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In this paper a powerful and robust analytical-numerical approach to study the electromagnetic 

interaction between a bunch of particles and the discontinuities of the vacuum chamber of a 

particle accelerator is discussed. In particular the diffraction of the electromagnetic field created 

by a bunch of charges travelling through an iris and a drift tube is considered. Choosing in both 
cases a spectral transform of the current density distribution on the scatterer as unknowns, an 

effective numerical model is obtained. These unknowns have to satisfy a system of dual integral 

equations. A general procedure to transform this system into only one Fredholm integral 
equation of the second kind (in the case of the iris) or to a system of linear algebraic equations 

by means of a Neumann series (in the case of the drift tube) is described. These models allow 

to compute the longitudinal coupling impedance with a good accuracy either in the low 
frequency limit or in the high frequency limit. 
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Les sciences sont conune WI beaufleuve. dont Ie cours est facile a suivre. lorsqu'il a 
acquis une cenaine regularite; mais si I'on veut remonter a la source. on ne la trouve 
nulle pan. parsqu'elle est panout; elle est repalldue en quelque sane sur toute la 
sUrface de la terre: meme si I'on veut remanter a I'origine des sciences. on ne trouve 
que obscurite. idees vagues. cerdes vicieux; et I'on se perd dans les idees primitives. 

(L. Carnot 1783) 

I. INTRODUCTION 
A bunch of charged particles travelling in a linear or circular accelerator interacts with the 

surrounding structure producing electromagnetic wake fields which. reacting back on the 
bunch. influence its dynamics [1-2]. Many authors have devoted their efforts to the analysis of 
resonant (cavities, bellows) and non-resonant (discontinuities) structures. either in the time 

domain (wake field), or in the frequency domain (the machine impedance, namely the ro
transfonn of the wake field). adopting numerical or analytical procedures. Although the results 
of these studies agree on the behaviour of the long-range wake fields (low-frequency 
impedance). the results obtained so far for the short-range wake fields (high-frequency 
impedance) are somewhat contrasting. The development of new analytical and numerical 
procedures leading to a definitive solution of these problems would be clearly desirable. 

In this paper we attempt to calculate the impedance of two structures relevant in 
accelerator physics. the iris and the drift tube. by using methods wich guarantee the correctne" 
of the results either in the low frequency limit or in the high frequency limit. 

pipe 

iris 

Fig. 1 - Two fundamental structures in accelerator physics. 

An iris is a hole in an conducting screen, whereas a drift tube is a piece of a metallic pipe. 
Figure 1. We shall use cylindrical co-ordinates system whose z axis coincides with the 
symmetry axis of the structure; besides we shall assume that the charge moves in the positive z 
direction. 
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Let us consider a particle travelling on the axis of a metallic structure having a rotational 

symmetry. The field created by the charge in the presence of the scatterer will interact with the 

charge itself; thus we should find a change of the particle velocity. Such a radiation problem is 

very difficult to solve and therefore a simplifying assumption will be made: we shall suppose 

that the charge moves at constant velocity during its flight. The constant velocity, v = Ixi, can 
be imagined as being maintained by an external source. The result will be a good approximation 

provided that the velocity of"the charge does not change significantly during the interaction with 

the screen, namely this assumption is quite realistic when dealing with ultrarelativistic charges. 
The aim of this study is to compute the longitudinal coupling impedance [3-4], that is one 

of the most important parameter which determines the performance of an accelerator. The 

coupling impedance allows for deriving the energy lost by the beam and the accelerator current 

thresholds set by the instability mechanism arising in the longitudinal beam dynamics. One can 

defme the longitudinal impedance as 

ZII(k) = ~ i~ Ez(r=O,z,k) exp(jkzl~) dz , (1.1 ) 

where q is the charge of the particle, k is the wavenumber, and Ez(r,z,k) is the radiated field 

synchronous with the particle. 

