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Abstract

In this paper we provide a theoretical description of the transverse as well longitudinal
envelope dynamics of space charge-dominated proton beams accelerated in radio-frequency
linear accelerators. These results provide a basis for general analytical investigation of
the beam dynamics of beams in the trans-relativistic regime, extending to heavy particles
the previously developed envelope theory of space-charge dominated electron beams.
We also investigate possible equilibrium solutions of the coupled longitudinal and transverse
envelope equations in the laminar regime, as well as the stability of these solutions to
perturbations provided by an alternating gradient focusing lattice. Application of these
results for mitigating halo formation in high average current proton beams for nuclear

fission and waste transmutation are discussed.



I. INTRODUCTION

In this work, we will be examining the behavior of trans-relativistic, bunched
beams with nontrivial dynamical space charge effects in evidence, of the type which may
be found in high-current proton radio-frequency (RF) linear accelerators (linacs). This
work is completely general, however, in that it describes in a fully relativistic formalism,
the envelope dynamics of any bunched beam accelerating in a RF linac. This treatment
represents an extension of previous work on ultra-relativistic space-charge dominated
electron beams in two fundamental ways: the evaluation of the forces in the more
complicated trans-relativistic case, and the inclusion of a longitudinal envelope treatment.
This second point is necessary for heavy particles, because their longitudinal dynamics

are in general not simply ballistic as in the case of electrons in high-gradient RF linacs.

II. THE ReLATIVISTIC ENVELOPE EQUATION UNDER RF A CCELERATION AND EXTERNAL FoCusNG

We begin by writing the envelope equations for a round Kapchinskii-Vladimirski
beam, with uniformly charge distribution inside an ellipsoid of radius R and longitudinal

semi-axis L, as
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where [, =3.1-10" A, Q is the proton bunch charge, I=—— is the peak current, ¢
° 4L

the speed of light, y=1+ Tz the normalized energy (mpc2 =938 MeV) and

mpc

p= Ye 1/1 - l/ y? the normalized velocity along the linac z-axis. The two equations are
c

valid in the paraxial approximation, with the reference axis being the independent variable

z, so that R’ = aR , L’ E‘-ié and y’ Ed_y= eE—""'gcosqoo, with E__ the accelerating
dz dz dz mgc

P

gradient. The two focusing gradients, transverse K, and longitudinal X, , are given

respectively by:

F 1
K =——F—— 2.3
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where F is the average applied force by the external focusing system and k is the RF
wave number k = 27/A,., with A, being the RF wavelength. As usual, the longitudinal
(synchrotron) focusing gradient K, assumes a negative accelerating phase ¢, in order to

achieve a stable motion in the longitudinal plane, if ¢, =0 is defined to be the phase of

maximum acceleration, so that the actual energy evolution along the linac is assumed to
be Yy =Y, +YZ=¥o+YC0s¢P,-2 .

The average force F from the external focusing system will have, in general



many contributions, i.e. F, = Fy, + F, + Fy,, . The three separate terms are:

i) Fy =Q L|QB>|53; (Q, = |21mBi|), corresponding to an uniform solenoid of field 5.

4

mc’ B’y
B;

quadrupole lattice, which has periodicity L, and betatron phase advance (in the

ii) F=- r, where B, = L, /¢, is the average beta function of the

absence of space-charge forces) per period of ¢;.

iii) F,; is the average (over an RF cavity cell) force from the transverse components

of the RF field, which we next delineate.

