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Abstract

We analyze, in this paper, the self field of a bunched beam in a
cylindrical metallic pipe with arbitrary density. The field is calculated by
superposition of the Green's functions of the single charge in the pipe. A
general solution is given as a Bessel-Fourier expansion, which is
characterised by very good convergence properties. This allows the
evaluation of the dynamics of a large class of physical beams by using this
kind of solution for the self field. As an example the field is calculated for the
case of a parabolic radial and elliptic longitudinal density profile .
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1. Introduction

The growing interest on high intensity beams, which is related to applications like ICF
(Inertial Confinement Fusion) [1], neutron sources [2] or energy amplifiers [3], is
enforcing the analysis of some non linear problems in beam dynamics that have often
been neglected in the past. Particles dynamics are generally evaluated by means of so
called tracking codes, that perform trajectory evaluation once the force (self force and
external force) is calculated. Moreover, the evaluation of the self force is also the basis
for any stability analysis. This justifies the effort that recently has arisen in the scientific
community about canonical solutions of classical electromagnetic problems in the time
domain relevant to beam dynamics [4]. In fact, solutions to these problems in a
computable form provide, firstly, benchmarks for numerical codes; besides, once the
solution is fast converging, it can be used as a part of a more general effective semi-
analytical code.

Figure 1: schematic representation of a bunch in a vacuum chamber.

We study, in this paper, such a kind of representation for the self field in the case of a
bunch of charged particles travelling in vacuum with a constant velocity along the axis of
an infinite perfectly conducting metallic tube (representing the vacuum chamber) of radius
b, as shown in Figure 1. The analysis will be performed in the beam frame, so that an
electrostatic problem has to be solved. Once the solution is given in the beam frame it is
possible by means of a Lorentz transformation to obtain the fields in the laboratory frame
[S]. Assuming the potential as unknown, we have to solve a Poisson problem with
homogeneous Dirichlet conditions along the external cylinder. It is of primary importance
the knowledge of the Green's function of the system to construct an effective procedure
to compute the field. Green's functions can have an integral or a series representation,
and both are useful in a certain range of the parameters. We use for our problem a series
representation.



The solution we are going to present consist of an expansion for the electromagnetic
field of a charged particle travelling in the vacuum chamber of an accelerator whose rate
of convergence is exponential, what renders particularly attractive the proposed
expansion. A comparison between the computing time of the present expansion and an
integral representation is also given.

2. The bunch

We consider a bunch of charged particles travelling along the axis of an axisymmetric
structure. Because we are in the bunch system, we can consider an electrostatic problem.

Undertaking a cylindrical coordinate system (r,9,z) with the z-axis coaxial to the
bunch and the pipe (Figure 1), the bunch can be modelled as a cylinder of charge of
radius a(<b) and length 2h, distributed in an axisymmetric way. We choose as fitting
function for the bunch charge distribution the factorized functional form

p(r,z) = po pc(r) px(2) , 2.1

where pg is a constant value of charge density.

This choice allows us to model quite in general realistic bunched beams from the
knowledge of measured densities. Assuming that the charge distribution density vanishes
outside the bunch, namely p(r,z) = 0 for r 2 a and Izl > h, we require that the radial factor

takes the form
pr(r) =[1-(a)}]°, O<r<a, (2.2)

or any linear combination of these polynomials. Besides we ask that the Fourier
expansion of the longitudinal distribution p,(z) has coefficients which are easy to

compute, analytically or numerically. We use the even periodical continuation with period
4h

p(z) = D, by cos(pmz), lzi<h, (2.3)

m=1

where pp, = (m-1/2)w/h.



3. The potential
A series expansion of the Green's function G(P,P') for a point charge located at the point

P'(r',@',z") inside a perfectly conducting cylinder of radius b, whose potential is zero, is
well known [6], and takes the form

cos[n(p-9"] exp(-xlz-z'Vb) , (3.1)

G(P.P) = 2 Oy z Jo(Xgit/b)J 5 (X '/b)
2=0 200 (1 e Bxa)

where P(r,9,z) is the observation point, and, as usual, J,(x) represents the Bessel
function of order n, whose zeros are ordered as xp; with ke N, and the Neumann’s

symbol &, is defined as
8 = 1 l‘l=l,
12 n=2,3,4....