The theory of the diffraction of a plane wave by a circular aperture in an infinite screen or 
by a circular cylinder can easily be found in the literature [5-6]. The problem is usually analysed 

by modal expansion methods which give the solution as an infinite sum of eigenfunctions of the 

wave equation in a particular co-ordinate system. However, this solution has the shortcoming 

of poor convergence, especially for the case of short wavelengths. It is well known that a point 

charge crossing the hole will excite a continuous spectrum of freque~cies, which extends to 
very high frequencies for ultrarelativistic charges; this general feature of the diffraction-radiation 

problem makes a modal expansion really impracticable for our problem, even to have an 
approximate solution [7]. 

Both problems will be treated as a boundary-value problems for Maxwell's equations: we have 

the radiation condition at infinity, the condition on the tangential component of the electric field 
on the screen or on the tube, and the Meixner (edge) condition [8] for the discontinuity at the 

edge of the holes. The last condition will ensure the uniqueness of the solution for our 
problems. 

This diffraction problem is described by the field (Eo,Ho) travelling with the charge itself 
and by the electromagnetic field (E,H) radiated by the metallic structure, which has a travelling 

wave character. Accordingly, we can represent all the fields and/or potentials as the 
superposition of two terms 

The sum of both terms must satisfy the boundary conditions on the metallic structures. 
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For the symmetry of the problem, the induced currents are directed radially for the iris 

and longitudinally for the drift tube, and the only components of the field are E,-, Ez, H,p. 
Moreover since in bith cases the induced currents are orthogonal to the edge, the Meixner 

or edge condition requires that the component of the electric field orthogonal to the edge 
diverges as d- 1!2, where d is the distance from the edge [8). 

The choice of a suitable spatial transformation of the current density as unknown is the 
key to obtain a robust numerical model. One equation of this system is obtained by imposing 
that the tangential component of the electric field has to vanish on the metallic region; the other 
arises from the condition that the current has to be zero in the complementary region (the 
vacuum region). The result will be a system of coupled integral equation, known as dual 
integral equations because the equations have as range of definition two complementary 

regions. 
These systems have been studied by many authors; a quite complete summary of all the 

methods of solution, almost up to 1966, can be found in Sneddon [9). In particular, when the 
two domains are both semi-infinite, the problem can be solved by Wiener-Hopf techniques 
[10]. These techniques give the solution in a simple and elegant manner. Unfortunately they do 
not apply in our cases, where one of the domains is finite. 

In order to illustrate two different methods of solution, the two problems quoted above 
will be tackled in different ways. An integral representation of the unknown is given for the 
scattering from circular iris, whereas the unknown for the drift tube problem is expanded as a 
Neumann series. 

For the first problem, circular iris, we get a Fredholm integral equation of the second kind 
with a continuous kernel, solved by the method of moments. The way to reformulate the 
problem is not unique, as demonstrated in several papers [9). This variety of methods can be 
used to find an 'ad hoc' Fredholm integral equation of the second kind, or still better a fast 
converging integral equation, namely an equation where the free term is already a good 
approximation of the complete solution; this is not an easy task. Lebedev-Skal'skaya's works 
(see for example [II)) are also very useful in order to understand the aim of these 
transformations; besides they contain very nice manipulations of some integral relations. 

The solution for the expansion coefficients relevant to the second problem, drift tube, is 
obtained by expanding the unknown in a series of Bessel functions (Neumann series), in such a 
way that one of the integral equation of the system is automatically satisfied, whereas the other 
one can be transformed in a algebraic system of equation, by means of an adquate projection in 
an opportune functional space of orthogonal functions [12). 

lt is also worth noting that the method hereafter proposed can be applied to an infinite 
array of circular apertures or tubes and that the difficulty of the problem does not increase if one 
try to compute the longitudinal impedance for a particle travelling off of the symmetry axis [13). 

In Section n we shall briefly recall the formulas to compute the electromagnetic field of a 
particle travelling at constant velocity in free space, representing the forcing term in both 
problems. The Sections ill and IV treat respectively the problem of the circular iris and of the 
drift tube; approximate formulas and plots are given for the longitudinal coupling impedance. 
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Notations 
The conventions for the transforms used in this paper are 

• time-dependent junction 

F(Ol) = f~ f(t) exp(-jrot) dt f(t) = 2~ f~ F(Ol) exp(jrot) dOl; 

• space-dependent [unction 

F(k) = 2~ f~ f(z) exp(jkz) dz f(z) = f~ F(k) exp( -jkz) dk ; 

• Hankel transform 

f(r) = i~ u F(u) J l(ur) du . 

