations, (39) can be explicitly written in the following form:

Jp dp oU\ dp
—a'; + Pa—z - <E)a—p =0 (40)
Within describes a phase-space evolution of electronic rays.
By introducing the dimensionless variables:
7= 7= 2
R = (41)

Eq.n (40) assumes the form:

a_p dp 3 oU\ p 0
0z
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where p = p(z/200,p, 2/200) = p(T, p, %) and U = U(z /200, 2/200) = U(Z, 7).

However, we want to give a more interesting, but approximate effective electronic-
ray description, taking explicitly into account their thermal spreading. According to the
results of the previous section, since for finite emittance the indistinguishability among
two or more rays due to the thermal spreading is the order of = €¢/209 = vin/c < 1,
AU /97T in (40) can be conveniently replaced by the following symmetrized Schwarz-like

finite difference ratio: . —
o0 _ U@ +n/2) ~TU(z—n/2)

dz n (43)

This way, (40) must be replaced by the following equation for an effective distribution,
say pu(T,p,Z;1):

_ =0 . 44
az“’af n Jdp (44)

The transition from (42) to (44), based on physical arguments, is partially a change of
partial differential equation (i.e. (42)) to differential-difference equation (i.e. (44)) which
may be considered as ansatz of a deformation of the Liouville equation.

Given the smallness of n, multiplying both numerator and denominator of the last
term of the l.h.s. by the imaginary unit 7, we have:

UE+n/2) -TE-n/2) 05, UE+35)-UE-%5) 5
: ~ . Pu (45)
& p &

Thus, going back to the old variables z and z, (44) assumes formally the look of a Von
Neumann equation [18, 44] (let us say Von Neumann-like equation):

0 0 i €0 €0
ortetoid) ot e o

Where p,, = p,,(200T, p, 200%; 200m) = pu(z,p,2;€). Eqn (46) shows that in the frame-
work of this effective description, the phase-space evolution equation for electronic rays is
a quantum-like phase-space equation where % and the time ¢ are replaced by the emittance
¢ and the propagation coordinate z, respectively.

However, some considerations are in order.

(i). Approximation (43) is due both to the smallness of 7 and the fact that evaluation
of U-variation around the location T does not make sense within an interval of size n.
This, in fact, corresponds to the intrinsic uncertainty produced among the rays by the
finite-temperature spreading. In other words, thermal mixing of electronic rays affects
the evaluation of U-variation with respect to z. Thus, (44) represents a possible way to
take into account the ray-mixing in this evaluation.

(ii). Since U(ZT + %l:—p) ~-U(z- %’%) = % ing—p +0 (ns%), approximation (45) is equiv-

alent to assume that terms O (773%) are small corrections compared to the lower-order
ones, according to the paraxial approximation. Consequently, from the quantum-like point
of view, approximation (45) plays the role analogous to the one played by semi-classical
approzimation [45].

(iii). While the distribution p(z, p, z) involved in (40) is introduced in a classical frame-
work and it is positive definite, the function py(z,p, z; €) is introduced in a quantum-like
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framework which plays the role of an effective description taking into account the ther-
mal spreading among the electronic rays. In addition, in this context p,(z, p, z; €) cannot
be used to give information within the phase-space cells with size smaller than ¢, due
to the intrinsic uncertainty exhibited by the system for finite temperatures, i.e. due to
the indistinguishability among the electronic rays. Consequently, we would expect that
pw Vviolates the positivity definiteness within some phase-space regions. On the other
hand, even with the limitations given by the point (i). and (ii)., it is clear from the Von
Neumann-like equation (46) that p,, is a sort of Wigner-like function. Thus, it is not posi-
tive definite, due to the quantum-like uncertainty principle given in section 3. This means
that, in analogy with quantum mechanics, p,,(z, p, z; €) can be defined a quasi distribution
even its z-projection and p-projection are actually configuration-space distribution and
momentum-space distribution, respectively. In particular, within the framework of the
above effective description of the electronic ray evolution, we assume that the probability
P.(z, z; €), introduced above, is:

Pi(z,z€) = /pw(z,p,Z;e) dp (47)

provided that also p, is normalized over the phase space.
Note that, for arbitrary U:

limeo Pw(z’pyz;e) = P(O)(x,z) 6(17—' V(O)(m’z)) = po(x,p,z) ) (48)

which describes the (transverse) phase-space motion of a cold beam. Multiplying the total
number of particles by P()(z,2) we obtain the transverse space-density of the electronic
rays at each z for a cold beam. Furthermore, V{©)(z, 2) is the (transverse) current velocity
which in this case obeys, with P (z, 2), to the following equations

opP© 0
5 T 55 (POV®) =0, (49)
(continuity equation),
0 0 ou
= G Pl © - =
(82 v 8:1:) v dz ’ (50)

(fluid motion equation). Note that in the above limit the local slope of the electronic
rays p = dz/dz is determined only by the gradient of U. In particular, in vacuo (U =0)
a cold uniform beam has phase-space density of the form Py §(p — V;), with Py and Vj
constants. With the language of particle accelerator physics, this kind of beam is called
monochromatic beam. It is easy to see that all the electron rays of a monochromatic beam
have the same slope.

The above results allow us to write that, for an arbitrary potential, we have

li_{%Pz(m,z;e) = PO(z,z) . (51)

Remarkably, from the above results it follows that it may exist a complex function,
say U(z,z) such that
Py(z,z;¢) = U(z,2)0*(z,2) , (52)
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used also for description of pure quantum states, and the following quantum-like density
matriz

G(z,2',2) = U(z,2)0*(z',2) , (53)
used also for description of mixed quantum states, connected with p, by means of the
following Wigner-like transformation:

R S A y y Py
pw(zapvzve)_% _OOG(:B+§,$_§,Z) exp (Z 6) dy ) (54)
or, for pure states
1 e y y ) (.py)

ce) = * z -2 =) dy . 55
pu(Z,p, 25 €) 2M/_°o\11 <m+2,2)\11(x 57 exp (1) dy (55)

Consequently, ¥(z, z) must obey to the following Schrédinger-like equation:

. oY €2 9?

This equation has been the starting point to construct the quantum-like approach of
charged-particle beams which is known in the literature as Thermal Wave Model (TWM).
It has been applied to a number of problems in particle accelerators and plasma physics
[19]-[25). TWM assumes that the transverse (longitudinal) dynamics of a charged particle
beam, interacting with the surroundings, is governed by a Schrédinger-like equation for a
complex function in which Planck’s constant is replaced by the transverse (longitudinal)
beam emittance. This complex function, called beam wave function (BWF) has the
following meaning: its squared modulus is proportional to the transverse (longitudinal)
beam density. This way the beam as a whole is thought as a single quantum-like particle
whose diffraction-like spreading due to the emittance accounts for the thermal spreading.

5 Quantum-like corrections

In this section we analyze the quantum-like corrections [46] that the effective electronic
ray description presented above gives with respect to the pure classical treatment. In other
words, we make a comparison between the quantum-like description given by (46) and
the one given by (40). To this end, we first observe that, if the beam is in a quadrupole
(linear lens), (46) collapses in (40) and no quantum-like corrections are present. One
can calculate the set of moment equations associated with (40) and (46) , respectively.
Defining the following Liouville operator

s 0 0 ou\ a -
E:a-l—]?a—z—(—a;)a—p , (57)

U being an arbitrary potential which can be expanded in Taylor series with respect to z.
It is easy to see that (40) and (46) become, respectively

Lp, =0 . (58)

and

2

& (=1)* €\ 2k QI 2+,
Lpw = Z(2k+1)!( ) Jzk+1 P+l

k=1

(59)
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By introducing the v-order (v being a non-negative integer) moment of L as
M2 = [ plpydp (60)

the classical equation (58) leads to

M (z,2)=0 Yv>0 , (61)
which, in turn, gives
— for v = 0, the continuity equation

0P, 0

5 (V) =0 (62)

