ISTITUTO NAZIONALE DI FISICA NUCLEARE

Sezione di Trieste

INFN/TC-97/30
3 Ottobre 1997

C. Strizzolo:
TAPEUTILS: A SET OF TOOLS FOR TAPES HANDLING ON DIGITAL UNIX.

VERSION 1.0a

SIS-Pubblicazioni
dei Laboratori Nazionali di Frascati

INFN - Istituto Nazionale di Fisica Nucleare
Sezione di Trieste

INFN/TC-97/30
3 Ottobre 1997

TapeUtils

A set of tools for tapes handling on Digital Unix

Version 1.0a

Claudio Strizzolo
(LN.F.N. Sezione di Trieste)

Abstract

This document describes the TapeUtils package, which includes some tools devel-
oped to improve and simplify tapes handling on Digital Unix systems.

TapeUtils includes a VMS-like tape units allocation/deallocation system and an
enhanced version of Ed Bailey’s popular juke-box loader control program, with im-
proved security features.

Contents

1

Introduction 3
Availability 3
Installation 3
Allocate/deallocate tools 5
41 USAEE . . v v v e e e e e e e e 5
42 Howdotheywork? it 5
4.3 Forcing deallocation e 6
Loader control program 6
5.1 USAEE . . . v v v v vt v v ma s e e e e e e ey e 8
5.2 Newfeatures v v v v it v it it it e e e e e e 9
5.3 Loader authorization files 10
Tools 11
6.1 TUDACKUD « « « « v o i o e et e e e e e e e e e e e e e e 11
Acknowledgements 11

1 Introduction

The TapeUtils package includes a set of tools that were developed to make tapes handling
easier and safer on Digital Unix systems.
At present, the following tools are included in the package:

e allocate/deallocate - allocate provides a user with exclusive access to a (tape)
device until he/she deallocates it (just like the ALLOCATE command on VMS operating
system). This can be useful, for instance, when working with a tape loader that
can be controlled through software, as in Unix there is no way to avoid an user
to complete successfully a loading command, even if the unit is already in use by
someone else (that is, the tape unit, even if in use, is unloaded and the new task is
executed).

e loader - The package includes a modified version of the popular juke-box loader
control program written by Ed Bailey. This modified version is able to work in
combination with allocate/deallocate, with some more security features added.

2 Availability

The kit is available through FTP anonymous: ftp://ftp.ts.infn.it/pub/unix/Tape-
Utils.

The TapeUtils WWW home page is at the following URL: http://www.ts.infn.it/~
computing/TapeUtils/.

The latest version of the loader control program as developed by Ed Bailey on July,
1997, is available (as kindly requested by Ed Bailey, who changed his activity and does
not work on this stuff any more) at the following URL: ftp://ftp.ts.infn.it/pub/-
unix/loader-stuff.tar.gz. You should not need it, as TapeUtils includes a compatible
version with some improved features.

3 Installation
You must have superuser privileges to install TapeUtils.

1. Expand the kit

2. Edit the TapeUtils.h file to customize the following parameters:

LOCK_FILE_PATH : The allocate tool creates a small lock file in order to lock
access to each device. This parameter defines the path to the directory in which
such lock files will be created.

LIST_OF_DEVICES : This parameter defines the name of a file containing the
list of devices that users will be allowed to allocate/deallocate.

DAEMON_DELTA _TIME : The deallocation daemon (which deallocates devices
allocated by no-more-existing processes, to avoid people forgetting allocated
devices they do not use any more) scans devices at fixed intervals. Use this
parameter to set the interval time length (in seconds).

LOADER_AUTH_FILES _PATH : This parameter defines the path to a direc-
tory containing the by-user authorization files to access the slots of a juke-box.
Read section 5 for more information about the loader authorization system.
If you do not mean to use authorizations on juke-boxes, or you do not have
juke-boxes at all, just set this parameter to a non-existing path.

. Build the SCSI/CAM libraries needed by the loader control program. This can be
done by just executing the make command in the scsilib sub-directory.

As described in the 1oader’s README file included below, in order to set the SCSI/CAM
libraries correctly, you need to create a file named /usr/local/etc/cam.lock (use
touch, for instance), with read/write permission for whoever will be using the loader
program. Check also if a /dev/cam special file is available, with the same permis-
sions. If not so, set it up appropriately.

. Compile and build the executables. This can be done by just executing the build
script:

./build

This script will compile the sources and build the executables into /usr/ local/bin.
If you prefer a different destination directory, just modify the build script before
running it. The same applies if you do not mean to install any of the tools.

The same script sets appropriate protections for allocate and deallocate images (in
particular, it enables user ID setting on execution). Do not change these settings!

Man pages are installed by default in /usr/local/man. Change the script appropri-
ately if you prefer a different destination.