It will be assumed in tbe following that the order of integration in repeated integrals, and 

the orders of differentiation and integration, can be interchanged as necessary without explicit 

justification. 

II. FIELD OF A UNIFORMLY MOVING CHARGE 
Let us consider a cylindrical co-ordinate system (r,cp,z). The charge is located on the z-

3.\ is and moves with velocity v = ~c z in the positive direction. It can be shown [3] that the 

e ., pressions of the fields in the free space have a TM structure in the Ol-domain and they are 

given by 

- ~ qK 
Ho = cp 21t K1(Kr) exp(-jzkl~) , 

Eo = 1;0 ~[r ')'K1(Kr) +zjKo(Kr)] exp(-jzkl~) , 
21t~')' 

(11.1 ) 

(II.2) 

where j is the imaginary unit, K=k1(~')') , 1;0= l207t!l is the characteristic impedance of the free 

space, ')' is the relativistic factor defined as 

')'= I = I , 
"fl-(v/c)2 {If! 

and c is the velocity of light in vacuo. The asymptotic behaviour of the modified Bessel 
functions of the second kind is given by [14] 
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Kn(x) = V 2~ e-X 
[ I +o(H] , 

so it is easy to verify that the fields associated with the charge moving in free space are strongly 
attenuated in the radial direction. 

III. CIRCULAR IRIS 
In this Section we shall show, in some details, how the problem of the circular iris can be 

formulated as a system of dual integral equations [13] , how this system can be rewritten as a 
single integral equations of the second kind, and how to solve by means of the method of 
moments this integral equation in order to obtain the longitudinal coupling impedance. 

Statement of the problem 
A point charge q is moving at constant velocity v = Ik on the axis of a hole in a perfectly 

conducting screen. We shall use cylindrical co-ordinates whose z axis passes through the centre 
of the aperture and is perpendicular to the plane of the screen; we shall assume that the charge 
moves in positive z direction, as shown in Figure 2. 

v=~c 
c:::>----- - - -

z 

-----~ 

r 
a 

Fig. 2 - A circular iris of radius a_ 

A charge moving with uniform velocity in vacuo radiates only if of the material 
inhomogeneities are present close its path and the radiation is due to the diffraction of the field 
at the edges of the discontinuities. The fields of an ultrarelativistic charge are essentially 
confined within an angular region of aperture =l/y, where y is the energy of the charge 
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expressed in rest mass units (relativistic factor) . As long as the charge is far from the hole, it 
barely perceives the presence of the scatterer. Its image charges are at a great distance so that 
there is only very weak interaction with them; moreover, they move at constant velocity 
towards the centre of the hole. In this situation, which persists up to quite small distances of the 
charge from the hole, little radiation is expected [IS). Only when the edge of the hole is seen by 
the charge within the narrow l/y cone, the image charges will experience a sudden change of 
their motion since they are released and start moving radially back to infinity: this process lasts 
for the time of passage of the charge through the hole and it is the main reason for radiation. 
The more relativistic is the charge, the shorter is the radiation time and the wider is the spectrum 
of radiation. 

Let us consider the current flowing on the metallic plate; for each frequency component of 
j = J(r) r , we can find the expression of the vector potential A = A(r,z) r by means of the 
equation 

where the wave number k=oYc and 110 is the permeability of vacuum. Firstly we solve for a l'l
function source located at the point (rO,zO) which yields the Green's function 
G(r,z;ro,ZO) = G(r,z;ro,ZO) r as solution of the equation 

2- 2 - S(r-ro)S(z-ZO) ~ 
V G+k G=-l1o 2 r, 

ltro 
(ll.l) 

which, in cylindrical co-ordinates, becomes [14) 

il2G + 1. ilG _1.. G + k2 G = _ 110 l'l(r-ro)S(z-ZO) . 
ilr2 r ilr r2 2ltro 

(ll.2) 

