ISTITUTO NAZIONALE DI FISICA NUCLEARE

Sezione di Milano

INFN/TC-96/15
2 Ottobre 1996

G. Ambrosio, G. Bellomo:

MAGNETIC FIELD, MULTIPOLE EXPANSION AND PEAK FIELD IN 2D
FOR SUPERCONDUCTING ACCELERATOR MAGNETS

PACS: 85.25.Am

SIS-Pubblicazioni
dei Laboratori Nazionali di Frascati






FN - Isti i i_Fisi
Sezione di Milano — Laboratorio Acceleratori e Superconduttivita Applicata

INFN/TC-96/15
2 Ottobre 1996

MAGNETIC FIELD, MULTIPOLE EXPANSION AND PEAK
FIELD IN 2D FOR SUPERCONDUCTING ACCELERATOR
MAGNETS.

G. Ambrosio and G. Bellomo
Dipartimento di Fisica dell’Universit di Milano, INFN-Sezione di Milano
Laboratorio LASA, via Fratelli Cervi 201, 20090 Segrate (Milano) — I

ABSTRACT .

Superconducting magnets (dipoles,quadrupoles,..) for large accelerators have field
properties depending essentially on their straight section part owing to the large length
over aperture ratio. .

The magnetic field can therefore be computed in 2D with good accuracy using
analytical formulas and few simple approximations (uniform current density in the
coils, constant iron permeability in a cylindrical yoke).

In this report analytical formulas, based on the complex contour integral technique,
are presented for the calculation of the multipole coefficients in the magnet aperture
and of the magnetic field inside the coils. The formulas are quite general and specific
examples are given for magnets with rectangular or shell coils.

A comparison with advanced codes is done for a test case in order to evaluate the
influence of the assumptions on the computed field characteristics of a magnet.
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Symbols

vector potential in z,

scalar potential in zp,

=B, + iB, complex magnetic field in Zg,

=B, — 1B, complex conjugate of B,

skew multipole coefficient of magnetic field,

normal multipole coefficient of magnetic field,

=ay — tb, complex magnetic field multipole coefficient,
multipole coefficient of iron contribution to magnetic field
normalized skew multipole coefficient,

normalized normal multipole coefficient,

=@, — iby,

= \/jfa

current,

current density,

iron yoke inner radius,

reference radius for multipole coefficients normalization,
point where magnetic field is calculated,

any point in complex plane,

z complex conjugate,

coil vertex,

coil contour,

vacuum permeability coefficient,

iron relative permeability coefficient,

coil cross-section.

b

Nomenclature for each path and each coil is shown in figures.



1 INTRODUCTION

There are many kinds of superconducting magnets for accelerators (dipoles, quadrupoles,

sextupoles, ...) and many different models have been built for each kind. All of them
have some fundamental features in common (see fig 1):

e in their centre there is a bore for the beam (the ‘aperture’)

e the conductors run parallel to the beam over the longest part of the magnet (the
‘straight section’) and turn in two short end sections (the ‘heads’)

e there is a non magnetic collar to withstand the Lorentz forces

e there is an iron yoke used to increase the magnetic field inside the aperture and
to reduce the fringe field outside the magnet.

FIG. 1: Cross-section of a quadrupole (from ref 1).

The magnetic field properties are essentially given by the straight section part of
the magnet, owing to the large length/aperture ratio (typical values: aperture 50-100

mm, length 1-10 m), and are dominated by the coils contribution (up to 90% of the
total field).
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The magnetic field can therefore be computed with good accuracy in 2D. Analytical
formulas, particularly useful in the initial design stage, can be developed with few
simple approximations:

e uniform current density in the coils
e constant iron permeability in a cylindrical yoke

These analytical formulas have been developed and applied to the study of a super-
conducting NbsSn quadrupole M) for the low f insertions of LHC at CERN.

In this report the technique of contour integrals in complex field is developed to
compute magnetic field outside and inside coils and multipole coefficients in the mag-
net aperture. This technique has been used by many authors,for instance Beth(2)
Halbach(3) and Brechna(?) . Here we follow closely the approach of Halbach.

The basic notation for the complex field and the multipole field expansion in the
aperture are given in sect. 2 and sect. 3 respectively while in sect. 4 it is shown how
to evaluate (with the method of the image current) the contribution of a cylindrical
iron yoke with constant permeability.

The symmetries of a magnet (midplane and rotational) are considered in sect. 5 to
reduce the calculation effort and to obtain a magnet with minimal high order multipole
coefficients. Explicit evaluation of multipole coefficients are presented in sect. 6 for
coils with rectangular or circular shape including the iron contribution.

The complex line integral technique is introduced in sect. 7 in order to evaluate the
field and the multipole coefficients for the most general coil shape (boundary delimited
by straight lines and/or circular arcs). The calculation of the magnetic field inside the
coils is presented in sect. 8 and it is also shown that the peak value (modulus) of the
field is reached on the coil boundary. Evaluation of some fundamental line integrals
for these kind of paths and applications to various coil shape are presented in sect. 9.

Finally a test case, and a comparison with other more advanced codes, is presented
in sect. 10 to show the effect of the approximations ( uniform current density in the
coils and constant iron permeability) on the main parameter of a magnet i.e. the
multipole coefficients in the aperture and the peak field value on the coils.

2 COMPLEX MAGNETIC FIELD

The magnetic field modulus in a point 2o (belonging to the X-Y Plane; see fig. 2)
generated by an infinite line current I flowing in the Z-axis direction, crossing in z the
X-Y plane, is ;
Ho

| Bao) |= 22 ()
where d is the distance between 2z, and 2. Since B; = 0 the field may be expressed by
the complex number B = B, + 1By as a function of the source point z = z + 4y and
of the field point 2o = x4 + 1yo. Vector B is perpendicular to the segment 2%, and the
complex field B can be obtained multiplying the modulus by ‘(20— 2)/ | 20—z |, which
is the versor perpendicular to z3,.