The RF field components {E,,E,, B, } of the TM,,, , resonant mode in an indefinitely

long multi-cell structure can be written as:

E(r,z,t)= COS((DI + (00) Zaﬂ cos(nk’z)lo(rm)

n,odd

(2.5)
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where w=k-c, kK'=—= k%’:— and d is the RF cell length. The synchronous particle

r
d

speed fB; is then easily seen to be S = 2d _k . The linear expansion off-axis of the

’
RF

fields in Eq.1.5 becomes ( E, is actually expanded up to second order in r):

E! =cos(wx +@,) Y. a, cos(n%J{l + @(n’/ﬁg - 1)]

n,odd N

E =CoS a)t+g00 5 ﬁ Zna sm(n—) (2.6)
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By employing the Panofsky-Wenzel theorem, the radial momentum change Ap,

induced on a particle crossing the cell (extending between gz, =—g— and z, =g-) at

constant speed f; (sothat ax = Ek-z ) is given by
s

Ap, = q{[A,(z,.) z.)]+ df —tdz} @.7)

-df2



where the vector potential A is such that Ez—%. We find that

-r kz kz ) kz, T kz 1
A= na,| cos (n—l)—+(pj—cos((n+l)—+goj ; since ——=—— £ =—
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and (n-—1), (n+1) are even numbers, the term in square brackets in Eq.1.7 vanishes, so

that the momentum change arises only from the second order off-axis dependence of the

df2
longitudinal (accelerating) component E, through the integral I %dz. This integral is
-dJ2

null for a relativistic (ﬂs = 1) particle crossing a A/2 cell. In the present case, defining
a = Ey, @ =ay/Ey, G =a/F,...., we find

7 sin @,

Ap
—= —a(kr)— ’
mpc 2 ﬁs‘yg

(2.8

where the dimensionless quantity « is defined as a = > eE’w (note that y, = ak). The
m,c

“direct” momentum change Ap, , which is a first order (in the field amplitude) effect, is
therefore to be independent on the higher space harmonics. We may also apply Eq.1.7 to
find the momentum change induced on a particle travelling at constant speed 8 which is
slightly different from f; , so that B = f;(1+8) , with § <<1 . Since we are interested in

averaging the force over a cell, we calculate the average effective force

Fo, = ApPY /(T) = 2BcAp!” [(BsAgy) due to direct first order effects which are described



by Panofsky-Wenzel theorem, to find
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. The corresponding focusing gradient K" is then

where Z = 2 (—1) 2

n=3,0dd

g =1k o %[—(l +3ﬁsz)§+_12_+3‘25_z], 2.10)
Zﬁs S 2 § s

In order to calculate second order effects we must perform an averaging of the

force over a cell of the RF structure. The net transverse force is given by

2ﬂ5 n,odd S S

E= q—— Y a, {ncos(ax+(po)sm(n2—]+ﬁﬂ sm(a)t+(po)cos(n%z-)} (2.11)

We are mainly concerned about two contributions possible sources of second-order focusing

— particle speed change across the cell and ponderomotive focusing. The first effect is

treated assuming a small speed change, so that, since dff = E:—; , to first order in dff we
ke
can take a particle speed given by f = f; +iz3 , so thatax = -—I—I—;dl— = g . The
S}’S ﬁsC 0 1+ d ﬁS




force then becomes

F* —qﬁx

25
kz kz akz kz G
n%:da {n cos(ﬂ—s + @, jsm(n 2 ) +(1+——~ 2% ——)B: sm( B, + (pojcos(n ﬁ—s]}

and the corresponding average focusing gradient

K =10 _cosp[1+43]. 2.13)
4 S S
The second effect is due to the ponderomotive focusing; we calculate it under the

approximation of synchronous velocity, i.e. taking a force given by

= qZ—ﬂ— Za {ncos(E + (po)sm( B )+ B: sm(ﬁz- + (po]cos(n%-]} (2.14)

Performing an average analogous to the treatment found in Ref.1 we obtain an effective

focusing gradient
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The envelope equation for transverse motion, Eq.1.1, then becomes

’
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which can be cast in a more convenient form as (dropping the subscript ¢ for 3 and ;)
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and b =cB,/E,, which clearly reveals the symmetry of the equation once the laminarity

assumption and the invariance of the normalized focusing frequency ( is invoked. In
fact, by dropping the emittance term (assuming the beam flow is in the laminar limit) we

obtain

’ ’”?
R+ R+l -2
p p° Rp

0, (p=By) (2.19)

This result is a general, fully relativistically correct envelope equation for charged particle
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beams if thermal emittance effects and alternating gradient nature of the quadrupole
focusing are ignored. These effects are trivial to recover, with the restoration of the
emittance term from the right-hand-side of Eq. 2.17, and by using the exact local, rather

than average, focusing effects of the quadrupole fields.