We can now transform partial differential equation (ID.2) into an ordinary algebraic equation by 
means of the double (Hankel-Fourier) integral transformation [16) 

A (kok,,,.,., " r ' J, (,k" [f~ A( ",,,.,., ~p(j"'J d'l d, , 

which, from the properties of the l'l-functions, enables us to write 

A(k k ·r ) = 110 J I (rokr) expUzokz) r . 
r, z, Q,ZO 2 2 2 2 

4lt kr + kz -k 
(llJ) 

We can now integrate Green's function multiplied by the current over the whole space Vo. even 
if the actual current flows on the plates only for r>a (hole radius). Eventually we shall impose 
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the condition that the current vanishes in the hole, which is a condition for the Hankel transform 

of the current. We obtain 

(III.4 ) 

The integration over ro is simply the Hankel transform of the current J(r), namely · 

F(u) = i~ ro h(uro) J(ro) dro (III.5) 

where u represents the radial wavenumber kr. The inverse transform reads 

J(r) = i~ u J1(ur) F(u) du . (III.6) 

From now on we choose the transform F(u) as the unknown of the problem. Equation (III.4) 

becomes 

(III.7) 

The integration in square brackets over kz may be performed by means of the residue theorem; 

in fact, putting U = Yk2_u2 the integrand function exhibits two simple poles at kz=±U. In the 
evaluation of the residues it is necessary to take into account a small imaginary part for 

k = roYejl where Ell is considered to be complex, so that Im(k)<O. For the two poles, we then 
have Im(U)<O or U = Vk2_u2 = -j Vu2-k2 when u>Re(k). By taking Im(U)<O, we implicitly 

satisfy the radiation condition at infinity. It is found that 

f- exp( -jzkJ dk _ . exp( -jUlzl) 
z - J1t . 

U2 _ k2 U 
.~ z 

Because the fields E and If are related to the vector potential A by [17] 

- (- VV.i.) E = -jro A + k
2 

' 
- VxA 
H=--, 

110 

we have the following expressions for the fields 
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E,(r,z) = j2~ i~ u F(u) J 1 (ur) Vu2_k2 exJ-lzl V u2_k2) du , 

Ez(r,z) = j2S: sgn(z) i~ u2 F(u) Jo(ur) exJ-lzl Vu2-k2) du , 

Hq>(r,z) = Sg~(Z) i~ u F(u) J 1 (ur) exJ-lzl Vu2-k2) du . 

(111.8) 

As already mentioned, the solution can be found as a superposition of the solution of the 

inhomegeneous equations in free space and a solution of the homogeneous equations, chosen in 

such a way as to fulfil the boundary conditions on the plates. Accordingly the two conditions 

which are to be satisfied are 

IJ(r) =0 , os;r<a 
Eor(r,z=O) + E,(r,z=O) = 0 . r>a 

(1II.9) 

The first equation of the system (1II.9) states that there is no current on the aperture (r<a), 

whereas the second one is the boundary condition for the radial component of the electric field 

on the metallic surface (r>a) 

Dual integral equations system 

Boundary conditions (1II.9) allow us to find tbe expression of the current transform F(w) 

and the system of coupled integral equations is easily obtained 

()S;r<a ; (III. 10) 

r>a, (III. 11) 

where for brevity we called l( = k/(~y). Equation (III.! 0) states that there is no current on the 

aperture (r<a) or tbe field H,p is zero on the hole, wbereas equation (III.!!) is the boundary 

condition for the radial component of the electric field whicb has to vanisb on the metallic 

surface (r>a). 