An integral representation of the same Green's function is discussed in some details in
Appendix A. In order to evaluate the potential ®(P) created by the charge distribution
(2.1) of the metallic tube, we have to integrate Green’s function (3.1) over all the bunch
volume, weighting it to the charge density, namely

o(P) =[f[ G(P,P)p(P) dV', (3.2)
BUNCH

with dV' = r'dr'de'dz". Because we are able to perform the angular integration on @',
substituting expansion (3.1) into integral (3.2), and using the relevant result [7]

1
f x (1-x2)° Jo(bx) dx = 25 I'(s+1) Js+1(b) ’
0 ps+!1

it is not difficult to show that the potential can be represented as

0(r2) = 22 a (22 s Zi J"("krﬁi 1;2*(1(:)1“’/") Bi(2) . (3.3)

where we have introduced the coefficients



+1
Be(z) = f p(hx) exp(-xylz-hxI/b) dx ; (3.4)
-1

here instead of xox we employ the simpler notation xy.

The factorized form (3.3) is a direct consequence of assumption (2.1). In order to find
a rapidly convergent expansion for the potential, and for the electric field, we have to
evaluate longitudinal integrals (3.4); besides we have to try to accelerate the convergence
of series (3.3).

4. Evaluation of potential integrals

We want to write potential integrals (3.4) in a computable form, in both regions, internal
and external to the bunch. Substituting expansion (2.3) into the longitudinal integral of
formula (3.4), we have for the external region

By(z) = By exp[-xi(Iz-h)/b], 1zZI>h, 4.1

where for sake of simplicity we called

1

By=2 exp(-xkh/b)j pz(hx) ch(xghx/b) dx . 4.2)
0

First of all we may guess that the coefficients By are not difficult to derive according to
the hypothesis of section 2 where we assumed that p,(z) may be easily expanded as the
Fourier series (2.3). As a matter of fact for all the longitudinal profiles suggested by the
experience, we were able to give simple analytical expressions to the coefficients By. An
example will be given in the next section. Equation (3.3) exhibits in this region a very
good behaviour from the computational point of view. Indeed for |zl > h the decrease of
each addendum is exponential as a function of k and z.
In the internal region the functions By(z) take the form

ch(zx/b) bxk bm cOS(PmZ)
B By +2 , lzI<h. 4.3
K2 = h( x/b) m=1 X% + (pmb)2 *

We note that in addition to a term similar to equation (4.1), which has been already
discussed, there is an extra term which is expanded as a function of the Fourier
coefficients by. This expansion has a weak decrease as a function of the indices m and k,



and is not adequate for a fast numerical treatment, even more if it should be a part of an
extended numerical code. Therefore our effort will be to find a better expansion by
inverting the order of summations, after introducing expansion (4.3) into equation (3.3).
We get the following expression for the potential in the internal region

Po, (2bF o % Jo(xut/b) Js1(xia/b) ch(xyz/b)
®(r,z) =— ha [<2] s! k
( ) €9 ( a )s kgl xsk+2 Jll’(xk) Ch(th/b)

(4.4)
#2200 (20F 5t Y by Com() cOsr2) | Z<h,
€0 a m=1
where the function C; (1) represents the following series
Cs,m(r) - 2 Z JO(Xkr/b) JS+1(xka/b) (4-5)

k=1 x3*1 20 [x2 + (pmb)?] ,

According to Watson [8] a simplified series similar to equation (4.5) can be closed by
means of a procedure originated by works of Kneser and Sommerfeld. Unfortunately in
all the literature consulted [8, 9, 10], in addition to several misprints, there are also
conceptual errors in the demonstration. In order to get the exact form, one has to resort to
the original papers [11,12). A deep analysis of this misquoting, which propagated and
scattered in many authors, can be found in [13], where the more general form 4.5) is
also given. Also in this case we get two expansions, one for the external region, with
respect to the radial position, and another one for the internal region. This general form is
then