B=B,+iB, = ol -2 pl i @)

2 |zo—z||20—2z| 27 25— 2*



FIG. 2: Field of an infinite line current.

In the last identity z% and z* are the complex conjugates of zp and z.
Since (i/(a +1b))* =1/ — (a +1b)" the complex conjugates of the field is

B = B, —iB, = ol

2 2z — 2o

(3)

In a more general case the field generated by a current distribution of arbitrary
cross section (o) and uniform density (J) is obtained by integration:

B*(z0) = i”—i{/a—l——da (4)

The introduction and use of B* instead of B is due to the fact that B*(zo) is an analytic
function where J=0, while B(zo) is never analytic. Analytic functions are quite useful
in this kind of calculations since :

e they can be expanded in power serles

e for a given region the maximum value of the modulus is on the boundary

The first property of B* is used for multipole expansion of the field, the second to
search for the maximum field point inside the coils. ( B* isn’t analytic inside coils, but
an equivalent analytic function can be defined; see section 8 )

To prove that B* is analytic is sufficient to show that it satisfies the Cauchy-
Riemann’s equations, i.e. for the complex function f(2) = u(z,y) +iv(z,y)

o _ o
9z Oy
Oou Jv



In the case of B* the first corresponds to div B = 0 while the second holds when
(rot é)z = 0 that is where J, = 0.

Another method to prove that B* is analytic is to use the complex potential P =
A +1V (where A = A, is the vector potential and V is the scalar potential) showing
that it satisfy the Cauchy-Riemann equations in the regions where both A and V are
defined (i.e. where J, = 0). Therefore also its derivative is an analytic function in the
region where P is analytic:

OP QA 0V oV 0A

Ezam-*_zax*ay Z@::_ZB (6)

3 MULTIPOLE EXPANSION OF THE FIELD

The complex field B* is analytic where J=0 and can be therefore expanded in power
series of z. The largest circle centered on the origin (beam axis) not including currents
is normally defined as the ’aperture’ of the magnet. For each point 2 of the aperture
and all source points (2) of the coils (o) it is | zo/z |< 1 and therefore:

1 1 = 20 n (> Zn—l
z z:—z<_) =Z 0" 9
<0 Zp=0 \ % n=1 %
The field (4) in the aperture is given as:
B(20) = 3 carg™ ®)
n=1
n = —d
¢ 2m g 2™ “ (9)

The ¢, are the multipole coefficients (not normalized); c; is called the dipole coefficient,
¢z and c3 the quadrupole and the sextupole, etc. These definitions show that in a 2N-
pole magnet the main multipole coefficient (the only one in ideal case) is cy. The real
and imaginary part of these coefficients are usually defined as:

Cn = apn — 1b, (10)

The b,s generate vertical fields (B,) on the midplane (y = 0) and are called "right
components”, while the a,s generate horizontal fields on the same plane and are called
"skew components”.

The multipole coefficients, as defined in equ. 9, are dimensional and are not very
useful to express the field quality of a magnet nor to compare similar magnets. For
these reasons normalized dimensionless multipole coefficients &, and i)n are introduced
rewriting the field expansion as

Sl n—1
iB* = B, +iB, = By Y (bn + iin) (%) (11)
n=1 T

where (R,) is a reference radius, generally chosen as 2 /3 of the aperture, and B, is the
main right multipole field, i.e. By = b, for a dipole, By = bR, for a quadrupole, etc.
To obtain b, and @, from ¢, we can see that:

[e) [><] Rn—l 20 n-1
iB™(20) = ) icazy! = By > (icn - ) (_> (12)
n=1 n=1 BO Rr




and so:

by = b, — (right)

dn = an— (skew) (13)

Superconducting magnets for accelerators normally require multipole components of
the order of 10™* of the main ideal field.

It is necessary to note that no standard notation is internationally recognized: for
example in USA the multipole notation is different (o is the dipole, b; is the quad,
etc) while at CERN the reference radius is assumed 1 cm independent of the aperture.

3.1 Multipole expansion in cylindrical coordinates

The multipole coefficients of a magnet are measured with a rotating coil which inte-
grates the B, component of the field. It is therefore useful a multipole expansion of
the field components B,,By in cylindrical coordinates, which can be easily obtained
through a rotation of the field components B;,B,. Using the complex notation

oo

Brot = B + ZBo Be_'e = Z(a" + Zb ) n—1 —m€ (14)

n=1

The explicit formulas for the field components are:

B.(r,0) = i " [ancos(nf) + b,sin(nb)]

n=1

By(r,8) = i " [~ansin(nb) + bycos(nb)) (15)

n=1

These formulas can also be obtained (%) alternatively by expansion, in cylindrical
coordinates, of the vector potential A.

The pattern of the magnetic field (B,) generated by each multipole component can
be easily recognized: each component a, or b, generates magnetic field components
growing as r"~! and oscillating azimuthally as né.

3.2 Maultipole expansion of the potentials

We have already seen that in a 2D problem it’s possible to define a complex potential

P = A +1V that is an analytic function: B* = i0P/0z. It can be expanded in power

series:
o0

P(z0) = 3 (dn +iea)25 (16)

n=1
and this property can be used to obtain the multipole expansions of A and V. Writing
zo = r exp(10) they are:

A.(z9) = ReP(z) z:lr"[dncos(ne) — epsin(nd)] (17)
V(z0) = ImP(z) Zr [encos(n) + dnsin(nb)] (18)

n=1
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To obtain the relations between the multipole coefficients of the potentials (d,, e,) and
those of the field (b, a,), it can be noted that

. P — .
iB*(2) = -—%—z ==Y (dn +iex)nzy! (19)
n=1

and making a comparison with equ. 8 we find

b, = —nd, (right)
an = —ne, (skew) (20)
These formulas are normally used in the numerical codes for magnetostatic problem.