Sucb pairs of integral equations, with one equation of the pair holding over one part of 

the range of the independent variable and the other over the other part of the range, are known 

as dual integral equations. These types of integral· equations seem to have been first encountered 

in potential theory. Though in this paper we are interested in the application of dual integral 

equations to tbe solution of the wave equation for diffraction problems (where the integrals are 
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nonnally singular). it will not be inappropriate to give a brief summary of the developments of 

dual integral equations in potential theory. 
A quite exhaustive survey of the historical developments of dual integral equations up to 

1966 is given by Sneddon [91 in his book. One of the earliest (1873) encounters with dual 
integral equations was made by Weber [181. who solved the axisymmetric potential problem of 
a unifonniy charged disk by noticing the similarity with certain discontinuous integrals. In 1881 
Beltrami [191 could provide a logical basis and generalise the solution for any given 

axisymmetric potential distribution on the disk. This development was further generalised by 
Copson [201 in 1947 for any given potential distribution and his method has provided the basis 
for the solution of lllany types of dual integral equations. Solutions have been also obtained 
through the use of integral operators such as Erdelyi and Kober operators of fractional 
integration and modified Hankel operators [91. The solution of a class of dual integral equations 
involving Bessel function kernels has been studied by Nicholson [211. by Tichmarsh [221. 
Noble [231. Peters [241. Gordon [251. Erdelyi and Sneddon [261. Lebedev in the solution of an 
electrostatic problem [271. among others. The application of dual integral equations to 

diffraction problems has been extensively studied by Lur'e [281. Lebedev and Skal'skaya [29-
321. Recently solutions involving generalised functions have been found by Estrada and 
Kanwal [33-341. Various methods of numerical treatment of dual integral equations. namely. 
reduction to a system of algebraic equations. or to a Fredholm type of equation. the multiplying 
factor method. the integral representation method. the reduction to a single integral equation of 
the second kind have been very well reviewed by Sneddon [91 and also by Williams [351. 

Once we know the spectrum F(w). we can. in principle. compute the longitudinal 
component of the electric field on the z-axis which is necessary to calculate the coupling 
impedance we are searching for; so we get (ill.8) 

Ez{r=O.z) =j2~ sgn(z)i~ u2 F(u) exp(-Izl Yu2-k2!du 

where 1;0 is the impedance of free space. Thus. making use of the integral [141 

it can be shown that longitudinal coupling impedance (1.1) becomes 

(ill. 12) 

This equation links directly the problem unknown F(w) to the longitudinal coupling 
impedance. 
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Reduction to a single Fredholm integral equation 
We can reduce the problem of solving dual integral equations (m.lO) and (m.!!) to that 

of solving only one Fredholm integral equation by using a method extensively described by 
Sneddon [9]; a shorter description of this method, which is at the same time synthetic but also 
complete for our propose, can be found in reference [II]. The method proposed enables us to 
represent the solution of the problem by means of an auxiliary function, which satisfies a 
Fredholm integral equation of second kind with a continuous kernel. As a first step we have to 
find an ad hoc representation of the unknown function F( w), so that one of the two equations 
of the system (the second in our case)is automatically satisfied. The other equation will become 
apparently a Fredholm equation of first kind, but a careful study of its kernel will reveal the 
presence of a a-function that will transform it into an equation of the second kind. An integral 
equation of the second kind is quite easy to treat numerically because it does not present all the 
problems of instability of the equation of first kind [36]. This is possible if the spectrum F(u) is 
sought in the form [9-10] 

Yw2_k2 F(w) =jqk [ w _ a t pet) sin(uat) dt] , 
1tP W2H:2 10 . (ll.13) 

where pet) is some unknown auxiliary I function, continuous, together with its first derivative, 
in the closed interval (0, I). One can verify that equation (m.ll) is satisfied identically. It is 
interesting to note that Meixner's condition (requiring that the electric field near an infinitely thin 

edge behaves as the -112 power of the distance from the edge) [8] is automatically satisfied with 
the particular choice of equation (m.B), what one can verify, for example, on the radial 
component of the electric field in the aperture. 

Substituting (III.13) in this last relation, after some algebraic manipulations, one can 
finally write2 

p(x) = T(kax) + "f f pet) (G(kalx-tl) - G[ka(x+t)]) dt 

with ~I. The free term T(x) of equation (III. I 4) defined by the integral relation 

T(x) = 1. r u2 sin(ux) -.d!L 
1t 10 u2 + (jYy)'2 Yu2_1 

(m.l4) 

I A different transformation could also be used, where the function F(u) would be an integral from 1 to 00 of 
another auxiliary function [9, 12]. 