— for v = 1, the motion equation

(%Jrva%)\e-g—g-%g—f , (63)
- for v = 2, the energy equation
MP(z,2)=0 (64)
and so on, where
V(z,z) = P%/_o:o ppw dp (65)
1s the current velocity, which is experimentally the first order moment of p,,, and
(z,2)= [ (p=V)*pu dp (66)

is the kinetic pressure (divided by the total number of the particles) or the second order
moment of p,,.
On the other hand, the quantum-like equation (59) gives

MW(z,2) =0 v=0,1,2 (67)

and

> 2%k H2h+lpy
(U) v y—2k—1
M g (2k+1)(2) az2k+1/ p pwdp#0 VYv2>3
(68)

Consequently, for an arbitrary potential and up to the energy equations, the two descrip-
tions (the classical and the quantum-like) coincide. The discrepancy appears at the order
equal or higher than the 3-rd one in the moment equations. In principle equations (58)
and (59) are equivalent to an infinite set of their moment equations (61) and (67)-(68),
respectively. The characteristic of these moment equations is that the one of v—order is
an evolution for the v-order moment of p,,, but contains (v + 1)-order moment of this
function. Provided that a closure equation is introduced, which relates (v + 1)-order
moment with the lower-order ones, the truncated set of equations, consisting of moment
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equations up to the v—order plus the closure equation, is fully equivalent to (58) or (59),
respectively.

Usually, the lowest order of truncation is introduced for v = 1, by introducing, for the
transverse dynamics, the following ideal gas state equation [46] (isothermal approxima-
tion):

pL (69)

mc
In fact, even if the beam propagates along z with relativistic motion, the transverse
particle motion around z is classical. Consequently, the beam behaves transversally like a
nonrelativistic ideal gas. Moreover, note that, denoting with /V the total number of beam
particles, the quantity n = NP, is the transverse number density of the beam. At this

level, we are describing our beam in terms of the fluid theory

0P, 0 B
5 (V) =0, (70)
0 0 B oU v 1 0P,
(82 + Vaa:) V= oz 2 P, Oz (1)

It is obvious from (61)-(68) that the classical and the quantum-like descriptions coincide
at the level of the fluid theory for non-cold beams. Note that, in particular, in the limit
€ = 0, (70) and (71) recover (49) and (50), respectively.

Going on to v = 2, for the truncation a closure equation involving the moments of
3rd order and the lower ones have to be introduced. By virtue of (62)-(64) and (67), the
descriptions coincide also at this level if a suitable closure equation is chosen for both.

For orders v > 3, according to (68), the truncation cannot allow for having the equiva-
lence between the classical and the quantum-like descriptions. In particular, the 3rd-order
moment equation (v = 3) of (59) is

3
) = 5)2 o°u
-2
and the one for 4th-order moment (v = 4) is
) = 5)2 il
MO =4 (2 (8z3 PV . (73)

The above analysis, allows us to conclude that at the third-order moment description
the discrepancy between the classical and the quantum-like descriptions appears as a very
delicate effect. In fact, from the experimental point of view, one can easily measure the
moments up to the second-order, but the measure of the higher-order moments is a very
hard task. Moreover, it is clear from (72) and (73) that, for arbitrary potentials and for
given emittances, the discrepancy increases as the density of the beam. Thus, to make it
evident very intense beams are necessary.

In addition, if U is a symmetric potential with respect to the propagation direction
z, i.e. U(-z,z) = U(z, z), the discrepancy corresponding to the 3rd- and the 4th-order
moments are still negligible for bea:fns that are mainly concentrated around z (z very

23U

close to zero), because in this case Tx oz 0.
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6 Conclusions and remarks

In this paper, the charged-particle beam transport has been investigated with a quantum-
like approach. By starting from the electronic-ray concept in paraxial approximation, we
have given the statistical description of the electronic ray evolution which has allowed us
for obtaining a quantum-like picture of a charged-particle beam transport, where a sort
of quantum-like uncertainty principle holds for the spread of particle position distribution
and the spread of particle momentum. This way we first introduced a sort of Wigner-
like pictures behind the electronic ray evolution and then recovered the already known
quantum-like description for charged-particle beam dynamics called Thermal Wave Model
[19]-[25]. It is worth noting that, within the Wigner-like picture given in section 4, (56)
has not been fully recovered, according to all the assumptions of TWM. In fact, (56)
is fully consistent with (46) even when the terms O (US%) are not small corrections,
whilst the effective description developed in section 4 is consistent only with semi-classical
approximation. Consequently, solution of (56) for BWF ¥ in semiclassical approximation
can give solutions for the deformed equation (44) via Wigner-like transform (55).