M. ReLaTvisTICALLY CORRECT INVARIANT ENVELOPE S OLUTIONS

Equation 2.19 is a nonlinear differential equation with no general analytical solution
available. It has been noted in previous work[?], however, that an exact particular solution
to this type of equation exists, which is a generalization of the equilibrium solution to the

envelope equation of a coasting beam — the Brilliouin flow. In this case, this type of

solution, which is termed the invariant envelope in Ref. 2, is given by

_ 28 27
R= ‘ . 3.1
yicos@, | Br(1+4Q?) G

It should be noted that this solution is valid under the assumption, to be justified of

constant peak current I (here [ = /I, ) and invariance of the momentum growth rate, ie.

’

p’=(By) =v’/B=const. This second condition implies that the accelerating gradient
must scale as B, ie. y =7v/B/B;, where ¥/ =0 kcosp, and fB, are the corresponding

values of ¥’ and f at injection. It is important to note at this point that Egs. 1.18-19 and

2.1 are generalizations of the previous results obtained for ultra-relativistic beam envelopes.

In fact, the solution of Eq.1.20 for R becomes the invariant envelope & found in Ref. 2



— 11—

in the limit that § — 1. Also the beam divergence R’ comes out to be negative (convergent

’
—~

R(By)

beam) and proportional to the beam spot R, as given by R'=-= (ﬂ )
14

, in full

pond ’,

analogy with the ultra-relativistic case (G = —%Y—). The normalized frequency € also
Y

_n/8+b?
cos” @,

tends to the value Q* in this limit, a value which is invariant along the

acceleration (i.e. no longer dependent on ¥). This is due to the vanishing as 1/y of the

first order RF effects in the expression for Q, thus removing the strong velocity dependence
of the transverse defocusing effects of the synchronous component of the accelerating

wave.

In order to keep Q constant during the acceleration in the general case we are

now considering, one can vary the focusing of the quadrupole lattice as a function of y

and the phase ¢, . For the simple case of an ideally synchronous linac (i.e. § = 0) with a

pure first harmonic accelerating field (i.e. a; =a;=...=0,sothat =0, n= (1 + ﬂz )2 /4),

and one obtains

B, = Pby . 32)

2
¥’ |Q? cos? o _(1+B2) +B2cosgoo_ﬁ,.singoo
: ° 32 4y* 20y
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Since « is of the order of 10 for proton linacs, and assuming a negative accelerating

phase @, as required for longitudinal stability, Eq. 3.2 can be well approximated by

2877
Aoy = A B |—EH ﬁr)’ 33
po RE a,.sinlga0| 3.3)

which gives the betatron wavelength A;, which must be provided by the quadrupoles in

order to cancel the first order RF defocusing effects.

120¢

100¢

80}

60

lambdaQ

4a0r

20}

1.2 1.4 1.6 1.8 2
gamma

Fig.l1 - Betatron wavelength from quadrupoles needed to cancel the first order RF defocusing, for

Agg =085m E, =5 MV/m and ¢, =-20".

acc

For a typical value ¢, = 0.7-107 (comresponding, e.g.,to £y =10 MV/m and A, = 0.85

m, and hence E, =5 MV/m)and ¢, =-20", the corresponding A, is shown in Fig.1.

acc

One could also notice that such a focusing regime (i.e. an ideal second order
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focusing with constant normalized gradient Q7 cos® @, ) can be achieved by applying a

solenoid field, which is represented by the parameter b in Eq. 2.18. We find that, taking

again 6=0, £=0 (in this case E,=2E,_ ), the magnetic field produced by the

external solenoid should be given by

1+ 82 g si
3) — 2E:zcc QZ COSZ (po _ ( ﬂ ) + ﬂ CO:% + B: sull(p0| (34)
Be 32 4y 20y

The maximum amplitude of the solenoid field B, occurs at injection (where the

first order defocusing effect by the cavities is stronger): for the same parameter set listed

above we find B [kG]=0.8v92.5+0.88Q? , giving B, =1Tat Q* =70.