2 It is interesting to note that one can also substitute (llI.13) in equation (111.10) and then operate the Abel's 
transformation, inverting the order proposed here. 
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has been carefully studied in [l4] and some interesting approximations have been found. In 

particular if ~ = I, it is easily verified that 

T(x) = Jo(x) - j Ho(x) , 

namely a complex combination of Bessel and Struve functions. 
The kernel G(x) can be written in a closed form by means of the relation [II] 

G(x) = £i~ (I -,~) cos(ux) du = J1(x) - jHl(X) + 2j , 
~ lu2-1 ~ o 

where J 1 (x) and HI (x) are respectively Bessel and Struve functions [37-38] of the first kind. It 
follows from the definition of the function G(x) that the kernel of equation (III.14) is a 

continuous and symmetrical function of the two variables x and t; this implies that this equation 

can be solved by use of numerical methods by converting the integral equation into a linear 

system of algebraic equations. Besides for small values of the parameter ka, the solution of the 

integral equation can be expressed in the form of a converging power series of this parameter. 

The longitudinal coupling impedance defined by equation (III.l2), can now be computed 
by means of equation (ill.! 3 ) as (k>O) 

ZII(k) = ~(I __ I ) [J 1 +~) + j7t] _ ~ \j _ j~ t T(kax) p(x) dx . 
1;0 ~ 2f ",\ I-~ 2~ Jo 

(III. IS) 

It is interesting to note that this impedance can be directly expressed in quadrature by 

means of the function p(x), without the intermediate formula (III.12). Equation (III.lS), 

besides, can be used for a numerical study of the impedance. 

3 

2,5 ······· ·- ···~···-···-·········-··-········-·t········- ...... . 

y=l0000 
2 ·,············· .. r·············=······==· ... ~;= .... =--~ ..... ~ ..•.. = ...... ; ...... :::::: ..... = ...... =i .. . 

'- ...... : 
1,5 ............... -.. -.-..... ~ ... __ . ' 'Y = 1000 ·" - -: - --

............••. _;.:-•..... ~ ....• -..••••••• -••• -••••••••••• .:. •• -- .••.•.•••.•.............. "'!' ......•.....•••••.•••••••••• 

0,5 

o 
o 

--~'" . 
" . 

... _ ...................... -:- ......................... ~.~_1:.: ....... . 

5 10 
ka 

Y= 100 

15 20 

Fig. 3 - Normalized values of the real part of the longitudinal impedance (ill.IS). 
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As for the auxiliary function pix), a series expansion for the impedance can be easily 
found; but this formula useful for the approximation of the low frequencies (kad), does not 
exhibit a wide range of convergence, becoming impracticable at ka=1 for large values ofy. 

Numerical resolution 
In the solution procedure the auxiliary function pix) of equation (ill. 14) is approximated 

by a linear combination of known, linearly independent basis functions [39]. In our case, 
pulses are employed which means that pix) is represented in (0, I) by a piecewise-constant 
approximation as 

N 

pix) = L Pn nn(x) 
n=1 

in which each Po is an unknown constants and the pulse function no is defined by. 

II 
nn(x) = \0 XE (xn-1!J2,xn+1!J2) , 

otherwise. 

The approximation is illustrated in Figure 4. The interval (0,1) is divided into N segments 
of equal length ~=I/N with their centres at 

xn = (n -tl ~ , n = 1,2, "", N. 