= L 1(Pma) [ _ KO(pmb)IO(Pmr)J
Cs,m(r) __(pmb)s” Ko(pmr) To(pob) , asr<b, (4.6)

1
(b S+ 2 \ka(pmr) a_z-isﬂ-k
Com(® —(Za)s El (pmb2 | (s+1-k)! \p2 b2

4.7)
- M[ 1K _ KO(pmb)Is+l(pma)J
(pmb)s“ (-1Y’Ks41(pma) To(Pmb) s
where W, (z) is a generalized wronskian, defined as
Wi(z) =Ko(2) I4(2) - (-1)" Io(z) Ka(z), ne Ng; (4.8)



here I5(z) and K;(z) are modified Bessel functions [8] of the first and second kind,
respectively. It is worth noting that this Wronskian is an inverse power polynome, which
can be easily computed by means of a recursive relation [13].

It is apparent from equations (4.6) and (4.7) the improvement that we get. In the
external region (4.6) we have an exponential decrease as a function of m; in the internal
region (4.7), in addition to a term similar to the one previously discussed, there is a
second term which decreases as the inverse powers of m. This latter term, at least in
principle, and in practice for all cases taken as examples, can be summed over m. This is
due to the fact that the generalized Wronskian (4.8) is a combination of inverse powers of
Pm-

In order to show in a specific case how it is possible to apply this formula, we shall
illustrate in the next section a particular case. There will be also a discussion on the
computing time in comparison with the integral representation of the Appendix A.

5. An example

In order to give an example of the numerical computations discussed in the previous
section, we refer to a special case, particularly interesting in heavy ion accelerators. We
select s = 1 in relation (2.2), and

Pxz) =41 - (z/h)? > 5.1)

namely a bunch carrying the total charge Q = n%a%hpgy/4, whose expansion coefficients,
according to Fourier series (2.3), are [7]

_ _ J;(Pmh)
by =T oh (5.2)

Let us compute expansion integrals (4.2) for this special case. The coefficients By can
be easily computed as [7]

By = 2 exp(-xul/b) Iy (hxu/b) (53)
We can conclude that
2 - -3
B(r.z) = 2P0 3 Jo(xit/b) p(Rudb) ¢ oy x> (5.4)
2 xt P(xp)



and similarly

21mpob? < Jo(xkt/b) Jo(xea/b) ch(xyz/b)
O(r,2) = I)(xch/b) e-xet/ +
k;l xi J%(Xk) ch(xxh/b)

(5.5)

z bm C1,.m(r) cos(pmz) , lzI€h.

m=1

2
+ 2p0b

The evaluation of the function C; n,(r) can be done by means of relations (4.6) and (4.7)

lo(Pm") [Kz(pma) - Kopab)lapmd) | | ph@2-1D) -4 o,

(Pmb)? Io(Pmb) | 2pta2b? -

R P Ko(pah)lo(par)] G0
2Pmd) | _%0Pm Pml <r<b.
(pmb)Z[ oP=) - pmb) et

It is worth noting that the mathematical structure of formula (5.6) is identical to the
definition (A.7) of the function F(u,r) of Appendix A. The main advantage of the
formulation (5.5) with respect to integral formulation (A.5) is that the series can be
summed using a few terms (depending upon the desired accuracy), while the integrand
(A.5) can exhibit oscillations, and therefore it can be numerically uncontrollable.