They solve the problem for the vector potential A,, and the multipole coefficients of
the field B are computed through the multipole expansion of the potential A,.

The code POISSON(?) uses a normalized expansion of the vector potential:

A(z) = Re{Z(d +zen)(;0r> } (21)

n=1

and the normalized multipole coefficients of the field b,, &, are:

~ - n

" dBoR
~n.=_n . 22
a eBoRr (22)

4 CIRCULAR IRON SCREEN

The contribution to the field of a cylindrical iron yoke can be analyzed with the method
of the image current. Assuming a constant iron permeability (u = g, go) and a hollow
iron screen of radius Rj..n (i.e. ignoring the finite radial extension of the yoke) a line
current I at position z = re* is imaged (see fig. 3 ) in the line current I’ = %ﬁl at
position 2’ = r'e’’ with ¢' = ¢ and ' = RZ__/r.

In the case of a coil the current density (J’) of the image coil o' depends on the
distance of the point from the center of the aperture (1'):

1, 1 ur - ]. (Riro‘n>4
e 2
7y =t (Bem g (23
The field contribution (for r < Riy.n) is given by
o [ J(r)
¥ = j— 2
Btron( ) Z27!_ /, 2 — 2o da ( 4)

Using the relations between r,J and ', J’, and the fact that da’ = (Riron/7)* da the
integral over ¢’ can be transformed in an integral over o :

* — - ﬂOJ
Btron(zo) =1 ( ) / R2 — 2*2p da (25)
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FIG. 3: Image of a line current and of a circular shell.

The iron contribution to the multipole coefficients can be calculated making a Taylor

expansion of B, .. Since
Z 2 (2N ()" .
mzﬁmo(m) = 2 (26)
then o
Cnjiron = 1 (Z: _T_ 1) “207;]/«7 (;2)71 da (27)

It’s worth noting that a circular iron yoke with constant permeability does not
introduce new multipole coefficients in the case of a circular shell coil since the image
coil is still a circular shell with the same azimuthal extension (see section 6.2).

At low magnet excitation one can assume g = oo and f—:;—i = 1. At full excitation

the iron is partially saturated: assuming g, = 5 as a typical value follows Z—’rﬁ = %,

i.e. the saturation of the iron reduces its efficiency to 2/3 respect to the ideal case.

5 SYMMETRY

Superconducting magnets for large accelerators are generally built with a high degree
of symmetry.

A 2N-pole magnet has two types of symmetry :
e midplane symmetry (B, = 0 on the plane Y = 0)
e azimuthal symmetry (i.e. the coil structure in invariant under rotation by /N)

The midplane symmetry gives, multipole coefficients which are imaginary since on the
midplane there is only the field component B, (i.e. there are only right components).

The azimuthal symmetry allows to calculate the total contribution of the coils using
only the basic structure (i.e. the coil, or coils, between two poles; for instance between
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60"\ 4y
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FIG. 4: Dipole and quadrupole with high order compensation, b3 = 0 for the dipole, bg = 0
for the quadrupole. '

—m/2 and 7/2 in a dipole, and between —7/4 and 7/4 in a quadrupole). In fact a
rotation by an angle o of this coil gives :

cn(@) = cy(0)e™ (28)

(where c,(0) is the multipole coefficient due to the coil in the original position) and
therefore the multipole coefficient due to the whole magnet (i.e. all coils with alternated
sign of the current density) is:

2
Cntotal = €n(0) ) _(—1) ™™V (29)

J

2

Il
-

It follows then

. _{ 2Nc,(0) ifn=(2k+1)N k=0,1,2,..
n,tot —

0 otherwise (30)

For example in 4 dipole built with the aforementioned azimuthal symmetry the only non
vanishing coefficients are ¢, cs, cs, ¢7, ... while for a quadrupole the allowed coefficients
are Cq,Cg,yC10, C14, ----

If in addition the magnet has midplane symmetry all the allowed coefficients are
imaginary (i.e. there are only right coefficients) and the basic structure can be reduced.
In fact in this case it’s possible to study only half a coil (for instance the part between
0 and 7/2 in a dipole or between 0 and 7 /4 in a quadrupole) because the multipole
coefficients of the whole magnet are given by:

(31)

— 4Nb,(0) ifn=(2k+1)N k=0,1,2,..
Mot = 0 otherwise

where b,(0) are the right components of the half coil.

Selection of particular coil shape, or combinations of various coils, can be used to
cancel the high order coeflicients. In the case of circular shell coils, it can be easily
shown that in a 2N-pole magnet the first high order coefficient (bs for dipoles, bg for
quadrupoles,...) can be canceled choosing for the coil an azimuthal extension of 27 /3NV.
These structures are shown in fig. 4 for the case of dipoles and quadrupoles.
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For rectangular coils the only practical way to eliminate the first high order har-
monic is to place a wedge on the midplane.

More elaborate schemes are found in the literature for the compensation of high
order harmonics:

e multiple coils in the same layer

o use of multiple layers with an higher current density in the external layer ('grad-
ing’)

e insertion of wedges in the layers (equivalent to have multiple coils and multiple
layers. )

Examples of high order multipole compensation for a quadrupole with rectangular or
shell coils are presented in fig. 5 (from ref 1).

lron lron

o

FIG. 5: High order multipole compensation for a quadrupole with rectangular or shell coils.