. Create the file pointed by LIST_OF DEVICES parameter. It should contain the list
of devices that may be allocated, one per line, for instance:

nrmtih
nrmtOh

Only the devices listed in this file will be allowed to be allocated by the users. The
file may be changed at any time in the future.

Set the ownership of any device listed in the file to root, and grant access to the
owner only. For instance:

chown root /dev/nrmtOh
chmod 700 /dev/nrmtOh

This will make the devices available only by using the allocate/deallocate tools
(well, root user excluded, of course).

. If you mean to use the by-user authorization control system for the loader control
program, read section 5.3 for more information about building the authorization
files.

. Start the deallocd daemon, for automatic deallocation of devices that people leaves
allocated. For instance:

/usr/local/bin/deallocd > /usr/local/log/deallocd.log 2>&1 &

As a suggestion, redirect the output to a log file, to keep trace of what happens.

You may include the daemon startup in your system startup scripts, to start it
automatically every time your system boots.

8. If you mean to use the loader stuff, read carefully the loader’s README file which
is included entirely in section 5, and follow the installation notes available there.
In particular, you have to define a symbolic link to the loader executable for each
loader you mean to support, like this one:

1n -s /usr/local/bin/loader /usr/local/bin/nrmtOh-loader

4 Allocate/deallocate tools

The allocate/deallocate tools provide a user with exclusive access to a (tape) device
until he/she deallocates it, just like the ALLOCATE command on VMS operating system.

4.1 Usage

If the installation completes successfully, the allocate and deallocate tools should be
executable by any user with the following syntax:

allocate device-name
deallocate device-name

For instance:
allocate nrmtih

Specifying the special character file (i.e. /dev/nrmt1h) is not allowed.
The deallocate command must be invoked by the same process which allocated the
device.

4.2 How do they work?

When a device is not allocated by anyone, the device itself is owned by root, with no
access by other users. This is set up during the installation. In this way, no one (except
root) can access the device.

The allocate tool changes the owner of the device to the user executing allocate
itself, keeping protections unchanged. This grants the user with exclusive access, because
other users do not have the permissions to access the device. A lock file is created some-
where (the location is customized during the installation) to keep trace of who allocated
what.

To summarize, when you try to allocate a device through the allocate command, the
following steps are executed:

1. The device is searched in the list of allowed devices. If the list is not available, or
the device is not listed there, the allocation fails. This step is performed to allow
the system administrator to make only some devices available to the other users.

2. The tool checks if the device is allocated by another user, by looking for the lock file
which corresponds to the device. If it is already allocated, the allocation fails.

3. The tool changes the ownership of /dev/device-name to the current userid, granting
access to the current user only, and saves the user id and group id into the lock file.

After the allocation, the user can do his/her job safely: no one can interfere on the
same device.

When the job is done, the user must deallocate the device, to make it available to
other users. The deallocate tool just does the following:

1. The tool checks if the device was really allocated by the same process which is trying
to deallocate it, by looking into the lock file. If not so, the deallocation fails.

2. The tool changes the ownership of /dev/device-name to root again, and removes
the lock file.

4.3 Forcing deallocation

On VMS operating system, a device remains allocated until the user deallocates it or the
process which allocated it terminates.

On Unix, the latest is not done automatically. This is potentially dangerous: a process
might crash without deallocating a device, or the user might forget deallocating it.

To avoid problems, a daemon can be submitted to force deallocation for devices allo-
cated by no-more-existent processes. The daemon (named deallocd) scans all the devices
at fixed intervals, and deallocates them if the above condition happens. The length of
the time interval is established by setting the DAEMON_DELTA_TIME parameter in the
configuration file during the installation.

Read the installation notes for more information about submitting the daemon.

If needed, the system administrator may force a deallocation “by hand”, just by per-
forming the following steps:

1. Remove the lock file. The location is defined by the LOCK _FILE_PATH parameter
in the configuration file during the installation. The name of the file is the same of
the device.

2. Change the owner of the device character file (i.e. /dev/device-name) to root.

5 Loader control program

The tape loader control utility was written by Ed Bailey (bailey@niehs.nih.gov) on April
1995 and modified on July 1997 to fix some problems with Digital Unix 4.0. This tool
makes you able to control a SCSI tape loader (juke-box) through software.