Finally Figures 2 and 3 show the electric field according to the potential (5.4) and
(5.5), whereas Figures 4 and 5 the electric field sustained by the bunch in absence of the
metallic screen. All the numerical values of the field are normalized to the reference field

2 poh
Eref=1c_%-

Particular attention is also payed to the computing time of this expansion for a given
mean accuracy &; this is represented in Figure 6 where various examples are given. In
particular the calculation was performed for thousand points ranging between zero and
z/h =1, 2, 3 for the three lines a, b, and ¢ respectively; the computing time of the integral
representation T; is normalized to the one of the series expansion Tg.
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0,035
0,03 \
0,025 &
R
0,02 \
N
0,015 oy
\
0,01 t)
) \ a/b =0.5
0,005 \ h/a -~ 3 ------------ S
0 ]
0 1 y) 3 4 5

z/h

Figure 2: electrostatic field in presence of the metallic tube.
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Figure 3: electrostatic field in presence of the metallic tube.



Normalized radial component
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Figure 4: electrostatic field in the free space.
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Figure 5: electrostatic field in the free space.
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Normalized computing time
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Figure 6: ratio of the computing time as a function of the accuracy &

6. Conclusions and perspectives

An effective technique to compute the electrostatic field created by a bunch of charged
particles has been discussed. The main hypothesis is that the charge distribution density
does not depend by the angular position, and can be factorized according to the radial and
the longitudinal coordinate.

The problem has been solved by means of a series expansion of the Green’s function
that can put as a computable series using a generalization of the Kneser-Sommerfeld
formula. The comparison between the computing time of series expansion and integral
representation is quite in favor of the former one.
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Appendix A

We shall give in this appendix formulas to compute the potential created by the bunch
using an integral approach.

We start considering the bunch in the free space without the metallic screen (b = o).
Because the charge density does not depend on the angular coordinate @, we manage the
angular integration according to the formula [7]

2x oo
1 dp o - .
Efo lp—_P,T—nfo cosfk(z-z")] H(kr,kr") dk , (A.D])
where
Heer k) = { Kolkr) Io(kr) r2r,
Ip(kr) Ko(kr') r<r'.

Relation (A.1) enables us to obtain a factorized form of the potential, and as a
consequence the electrostatic field. For sake of simplicity, we shall give result only in the
particular case (5.1). As for the series expansion proposed in section 4, also in this case
we have to evaluate the radial and longitudinal contributions.

* Radial factor

We distinguish two cases: the observation point is inside or outside the bunch.

a) If it is inside the bunch, namely 0 < r<a, using the generalized Wronskian (4.8)
between modified Bessel functions

Io(kr) K(kr) - Ip(kr) Ko(kr) = &:23? ,

it is easy to show that

a

j r' p(r') Hekeke) dr' = k%[l 2. iz‘ +2 To(kr) Ko(ka))| . (A2)
0

b) If it is outside the bunch, namely r > a, a trivial integration reveals that [7]
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a
f ' pe(r') Hlke kr') dr' = 2 KO(k;)zIz(ka) . (A3)
0
* Longitudinal factor
From relation (A.1), we conclude immediately that [7]
+h
f cos[k(z-2)] p,(z) dz' = ﬁ cos(kz) Jy(kh) . (A.49)
-h

The previous results (A.2-4) enables us to write that the potential can be written in the
functional factorized form

2 o
O(r,z) = 2poh f cos(uz/h) @ F(u,r) du, (A.5)
)] o u

where the function F(u,r) has been introduced to simplify the notations, and is defined by

1_12 2h% <r<
’ Io(ur/h) Ky(ua/h) + 2 307 u2a7 0<r<a,

(A6)
\ Ko(ur/h) L(ua/h) , >a.

F(u,r) =

To take into account the presence of the metallic tube, if we repeat the previous
procedure, it is not difficult to state that formula (A.5) formally does not change. We
have only to change the function F(u,r) as follows

) Iz(ua/h)Ko(ub/h)] 1_ 12 2hn2
Fas) - Io(ur/h) [Kz(ua/h) To(ub/h) J + > _2a2 ———u2a2 0<r<a, A
T I Ip(ur/h)Kg(ub/h) .
2(ua/h) (Ko(ur/h) - To(ub/h) as<r<b.
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