0 mm 40 80 O

6 EXAMPLES

6.1 Rectangular coils with midplane symmetry

The multipole coeflicients of a rectangular coil with midplane symmetry can be easily
calculated using equ 9. Because of the symmetry no skew multipoles are expected. All
symbols in the following formulas are shown in fig. 6.

_ zqu _ o . O\ (e e
a = / /h p—s zy dz = o [(z +ih)In(z +ih) — (z — h) In(z — ih)]>

_ M zo +1h zy +1h , (z2 + 2h)(z2 — th)

= 5 [mzln (:Bz — ih) zyin (——————1 — ih) +thin ((371 iR (o1 ih)

= o) [mzaz —zya; + hin (7‘2)] (32)

Vs ™1
@ = /a,-l / (z+ zy)2 dy d 2m [ln (:c - ih)]zl
zqu

= (1 — a3) (33)
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_ ipoJ sin[(n — 2)ey]  sin[(n — 2)ay]
T om(n'=2)(n—1) ( =2 - o2 ) (34)

7
//N

FIG. 6: Rectangular coil with midplane symmetry.

The iron contribution to each multipole coefficients is (using formula 27):

S L\ pod (15 2sin[(n + 2)as] — v72sin|(n + 2)oy] (35)
R T \pe +1) 0w (n+2)(n+1)R2n

6.2 Circular shell coils with midplane symmetry

Here we report the multipole coefficients of a circular shell coil symmetric respect to

the midplane(ﬁ) . See fig. 7 for an example and nomenclature. Like in the previous
case all coeflicients have no real part because of coil symmetry.

— 'L,LLoJ ore —n —inf . 7’.u’OJ 2-n _  2-n .
>z = /rl /_ap e"™p dpdf = nE—m) (r2 s ) sin(na) (36)
T .
g = zg; In (:—j) sin(2q) (37)
c = W;:J (r2 — 71)sin(a). (38)

The iron contribution to the multipole coefficients is:

Apr =1\ pod [yt 7\
Cnjiron = 1 (,Ur n 1) ﬂRO% ( 2n(n n ;) sin(na) (39)

ron




FIG. 7: Circular shell coil with midplane symmetry.

We note that the cylindrical yoke does not introduce new multipole coefficients
since its multipoles show the same sin(na) dependence as those of the coil.

7 FROM SURFACE INTEGRALS TO CONTOUR INTE-
GRALS

All integrals used above to calculate magnetic field and multipole coefficients are surface
integrals. These integrals become cumbersome and difficult to solve when studying
generic shape coils.

It is possible to transform them in contour integrals using a particular form of the
Stokes theorem, known also as Green theorem in complex field(3 7) .

oF 1

[ da = EﬁFdz (40)
oF 1
g9z - dz*

[ - da 2z'f£F 2 (41)

In these formulas F and its first derivatives should be single-valued and with no sin-
gularities in the integration area (¢); v is the contour of ¢ and must be covered in
anticlockwise direction.

The multipole coefficients can be obtained applying equ. 40 and 41 to equations 9
and 27. Here are the two equivalent expressions:

,LLoJ z*

. = B 2 > 42

c 47r£z“dz (n2>1) (42)
pod 1

I b 1-n %
o= _n—lﬁz d (n>1) (43)
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The iron contribution to each multipole is:

) _{Hr— 1 ”0‘] .1 *\n+1
Cn,iron = (,LL,- T 1) A (7'L n 1)R2" ﬁ(z ) dz (44)

The magnetic field generated by any coil with uniform current density can be calculated,

outside the coil, applying equ. 40 to equ. 4. Since 32' (fz‘—__;zoj- = Z_IZO assuming [’ =

z*—z8 ., .
—=0 it 1s:
z2—2p

B*(z0) = HoJ ﬁ Ty, (45)

47 z—2p
It is not possible to calculate the field inside the coil, since F has a singularity into the
integration area. '
The integral in equ.-45 can be broken in two pieces and the second piece is equal

to zero, for the Cauchy Theorem(7) , since 2 is outside the coil. The field outside the
coil can then be cast in the form:

B*(z0) = 12/ 4 AR (46)

47 z— 2

Tt is however useful to retain the equ. 45 since this form is valid both outside and inside
coils as will be shown in section 8.
The field contribution of a circular yoke with constant iron permeability is obtained

in the same way, applying equ. 41 to equ. 25 and assuming F' = Ef_—";o—z_-:

* Uy — 1 )U‘OJ f zz" *
. - d
Bzron(zo) (,U'r + 1) Arr Jy R2 — zgz* z (47)

8 MAGNETIC FIELD INSIDE COILS

A map of the magnetic field inside the coils is needed to calculate the Lorentz forces.
For the design of superconducting magnets it is also fundamental to locate the peak
field (in modulus) which set an upper limit on the current (the critical current).

When calculating the field in a point (o) belonging to a coil, and generated by the
coil itself, it’s not possible to use the Green’s theorem (see section 7) to transform the
surface integral into a contour integral since both the functions 9F/0z* = 1/(z — Z0)
and F(z) = (z — 20)*/(2 — #0) (equ. 45) have singularity in 2 = z. This problem can
be solved for all points inside the coil introducing an equivalent (in the sense of having
the same values) analytic function.