The original README file by Ed Bailey follows:

6 April 1995
Hello!

You are now the proud owner of my tape loader control utility. I wrote

this program to permit the amanda network backup software (highly
recommended: check out ftp.cs.umd.edu, in /pub/amanda for the latest copy.)
to directly control our DEC TZ877 seven-slot DLT loader. It’s been in use
now for over a month with nary a hiccup, so I thought I’d give it to others
to break. ;-)

Random Notes:

o This program uses Wolfgang Barth’s SCSI access library to talk to the
loader via /dev/cam. The original version of Wolfgang’s library can
be obtained from: speckled.mpifr-bonn.mpg.de in
/pub/scsi/scsilib.tar.gz. However, since Wolfgang wrote this code to
run under DEC Ultrix, and we’re running DEC OSF/1 (now called Digital
Unix), some changes had to be made. They’re minor, but I’'m making
available a modified version of scsilib.tar.gz for those that don’t
feel the need to hack it on their own...

o Makefile? We don’t need no steenkin’ Makefile! To build this
program, Issue the following command:

cc loader.c -o loader -L<libscsi-location> -lscsi
Where <libscsi-location> is the location of libscsi.a.

o Speaking of locations of things, I copped out and simply made a
directory called "loader-src" on the same level as the directory
(called "scsilib") that held Wolfgang’s code. The only artifact of
this layout are the two #includes in loader.c that refer to
"../scsilib/<whatever>". So if you set up things differently, those
#includes are going to have to change.

o The program as written looks at the name it was invoked under in
order to determine the name of the loader it is to comtrol. The name
of the program should look something like:

foonly-loader

Where "foonly" is the name of the tape device. This device is
expected to reside in /dev, but this can be changed. So basically
what it does is to grab the part of the name prior to "-loader”,
prepend "/dev/" to it, and then get the bus and target (aka SCSI id)
from that device’s minor number. This is probably completely OSF/1
dependent, so if it doesn’t work on your non-0SF/1 machine, I told ya
so!

Anyway, I ended up plopping the executable "loader" in
/usr/local/bin, and then symbolically linking nrmtOh-loader and
nrmtOm-loader to it. This way, you can control different loaders
with only one copy of the program. Amanda users: Note that the
device name the program returns is what amanda will use for backup
purposes, so you need to get the name just right, or your tape
density/rewind stuff will be gronked.

o Wolfgang’s library routines use a locking file to control access to

/dev/cam. In order to make *anything* that uses his routines work,

you need to create a file called "cam.lock" in /usr/local/etc (touch
works fine). This file will need read/write permission for whoever

will be using the loader program. Can you move the location of the

file? I don’t see why not, but I didn’t bother.

o As noted above, this program was written to control a DEC TzZ877. If
I was a betting person, I’d bet that it would work on a DEC TZ875,
and the various OEM versions that Quantum (who bought the DLT
business from DEC recently) produces. I tried to make the code as
general purpose as possible, so other loaders that:

- Dedicate a SCSI LUN (Logical Unit Number) to the loader
mechanism,

- Dedicate one or more LUNs to the tape transport(s)

will probably work. However, be aware that loaders with multiple
access arms (the thingies that actually move the tape from a slot to
a tape transport) may have problems, as the code will only try to use
the first access arm. Also, the code assumes that there’s only one
tape transport, so loaders that have multiple transports won’t work
on this as written. If anyone out there wants to try to rectify
this, let me know. In addition, since this code returns the device
name it cobbled together from the program name, loaders that make
their transports available as seperate devices won’t be able to use
this code, either. If you want to modify it, let me know, which
brings up the issue of...

o Support? Well, I’1l be here if someone wants to donate a
patch/enhancement to be integrated, but I can’t do too much in the
way of hand-holding. You’re pretty much on your own, gang...

Good Luck!

Ed Bailey
Technology Planning & Management Corp.

Internet: bailey@niehs.nih.gov
Voice: (919)361-5444, extension 419
FAX: (919)361-9680

The version of the loader control program which is included in the TapeUtils package,
has been enhanced with some special features that are described in the following sections.

5.1 Usage

As explained in the README file above, you execute the loader by means of symbolic links
named device-loader (i.e. nrmtOh-loader) pointing to the real loader executable.

This utility has a number of parameters and options. This is the help which gets
displayed if you invoke it without any options:

nrmtOh-loader

usage: nrmtOh-loader [-slot|-infol-reset|-eject|-status] [slot-id]

-slot slot-id Loads the tape stored in "slot-id" into the tape drive
("slot-id" may be any loader-specific ID from -status, or
one of the words first, last, next, prev, and current.)

-info Writes to stdout the current slot-id, the number of slots,
and a one if the loader can go backwards, a zero if it cannot
(ie, a gravity stacker)

-reset Resets the loader to a known state - the tape in the first
slot is loaded

-eject Ejects the currently loaded tape

-status Writes to stdout a summary of the contents of the loader
and the tape drive

All commands (except -status) write the current slot-id to stdout. With the
exception of -info, this is followed by the tape drive’s device filename, or
an error message indicating the reason the command could not be completed.