In order to check the validity of our assumption of beam laminarity, we must

evaluate the ratio between the space-charge term and the emittance term in Eq. 2.17.

2R* I/1,
82

n,th

This ratio is defined as the parameter p = , where the laminar flow assumption

holds whenever p >>1. When the beam is transported under the equilibrium condition

- 2
specified by R (Eq. 3.1) , we have p = l+i§22 [y’co:(f ‘: ﬁ)’] . The behavior of R
i 0%n,th

and p versus ¥ for a linac boosting 100 MeV protons (¥=1.1) up to 1 GeV (y=2) is

shown in Fig. 2, for the cases of a 10 A peak current beam with £, , =1 mm mrad and

E_=5 MV/m , at different values of Q> (20 and 80 for the solid and dashed lines

acc
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respectively).
100
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Fig.2 - Behavior of R (lower curve inmm) and D (upper curve) versus ¥ .

As clearly shown in the chosen, the flow is actually laminar since p is large, but in order

to keep the beam radius R as small as possible one should provide a stronger second
order focusing than that one produced by the ponderomotive potential, Q% =1/8. An

invariant envelope can be defined for any value of Q?, thus this parameter can be chosen
to guarantee that the beam is laminar, while still minimizing the beam size under the

constraint of available transverse aperture.

IV. THe LonGrrupmnaL EnveELoPE EQuUATION

At this point we investigate the longitudinal envelope equation in order to find

under what condition the peak current can be kept invariant along the linac, which
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implies a quasi-free relativistic bunch expansion, so that L = L B , i.e. the bunch length

must scale like B (L, is the bunch length at injection). This condition removes our

previous approximation of adiabatic variation of . Substitution of R with Rin Eq. 1.2

and assuming longitudinal laminarity we find that

., . 20,k?sin|p 20ckcosg, |By(+4QH)I
L+ ﬁ.ﬂ2y3| °|L= % 0 > . 4.1)

Assuming L= 23[1 B Eq. 4.1 becomes

C3y/BL, 2kLitanlp| 2 [Bya+4QhI
gy 8 wy\ 2 - @

r d ’ ’ 2
where we have used the relations }"=ﬁ B, B'= }',-3 , 7"=(ﬁ) —13- , and
B; By Y

, 2
=3 L ﬁ With some additional algebra, and recalling that y; =0 kcos¢p,, we
}’4 | [} 0

i

obtain

1 [T1+4Q% 3B%a;cosg,
tan|@,| = + ! . (43)
& %\ 287 2By

where the constant phase length ¢ = kL /B, has been introduced. Assuming again that ¢,



— 16 —

is small and the bunch is not too long, i.e. taking %{P }I—L << 1 (which is the case for a
Y

10 A peak current beam at o, =107, where 1.8¢/Q <<1 is easily satisfied ), the second

term on the R.H.S. of Eq.1.25 can be neglected, so that the accelerating phase ¢, must

follow, along the acceleration, the relation

T 2
0, = ——arctan[ 3; f’ (12;‘3‘;2 )] (4.4)

in order to obtain a constant peak current. It is interesting to note that this expression is

independent of the accelerating gradient, because the focusing transverse focusing strength

is also tied to this quantity. The variation of the accelerating phase variation ¢, along the

linac is shown in Fig. 3 fora 16 A beam at Q*=120 and ¢=1.7 RF degrees.