For each point inside the coil (excluding the boundary) it is possible to remove
a circle (§), with infinitesimal area, centered in 2o and completely contained in the
coil (see fig. 8). Calling By(z) the magnetic field generated by a coil whose section is
o — &, and B(z) the field generated by the whole coil (with section o), it is B3(z0) =
B*(z0) because the magnetic field generated by a circularly-shaped uniform current
distribution is zero in its center. When calculating Ba(2o) it’s possible to use the
Green’s theorem because z is no longer inside the new coil (that is o — §). The
integrand (F'(z)) can be every function of this kind: F'(z) = 2*/(z — 20) + g, where g
is a generic function with dg/0z* = 0. The field is then

N J z*
Bylao) = B2 [ ( +g)ds (48)

zZ— 20
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FIG. 8: Integration contour used to calculate the field inside a coil. See text for details.

where the integral must be covered in anticlockwise direction along v, and in clockwise
direction along ;. It is possible to simplify the calculation of the integral using the

particular form of the function g = —2/(z — 20). In this case
* * 0 .
/ L5 gy = ir/ e do =0 (49)
Yo Z — 20 2m

The magnetic field in each point inside the coil, but not on its boundary, is therefore
given by a contour integral along the boundary () of the coil (o)

Jrozr=2
B*(20) = Bj(20) % £ | 0 . 50
(z0) = B5(20) = =~ T (50)
The function B3(20) has another very important characteristic: it is analytic for all
points zp outside or inside the coil, but not on its boundary. This result can be

demonstrated(”) in a formal way since Bj(zo) is a function of the kind

),
Lg( dz; (51)

z) — zp

moreover the function Bj(z) is continuous across the boundary and therefore the
magnetic field can be calculated also on the boundary.

The peak field on a coil is in general due to the self-field of the coil and to the field
of all the other coils, including the image coils generated by the iron yoke. The total
field is then the sum of functions which are analytic inside the given coil; follows that
the peak field (maximum value of the modulus) must be on the boundary of the coil.

Also the force acting on a coil can be calculated with a contour integral(3) . Setting
f*=fo —ify (f- and f, are the force components per meter length) it is:

f* —_ __Z'u_of H*2 dz, (52)
2 Jy

where 7 can be every contour containing the coil and contained in the aperture.
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9 EXAMPLES

9.1 Line integrals

Coil boundaries can usually be described with straight lines and/or circular arcs. Here
we give some examples of integrals along these paths, useful for the calculation of the
multipole coefficients and magnetic field for the most general coil shape.

. Segment parallel to axes

For a segment parallel to the X-axis it is dz = dz + idy = dz. We start considering
the integral in equ. 42 for multipole coefficients and magnetic field calculation. Setting
2y = z1 +1h and 2z, = z3 + th the segment extremes and defining:

z3 »* T2 T2
In=/21§;dz=/xl(m—fi—y)—ndz —ihllmdz (53)
then it is:
L = [o—ihin(z +ih)2 —ih[in(z + i)
(z2 — z1) — 2ihIn (2) (54)

21

T2

ih , . 1 7*
L = L_I_Z.h—i—ln(m-i-zh)]zl—zh[—m_H,hLl

= %h (i - i) +in (5"1) (55)

22 21

- |2 1 _ _ih 1 c ] 1 o
"> T 12—n(z+ih)? 1 —n(c+ih)! ' 1—n(z+ih)r?

zy 1
1 1 1 2ih 1 1
T 2-n (z;—z B z{‘_z) T 1-n (z;"l B z?'l) (56)

To obtain the iron contribution to the field, the integral in equ. 47 should be used. On
this segment it becomes:

T 1.2 + h2
z R2 - Zo(IL' — 'Lh)
Z9 + 21 R2 R4 22hR2 R2 - 25()2.”‘l
=—(m2—$1)( +—2)—<—3+—2‘ In RZ——zoz;‘ (57)

2z¢ 2§ 25 2§

dz

The integrals for the computation of the iron contribution to multipoles, not reported
for this example, can be obtained from the following general case.

Any segment

For this case we solve the path integrals for multipole coefficients and magnetic field
calculation both with and without iron. Setting the segment extremes z; = z; + i1
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and z; = z, + 1y,, the integral in equ. 42 with n=1 (for dipole coefficient) along a.
generic segment is:
z2 ¥
—d
/z " (58)

The segment can be parameterized as :
Z(t) =2z + (22 - Zl)t (O S t S ].) (59)

and the integral becomes:

ap (-,
~/0 21 + (22 - Zl)t (22 ~1) dt
" 1 % i 21 !
=2 [ln(zl + (22 - Zl)t)]0+(22—21)(22—21) 2 — 71 — (22 _ zl)zln(zl + (22 - Zl)t) ,
z . Z—2)* .
=ln (f) (zl - a%) (2 —2) () (60)

Using the same parameterization in equ. 43, for the other multipole coefficients
calculation, and in equ. 44 for the iron contribution to multipoles, we have:

/:2 1 dz* = In (2) (22 — 21)* (c2) (61)

1 2 21 29 — 21
2 1 2T =22 (2 — )
Al 2"_1 dz - ( 2 —n 29 — 21 (Cn>2) (62)
2 ntl g, (z;)n+2 - (zf)n+2 22 — 21 )
/zl (") ‘ ( n+2 (22 — z1)* (€niren) (63)

The path integral to calculate the magnetic field of the coil is:

21 — 20

= In (z2 - 20) ((z; ) = (71— zo)(ir——“y) + (22— 2)* (64)

We point out that when the field point z is on the segment the integral gives the
result (zz — z1)*.
The path integral useful to calculate the iron contribution to the magnetic field in
2o (equ. 47) is:
%2 zz*

Zy R2 - ZOZ*

= L(zi‘—z;)(zzﬁLzl)—le(zz—zl)-Hn (R2 — zozg‘)‘(R“(zz —#1) + Rzo(z5z — zsz))

220 22 R? — 223 z3(21 — z)*
(65)

dz*
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Circular arc with center in the origin

Here we report the path integrals for a circular arc of radius r with center in the
origin. Setting the path ends z; = re'®* and z; = re*® the expression useful to calculate
multipole coefficients are:

/:2 Ezi dz = ir /:2 e df = —r (e'w2 — e_iol) = —(25 — 2) (c1) (66)

1 1

[ ot = (@ -G (o) (67

, 2" nr(n—-1)

(23)" — (21)")  (cnyiron) (68)

,,,2

‘/Z:Q(z"‘)""'1 dz = -

To calculate the magnetic field due to the coil:

P S 2 . 2
/ A (7'_ _ z;) In (22 zo) —~in (ﬁ) (69)
zy 22— 2 20 Z1 — 20 20 21
When the field point zo is on the segment the integral gives the result — 25 In(z2/21).
The contribution to the field due to the iron shield is:

2 * 2 2 *
22 e T (u) (70)

21 R2 - Zoz* A R2 - ZoZ;

—~

9.2 Coil examples

In this section we report magnetic field and multipole coefficients calculation for some
kinds of coils. The closed formulas are obtained assembling the path integrals previ-
ously reported.

Y A Z4 Z3

Zp

X

FIG. 9: Rectangular coil with sides parallel to axes.
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Rectangular coils with sides parallel to axes

The multif)ole coeflicients for a coil of this kind with midplane symmetry have been
reported in sections 6. Here we report the results for any rectangular coil with sides
parallel to axes. We start using equ. 42 with n=1 to obtain the dipole coefficient (e1).
The integrals along the horizontal paths are given by equ. 54, while the others are
given by a similar formula for segments parallel to the Y-axis. Referring to fig. 9 for

symbols, it is:
HoJ / Z d»
“a= 4z 2

J ) )
= Ko< [(a:z —z1) — 21y In (2) —i(ys — y2) + 222 In (§> +
47 2 Zy
((174 - $3) - 22y3 In <-Z_4> - 'L(yl - y4) + 21:4 ln (ﬁ>]
23 24

""J o Sl an(z) (71)

The method to obtain the other multipole coefficients from equ. 42 is just the same
using equations 55 and 56.

_ K (ﬁﬁ)
Cyp = o ln P (72)
pod 1 : k+1 1
n = Th—3 7
i Z[ a7 (73)

Also the contribution to multipoles of a circular iron screen can be calculated in
the same way using equ. 63 in equ. 44'. In case of an infinite iron permeability it is:

uOJ 1 *\n+1
4t (n+1)R?*™ /1(2 )y dz

Cn,iron =

4r (n+1)(n+2)R2m

:wJ{( )2 4 ()™ — (23 r“+()w?
2m (n+1)(n +2)R*"

(74)

1Equ. 35 can be derived from equ. 74 considering that for a coil symmetric to X-axis
using polar coordinates

. _ <#r _ 1) #OJ _(rleial)n+2 + (rgei°2)”+2 _ (rze—iaz)n-l-Z + (Tle-ial)n-}-z
Cn iron = Lr +1 o0 (n F 1)(n T 2)R2”

b

B (,U.,- - 1) pod [ r3t?2isin[(n + 2)ag) — rP22isin[(n + 2)ay)
S\ +1) 27 (n+1)(n+ 2)R2"

_ Hod {[(z;)"+2 — (=)™ - [(28)™7 — (25)™%) + [(23)™ — (23)"*2] — [(25)"*2 - (zZ)"“]}
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Magnetic field can be easily calculated. By means of the variable change ¢ = z — 2
equ. 45 becomes equal to equ. 42 with n=1, whose result for this coil is shown in
equ. 71. Therefore the magnetic field is:

B (s0) = 222 S 0[(=1)#+(at — za)in(k — 20)] (75)

2m k=1

The iron contribution to the field can be obtained applying the result of equ. 57 to
equ. 47. Before adding all pieces it should be noted that z3+ 24— 20— 21 = 2i(ys—y2) =
2i H and that getting together all pieces like In(R? — zoz}) it is:

In(R? — zoz;)(R* — 220R?z + R* + %izoR%yi) = 2R*(R? — z02})In(R® — zoz;) (76)

Therefore the result is

r J * *
R {Lwi+ & ;l[( DR — zo)in(E — )|
. pr —1 JiWH
Btron(o) = (ﬂr + 1) ljlo,l_r R2 ( 1 3) (77)

Circular shell coils

The multipole coefficients for this kind of coils can be easily calculated, and have
already been reported in case of a coil with midplane symmetry. Here we report
the formulas useful to calculate multipole coefficient and magnetlc field, both with and
without iron shield, for a coil whose vertices are: z; = r1€'%, 23 = r2€'%, 23 = roel, z4 =

rie® (see fig. 10).

toJ

cE = o (7‘2 -_— 1‘1) ( —le 6_ip) (78)
_ EO_J_ (7_2) -2ia _ _~2if
@ = In - (e e ) (79)
_ ﬂoJ 1 1 _ 1 -nif _ _—nic
Cn>2 - 271' n(n _ 2) (T'g—2 T‘;l_z) (e e ) (80)

Cniron = (ﬁ;i) g (5 ) () 6

B = B e )amm) - Lot -

4

_Ziog[( 1in(as = o) (1-2%)]} (82)
B(0) = o (83)
Binlio) = (Z—;—%) ol { Bt = e =)

+Zo kz_: [ 1)**1in(R? — 2tz0) 22} (1 - ;8%)5)]} (84)

B:‘ron(o) = Cl,;ran (85)
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FIG. 10: A: Circular shell coil; B: Slanted shell coil.

Slanted shell coils

These coils have two sides made by circular arcs, with center in the origin, whose
ends are connected by straight lines (see fig. 10). In circular shell coils the straight
sides point to the origin, while in slanted shell coils this condition is removed.