Return Codes:
0-Success, 1-Non-fatal Error (Trying to load an empty slot, etc.), 2-Fatal Error

5.2 New features

The enhanced version of the loader control program, which is distributed with the TapeU-
tils package, is fully compatible with the original version, but it includes some extra
features that are not available in the original Bailey’s tool.

The main new features are:

e Compatibility with the allocate/deallocate tools.

The loader control program has been modified to avoid people loading or unloading
cartridges if the device is allocated.

The correct sequence to use the two tools in combination is:

allocate nrmtOh
nrmtOh-loader -slot 0 (or any other loading command)

(Do your work safely)

nrmtOh-loader -eject
deallocate nrmtOh

Remember to deallocate the device from the same process which allocated it.

e Support for by-user authorization.

This feature was added to manage a very peculiar juke-box organization in use at
INFN Trieste. A juke-box with a 7-slots loader is installed there. Four slots (number

3 to 6) are permanently allocated for system management tasks: we do not want
people to be able to access those slots, while we want them to be able to take
advantage of the remaining ones.

An authorization system was added to the loader control program, to make the
administrator able to allow/deny access to some slots of the juke-box on a by-user
basis.

This is done by means of a permissions file listing which users can access which slots.

The control system is rather simple. However, it covers what are supposed to be the
most common situations. The main limitations are the following:

— You may enable an user to access the first n slots of the loader. You may not
enable him/her to use slots z and y, neither slots z to y (if z is not the first
slot).

— Restrictions are by-user, not by-group. This means that if you want to restrict
access to a group of users, you must list them all. Fortunately enough, a
wildcard “*” exists, that includes all the users (which is the most common
case).

5.3 Loader authorization files

To enable the access control system, you need to create an authorization file for each device
you mean to control. These files must be located in the directory which has been assigned
to the LOADER_AUTH_FILES_PATH configuration parameter during the installation,
and must be readable by any user. They must be named in the same way as the device
you mean to control (i.e. /usr/common/allocate/authfiles/nrmtOh). They should
consist of a list of entries which are couples of:

username mazimum-allowed-slot

The username field is the real userid, or “x+” to indicate all the users.

The mazimum-allowed-slot parameter indicates how many slots the user is allowed to
use (i.e., if the slots start from 0, setting this field to 2 will allow accessing slots 0 and 1).
Use “x” to indicate all available slots.

Use “#” to begin comments.

For instance:

#

Users can access only the first two slots
#

* 2

#

Privileged users can access all the slots
#

root *

backup *

strizzol =*

Users will be able to see only the slots they are allowed to access. No way for them to
get info about the other slots.
If you do not need the authorization system, just do not create the authorization files.

10

6 Tools

6.1 TUbackup

TUbackup is a simple script which has been included in the kit (in the tools directory)
both as an example of TapeUtils commands usage, and as a basis to build more complex
tools.

This script provides an interface to perform backups using a tape loader (juke-box). It
has been thought mainly as a tool for system administrator’s backup tasks, to be submitted
(through crontabs) for periodic and automatic execution.

TUbackup script is not automatically installed when you perform TapeUtils installa-
tion. If you need it, you must install it by hand.

The first part of the script includes some parameters setting that you should modify as
needed. In particular, you must set up the name of the tape loader device (just something
like nrmtOh, not /dev/nrmtOh), the number of slots available on the loader, and the
location of TapeUtils executables.

Then, you must create a number of files containing the lists of filesystems to be backed
up. Each file you build must include all the filesystems which must be backed up on the
same cartridge, one after the other. The filesystems names must be listed on the same
line, that is, each file must containg just one line, for instance:

/diskl /disk2 /disk3
After this step, the script may be invoked with the following syntax:
TUbackup backup-level slot list-of-disks

The backup-level parameter has the same meaning as for the vdump command: use 0 for
total backup, greater numbers for incremental ones. See vdump command documentation
for more information.

The slot parameter sets the loader slot on which the dump must be performed.

For instance:

TUbackup 0 2 mydisks.dat

This would perform a total backup of the filesystems listed into mydisks.dat on the
cartridge loaded in slot number 2.

7 Acknowledgements

The author thanks Ed Bailey of Technology Planning & Management Corp. for both
writing the original loader control program, which works really great, and for exchanging
opinions about the new features.

The tools described in this document have been developed and tested in a Digital Unix
environment (version 4.0a). They are provided “as is”. No responsibility is assumed in
case of errors, bugs or unwanted side effects. Comments, bug reports and notifications
about installations on other systems are welcome.

The original tape loader control program was written by Ed Bailey. For this software,
rights go to him. The original kit is currently available at INFN - Sezione di Trieste, see
above for pointers.

The author can be contacted at the following e-mail address: claudio.strizzolo@-
trieste.infn.it.

11