Within the framework of the Wigner-like picture, the quantum-like corrections have
been introduced and compared with the standard classical picture for arbitrary potentials,
showing that the above quantum-like approach could be a useful tool for particle accel-
erator physics investigation. It is worth mentioning that this comparison is in agreement
with a recent numerical phase-space analysis which compares the quantum-like Wigner
function of charged-particle beam in a quadrupole with small sextupole and octupole
aberrations with the results of a standard particle tracking code simulation [25].

Nevertheless, we want to remark that this approach could be relevant also for a wide
spectrum of topics in e.m. radiation optics, general quantum mechanics and quantum
optics for the considerations that are in order.

(1). Eq. (46) collapses in (40) in the case of quadrupole (harmonic oscillator). How-
ever, due to the Wigner-like picture, (46) describes some states that are not described
by its classical-like counterpart. In other words, the similarity between p and p,, in the
harmonic oscillator is not possible for all the states. This makes evident a quantum-like
effect that p,, contains and that p does not contain. Of course, according to the investi-
gation about the discrepancy given above, this quantum-like effect is hardly measurable
but not in principle negligible. Additionally, note that also (42) and (44) become the
same equation in the case of quadrupole, where ¢ does not appears explicitly. However, a
possible normalized solution of this Liouville equation for harmonic oscillator is [25]

e [=2 (102027 + 20(2)ap + B(2)p")] (74)
e €

which explictly depends on e. Consequently, in principle, to recover classical solutions
we do not need necessarily to take the limit ¢ — 0. In this limit we can recover the
special family of classical solutions that describe the cold-beam solution only, as it has
been pointed out in section 4. This means that (40) contains something more than the
classical limit. In fact, solution (74), in which € is a finite quantity, leads easily to the
quantum-like uncertainty relation (28).

. . . . . . . 2
(2). From (59) it is clear that for finite emittance but in the case in which (%) Q;psz >
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<)’ 92w for s > 3, (46) and (40) formally coincide for an arbitrary (anharmonic) poten-
2 Bp . . . . . » .
tial. However, also in this case, p,, contains in principle the quantum-like effects that p

does not contain.

(3). Since in quantum mechanics and in quantum optics the measuring of the states de-
scribed by Wigner functions was recently reduced by means of tomographyc procedures
to measuring positive marginal distribution related to Wigner function by an integral
transform (the Radon transform of optical tomography method [47, 48] or Fourier trans-
form of symplectic tomography [27, 28]), we could state that in the above quantum-like
approach there is a possibility to transit from Liouville equation to an equation for a
positive marginal distribution of two types [28] which has standard classical features.

(4). Finally, we want to remark that, even if we have given a quantum-like picture
for charged-particle beam transport, fully consistent with the quantum-like uncertainty
relation (28), our description does not contradict classical mechanics. In fact, while 4 is
a fundamental, universal constant, € has not such properties. Since the latter depends
on the thermal noise, we can, in principle, arrange a series of experimental devices in
which the temperature is progressively reduced. This way, we enhance the accuracy in
finding the electronic ray location by reducing the thermal uncertainty more and more.
Consequently, the quantum-like uncertainty in principle collapses into the classical inde-
pendence between measuring of spot-size and momentum-spread. In this sense, our effec-
tive description is formally quantum-like but intrinsically classical. Of course, a natural
limitation in reducing the thermal noise is established by the proper quantum uncertainty
relation which states that quantum fluctuations are unavoidable and intrinsic. In fact,
the nature of the physical systems is basically quantum and not classical, but this is true
for all the systems in nature and not only for charged-particle beams!.
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