A shell coil made of a keystoned cable and/or wedges can be well approximated
with a slanted shell coil with uniform current density.

For this kind of coils it is useless to search for compact formulas to calculate mul-
tipole coefficients or magnetic field: each result should be obtained adding all path
integrals (presented in sect. 9.1) along coil boundary.

9.3 Calculation warnings

Magnetic field computation inside a coil and in some regions outside it may give prob-
lems. This is due to the differences between logarithms that appear in some formulas,
since the function [nz has a discontinuity line. In fact it is inz = In(pe) = 0 + Inp
where 6 is the argument of the complex number z, and the function argument has a
discontinuity line. Usually this is set on the real axis from 0 to —oco and the argument
range is —m < 0 < .

Therefore the result of a path integral containing a difference between logarithms
is correctly computed only if the path doesn’t cross the discontinuity line. Otherwise
the result contains an "extra term” (277) due to the crossing of the discontinuity line.
For instance if the path is like /; in fig. 11 it is

(In zp — In z4) = In (’D—B> +1(0g — 64) (86)
PA

with the arguments —7 < §4 < 6 < 7. Instead when the path crosses the discon-

tinuity line, as I in the same figure, the position of the discontinuity line has to be

changed. For instance it can be set on the positive part of the real axis increasing of

27 all arguments § < 0.
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FIG. 11: Two different discontinuity line positions for the function In z to calculate the
path integral along /; (fig A) and along [; (fig B).

This change can be implemented in a computer program with a simple routine
executed before calculating the path integral. In this way all problems that may arise
from the calculus of a specific path integral are solved.

Attention must be paid when using compact formulas to calculate the field. The
variable change ( = z — z translates the axes origin in zo. Therefore when the field is
calculated inside a coil every position of the discontinuity line crosses at least one coil
side.

In this case there are two possibilities:

e to change the argument range according to the position of each path before the
integration along it, adding at the end all the results;

e to look for a set of compact formulas in order to have at least one formula usable
in each point. In this way the plane is divided into regions depending on which
coil side is cut by the discontinuity line when zo belongs to a region.

The first technique can be used for every kind of coil, while the second may need many
compact formulas depending on the position of coil sides.

As an example of the second technique here we report two formulas to compute the
field of a rectangular coil with sides parallel to the axes.

Inside the coil the field is given by the following formula using the normal range of
the arguments (—m < < )

B*(Zo) = H;?J {;[(—1)k+1(2k - Zo)lTL(Zk - Zo)] + 271"1:(1& - (Eo)} (87)

Next expression can be used for all points with @ > z; (see fig. 9) changing the argument
range: 0 < 8 < 2m; otherwise it can be used in all the other points outside the coil,
with the normal argument range: —m < § < m;

R O (58)

When magnetic field is to be calculated in a point on a coil side parallel to Y-axis
both the formulas of the adjacent regions can be used. In fact these expressions are



— 94 —

continues functions when 2y crosses these coil sides. On the contrary only one formula
is correct on the horizontal boundaries. If the 6 range is —7 < 8 < 7 then equation 87
must be used on the upper side while equation 88 should be used on the lower.

Logarithms appear also in some formulas for the calculus of multipolar coefficients.
No problems arise if the coil is in the first quadrant. Attention must be paid only if
the coil cuts the negative part of the real axis.

10 A TEST CASE: RESULTS AND COMPARISONS

The analytical formulas, based on the complex contour integration technique, presented
in this report have been incorporated in the code QCSL for the computation of the
multipole coefficients and of the peak field on coils for superconducting magnet with
midplane and azimuthal symmetries. The code QCSL is extremely fast and it has been
used in the initial design stage of a superconducting quadrupole 1)

The eflects of the two main approximations of the code (constant current density
in the coil and constant permeability of the cylindrical iron yoke) have been checked
with two different codes:

e ROXIE(®) , an analytical program with a detailed simulation of the cables (and
constant iron permeability)

e POISSON() , @ magnetostatic code which takes into account the real iron per-
meability (with uniform current density in the coils)

)
T S NS U T [ = e e o | s s
O 10 20 30 40 50 60 70 8 90 100

FIG. 12: Coil layout of the test case produced by ROXIE; .

The test case is a two shells superconducting quadrupole with a 85 mm aperture.
Data on coil and iron structure and on the NbSn cable are given respectively in table
.1 and table 2. An octant of the coil structure is shown in fig. 12 where is also visible
. the cables layout.

In ROXIE the position of every cable is calculated piling up all the cables, starting
from the midplane (or any given plane), taking into account the insulation and keeping
them in contact with the winding mandrel. The magnetic field is generated by current
filaments that are placed regularly in each cable (8) . The current flowing in each
filament can be constant (giving a grading of the current density inside a keystoned
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TABLE 1: Coils characteristics

inner radius | outer radius

(mm) (mm)
coil 1 42.5 57.5
coil 2 42.5 57.5
coil 3 58.2 73.2
ROXIE iron 93.4 oo
POISSON iron 93.4 214
QCSL iron 93.4 00

TABLE 2: Cable characteristics.

width (bare) (mm) 15
inner thickness (bare) (mm) | 1.60
outer thickness (bare) (mm) | 1.34
azimuthal insulation (mm 0.125
radial insulation (mm) 0.2
number of strands 36
strand diameter (mm) 0.825
Cu/NoCu ratio 1.1/1
J.at 14 T 1.9 K (A/mm?) | 1266
AJ./AB (A/mm? T) 272
current (A) 15570

cable) or can be set proportional to the cable thickness (to simulate a uniform current
density distribution).

Multipole coefficients are obtained through a Fourier analysis of the magnetic field
at a specified radius in the aperture. The peak field in the coils is searched along the
cables boundaries and in the points between every couple of adjacent current filaments.