-10¢

fio

-15¢

-20¢t E

-25¢F

1.2 1.4 1.6 1.8 2
gamma

Fig.3 - Accelerating phase variation along the linac
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Since it is necessary that all the particles in the bunch are accelerated at negative

phases to avoid loss of the bunch tail, the bunch phase length ¢ must be smaller than the
minimum @, (at the linac exit B,y,), implying

- 1/4
I(1+4QZ)] “s)

< =
¢ ¢max [ 18ﬁf3yf

This is plotted in Fig.4 as a function of Q?, for a 1 A (dashed line) and 10 A (solid line)

peak current.

0 20 40 60 80
Omsqg

Fig.4 - Maximum phase bunch length (in RF degrees) as given by Eq.1.27, for examples with 1 A (dashed

line) and 10 A (solid line) .

The hypothesis of longitudinal laminarity holds whenever the parameter
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_ 20;,cos0, ﬂ‘}'(l +4QZ)T

= L 2y’ 4.6
p. 3B(ke..) 5 By (4.6)

is much larger than unity . The minimum value for p, is achieved at injection, where,

substituting ¢_, for ¢, we obtain

5/2

min _ |_1 o, cos 9B’y 1+4Q3\T > 4
P =3 9(ken,z)2(ﬁ}7,)m[( raa)] “n

Taking again as an example ¥, =1.1, ¥, =2, @; =107, A, = 0.85 m and a normalized

. 5/4
longitudinal emittance €,, =1 mm'mrad , we have p" = 1.2-10'4[(1+4QZ)I] , which

is plotted in Fig.5 at /=10 A as a function of Q’.

0 20 40 60 80
Omsqg

Fig.5 - Minimum value p;“ ™ at injection for the longitudinal laminarity parameter p, , plotted versus Q?

at I=10A.
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Since p, grows along the acceleration as ( By)m, one can achieve longitudinal laminar

flow by applying normalized large focusing frequencies Q?, making the beam denser and
thus boosting the relative strength of the longitudinal space-charge in comparison with
the longitudinal emittance effects. It should be emphasized that this must focusing is

eventually limited by the need to preserve transverse laminarity.

V. TrANSVERSE ENVELOPE OSCILLATIONS

Assuming the mode of operation for the linac described in the previous sections,

let us recall that the beam spot will be given by the invariant envelope expression

2| 2
P’ p(1+4Q%)

, where p=fy and p'=7v//B, . In case of a weak transverse
mismatching of the beam at injection, the beam spot will be R = R+68R (with 6R/ R<<1).
By a perturbative linear analysis of Eq.1.19 we can easily derive an equation for the

mismatch 6R , which is

’ ’?2

5R”+5R’%+§25R£1’)—2- =0 (5.1)

where £ =~/2Q? +1/4 . The general solution of this linear equation can be expressed as
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&R = 6R cos|EIn(p/ p,)| + b z 6R'sin[En(p/p)]
P (52)

SR’ = —’%5@ sin[¢In(p/p,)] + %511-'005[5 In(p/p)]

displaying oscillations stable in amplitude, and adiabatically damped derivative of the

mismatch trajectory 6R’. The total phase advance of the mismatch oscillation A® along

the linac is given by A® = éln( p;/ pi) . This is plotted in Fig.6, as a function of the

normalized focusing frequency QZ , for the case of a linac boosting protons from 100

MeV up to 1 GeV. At Q?=40 the total phase advance corresponds to nearly to two full

transverse envelope oscillations during acceleration.

12¢

10¢

Ph-adv

10 20 30 20 50
Omsg

°r

Fig.6 - Total phase advance on a linac boosting protons from 100 MeV upto 1 GeV.

The bunch eccentricity in the beam rest frame, defined as € = -sz, is thus



—2] —

2 T
€= o, 9cos @, \/ﬂ’)/’(l +4Q%) 43

Typically we have 1<&<5 for the parameters considered above, and the beam is

essentially round in its reference frame.

VI. Mass anD Frequency ScalnG oF THE ENvELoPE EQuATiONS

In this section we present a possible scaling of the envelope equations based on a
coupled scaling of the particle mass and the RF frequency which assures that a laminar
non-relativistic electron beam accelerated in a high frequency (typically X-band) linac
undergoes the same envelope propagation as the proton beam under discussion so far.
This scaling resembles the one discussed elsewhere [3], but includes here a generalization

to take into account also different species (masses).