The peak field can be calculated with or without the self-field of the nearest current
filament in order to have a better comparison with critical current measurements, that
usually do not take into account the self-field of the sample. In this comparison the
peak field includes the self field.

The code QCSL calculates directly the multipole coefficients and peak field of rect-
angular or shell coils. The dimension of the coil is given by the stack of cables with
their azimuthal insulation (but without the radial), then forming a slanted shell coil.

The value used for the current density (J) is the total current of the cables (I) divided
the coil surface.

The results of the comparison, reported in table 3, show that:

e constant current density in the cables gives —0.6 % less gradient and 3.0 10~

on B respect to the grading of the current in the cable as deduced by the two
ROXIE cases. The peak field value is instead equal,

e QCSL gives gradient close to ROXIE, —0.35 %, but for Bg there is a difference



— 26 —

TABLE 3: ROXIE - QCSL comparison

QCSL ROXIE
normal | 227.4 by (T/m) 228.2 normal
78 | B (10°T) | 0.6
0.017 | Bio (106 T) | 0.03
1110 | Bpear (T) | 11.171
93.00 | J/J. (%) | 93.36
b2 (T/m) 226.8 without
Be (107 T) 3.5 | current grading
Byo (107 T) | 0.04 | due to keystone
Byear (T) | 11.167
J/J. (%) | 93.34

of 7 107® (and smaller difference in Byo). Half of the difference is due to the
constant current density approximation and half is given by azimuthal insulation
(included in the coil by QCSL) that is quite important on coil sides because they

are carefully positioned to minimize high order multipoles,

e the peak field value found by QCSL is lower by 0.6 % and this gives a 0.36 %

more margin on the load line.

i

=N

)
/)

FIG. 13: POISSON flux plot for the test case.

The effects of the constant iron permeability approximation can be seen comparing
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TABLE 4: POISSON - QCSL comparison

QCSL POISSON
p=o0|23545| by (T/m) 235.47 p =00
446 | Be (107 T) 48.8
0.08 | Bio (106 T)| 0.7
1145 | Byeas (T) 11.20
=6 22627 b (T/m) | 22577 | p=6
445 | Be (1076 T) | 48.6
0.08 | By (10°T)| 0.7
11.00 | Bpeak (T) 10.72
p=>5 122475 | b (T/m) 224.72 | p = table
444 | Bs (10°T) | 532
0.08 | By (10°% T) 0.17
1092 | Bjear (T) 10.66

QCSL results with POISSON. The test case (see fig. 13) is a two shells coil with a
wedge, like the coil used in the previous case, and with a uniform current density.

POISSON runs have been done also at g = oo and p = 6 in order to show respec-
tively the 'systematic errors’ of POISSON and the effects of the outer radius of the yoke
(ignored in QCSL) We recall that POISSON has no possibility to search automatically
for the peak field value in the coils, and moreover the field interpolation routine has
some troubles, at least in the version we used, near the coil boundary. The results of
the comparison, reported in table 4, show that:

e the peak field found with POISSON is lower than the true (found analytlcally in
the case y = co ) with an error AB/B = —2.2 %,

e the gradient is the same (AG/G =107*) in case of y = 0o, while there is a small
difference (AG/G = 2.2 1073) in case of u = 6 due to the infinite external radius
of the iron assumed by QCSL,

e the Bg found with POISSON is greater than the true (found analytically) of
about ABg = 4 107° (this is more an absolute error than a relative one because
it almost doesn’t change if the magnitude of Bs is changed). The systematic
error on Bjg is of the order of 1077,

e having found the ’systematic errors’ of POISSON a constant value for the iron
permeability, u = 5, was fitted to obtain in QCSL the same gradient of POISSON
with the real iron permeability. The difference in B is 9 107° is part due to
systematic errors ( 4 107) and part (5 107°) to the differential saturation of the
iron. The peak field value show almost the systematic difference (2 1072) and no
influence is seen on Bjg from the iron saturation

Considering the results of these comparisons it can be said that an analytical pro-
gram using formulas like those here reported, approximating the coils with uniform
current density distributions and the iron with an 'average’ constant permeability, is
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a fast and useful tool to calculate multipole coefficients and peak field on coils of a
superconducting magnet, at least for quadrupoles.

The precision in high order multipoles (of the order of few 10~¢) may not be suf-
ficient for the final design (for instance all undesired multipoles should be equal to,
or lower than, few 107° in the low 8 quadrupole of LHC). The effects due to the iron
saturation and to the true iron shape can be studied only with a numerical code, but
it’s quite difficult to put into it a precise coils geometry (i.e. the insulated cables
piled and fitted against the mandrel) and the absolute precision of a numerical code is
questionable (as we have shown in the case of Bg and peak field by POISSON).

A solution is to use an analytical program considering all the effects due to cables
position (like ROXIE does, but it can be done also by a program using the contour
integral technique), using an ’average’ constant iron permeability, and finally adding
to its results the relative variations due to iron saturation and shape.

11 CONCLUSION

Analytical formulas have been presented for the calculation of the fundamental param-
eters of a superconducting accelerator magnet, namely the multipole coefficients in the
aperture and the peak field (that sets the critical current) in the coils.

Explicit formulas for the multipole coefficients have been given for the simplest coil
configuration (rectangular or shell) and a general technique has been indicated for the
most general coil shape.

It has been also shown that the peak field on the coils is reached on the boundary
therefore simplifying considerably the search process to evaluate the peak value.

A test case shows that the two basic assumptions (constant current density in the
coils and constant iron permeability) give quite small errors on the computed multipole
coeflicients and on the peak field value on the coils.
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