We start by re-writing Eq. 2.1 and 2.2 in terms of the dimensionless R =kR and

L = kL functions of the independent dimensionless variable Z =z :

d*’R  dR (ﬁy)' K, = 2l &l .k
= rR= : 6.1
dz* Tz (ﬂ}')k+ k* R (By)’ ¥ R (By)’ ©D

d’L K. - 4I/l e k?
T + ._ZL f— 0 + n.z 6.2
dz* K 38°7*R ﬁzy“L3 ©.2)

These equations scale invariant as far as the following scaling are respected:

y’ ek , which implies (sincey’ =< 0k) ax=const.; K,o<k® ; K o<k’ ; Il ecm
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(mj, is the particle rest mass) . Such scaling laws imply that the accelerating gradient
E,. o< myy’ o< myk should scale like the product of the rest mass times the frequency, the

beam current / must scale like the rest mass and the focusing gradients (both the transverse

and the longitudinal one) should scale like the square of the frequency. In case of an ideal

’2
second order focusing we have (from Egs. 2.16 and 2.17) K, = Q*(By) / (By) , therefore

the required scaling for K, is achieved by scaling the normalized focusing gradient

unchanged, i.e. Q? = const. . Consequently, the amplitude of the magnetic field, provided

by an external solenoid to compensate the RF defocusing (see Eq. 3.4), will scale as the
accelerating gradient, i.e. B, o< myk.From Eq. 2.4 we also see that the longitudinal focusing
gradient shows a natural scaling K, o< ky’ o< k* , as required, provided that the accelerating
phase scales unchanged, i.e. @, =const. .

The laminar regime is attained whenever the two parameters p and p, are much

larger than 1: since we want to scale these parameters unchanged, in order to be in the

same regime, this requires to scale the transverse emittance like €, , o< l/ k\m, ,as well

as the longitudinal emittance, namely &, , o 1/ k\/a .

The geometrical sizes of the beam will scale down by the inverse of the frequency
(i.e. Re<l/k, Le<1/k), so that the bunch charge will scale like Q o< mj, /k . The active
length of the linac L_, will also scale down by a factor 1/k as far as the same change in

v is desired from injection to final acceleration.

As a practical example we consider the scaling of the proton linac used as an

example in sect. IV down to an electron linac whose beam is expected to behave in the
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same way as the proton beam from the point of view of the envelope behavior. The mass

scaling ratio is m,/m, = 5.45-10™ and we choose a frequency for the electron linac

v, =11.4 GHz, so that the frequency scaling ratiois v, /v, =32.4.

The accelerating gradient scales down from E2 =5 MV/m (7;” =0.0054 m")

for protons to E;,. =89kV/m for electrons (values at injection): the initial value for « is

acc

taken ¢, = 7.3-10™ at injection, where f; = 0.42, which corresponds to 100 MeV protons

and 51 keV electrons (the final energies are 1 GeV and 545 keV, respectively). The

Yr

4544717

active length of the proton linac is given by L., =-‘B—,

ly‘

which comes out to be 105 m, which turns into 3.2 m for the electron linac. Due to the

combined mass and frequency scaling of the solenoid field amplitude B,, the prohibitive

B, =1T (at Q? =70 ) solenoid field required by protons (see Eq. 3.4) becomes an easy

B, =177 Gauss (maximum amplitude at injection) for electrons.

Also the demands on the longitudinal and transverse emittance are somewhat

relaxed: the 1 mm-mrad value taken as a reference for protons (both for the transverse
and the longitudinal one) becomes a factor 100/ (32.4-4—55) =1.32 times larger for
electrons. The bunch population, which is 1.8'10° for the proton beam at 16 A of peak
current and L =4 mm of bunch length (1.7 °RF), goes down by a huge factor for

electrons, namely at N, =3-10* (the electron bunch length becomes L, = 0.4 ps).
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