Subject to the above approximation of pix), equation (ll.14) becomes 

N N 
L Pn nn(x) = T(kax) + L Pn Sn(x) , XE (0,1) (ill. 16) 
D=l n=1 

where 

i
X.+dl2 

Sn(x) = 'r (G(kalx-tl) - G[ka(x+t)]} dt . 
xD-AJ2 

These integrals can be computed readily using the definition of the kernel G(x). Equation 
(ill.16) is enforced exactly at N points xm, m = I, 2, ". N, in the interval (0, I), as illustrated 
in Figure 4, to obtain the following set of N equations in N unknowns Po 

N 

Pm=Tm+LPnSnm. 
0=1 

In equation (ill.! 7), T m = T(kaxml and Snm = S(xm). 

for m = 1,2, "., N. (ill.17) 
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The matrix S = (Srunl is a symmetric matrix and the matrix (I-S) is diagonally dominant, 
that is, the magnitude of the main diagonal elements is greater than that of any of the off
diagonal elements. For this reason the numerical inversion of this matrix is very easy and the 
solution of the linear system (ill. 17) is a very stable process. 

An approximate solution of the system (ill. 17) is presented in Figure 5. 

p(x) 

o x 

Fig. 4 - Weighted pulse-functions representation of p(x). 

1 

p(x) 
0,8 

0,6 

0,4 

0,2 

0 

-0,2 

0 

Real part ' /-10 
" , ' ka=IO " 

...................... ; ........ ............... , .. . ···········i •••••• ,j ••••••••• ••• ••••••• 

. . ... : ... .. . .. 't . ..••.••. . . . .. .. •. .. • ..[ ••••• ••• ••.•• •• ••• • .•••.• ; •. . . • 

........... -............ ..... ~ ......................... : ...................... ···r············ 

. . . . 
·-·--·--· .. · .. ·~· ~··..: ·.:.··.: · ·~ ·;.· ;:·;: ·.:·::1:.: · .:.· :.: ··~ ·:· -; · :··:·::· :: ~·::· :: · :: ·~ · ~ ·~· ~ ·····t····-··· · 

i Imaginary part --- -
............. ... : ........... ~ ......................... ; ........................ -T . ......... __ .... ... . 

0,2 0,4 0,6 0,8 
x 

Fig, S - An example of the auxiliary function p(x). 

Asymptotic approximation 

, 

The solution of equation (ill.17) enables us to compute the longitudinal coupling 
impedance up to an upper bound of ka, because of the numerical discretization. To increase ka 
we have to increase N in the approximation of the unknown p(r). As it is easy to imagine, N 
cannot be large as we want because of the large dimensions of the matrices describing the 
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approximate version of equation (ill. 14). Thus it seems interesting to have (at least for the real 
part of the impedance), an asymptotic fonnula that can help us for a better understanding of the 
high frequency behaviour. For this reason we can rewrite the fundamental system (ill. 10) and 
(ill. I I ), in the limit ka~oo, as the single integral equation 

(ill.IS) 

where u(r) represents the unit step function (Heaviside step function). This equation can be 
interpreted as the Hankel transfonn of the unknown F(u); making use of the inversion fonnula 
[14], we obtain 

(ill.l9) 

If. we put (ill. 19) in the definition (ill.12), after some manipulations [14, 37], we finally have 
the following real part of the impedance 

(ill.20) 

This formula gives a good asymptotic approximation of the real part of the impedance, in 
principle, for very large values of the dimensionless product ka. But as it is shown in Table I, 
when y is sufficiently large (let us say greater then 10), one can assume that equation (ill.20) 
represents the impedance also for ka> I. Figure 3 has been obtained by making use of equation 
(ill.15) in the range ()$ka$20 and it could be completed almost for the real part using fonnula 
(ill.20) in the rest of the range. 

Table 1 - Ratio between the real part of the longitudinal coupling impedance 

computed by means of the approximate fonnula (ill.20) and the actual 
value given by (ill.l5), on increasing y, for ka=l. 

Y Ratio 

1.1 S.65499 
101 1.04545 
102 1.01702 
1()3 1.01090 
1()4 1.00S03 
lOS 1.00669 
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Finally, in order to have an easier formula to manage the asymptotic real part of the 

impedance, we can substitute in equation (III.20) Bessel functions with their asymptotic 

expansions [14l, simplifying the expression as follows 

Re[ZII(k)) =: ~ exp(-2Ka) 
4~2 

when lCa» I. The problem to find a more accurate approximation for the longitudinal impedance, 

involving also the imaginary part, is still an open question and has to be investigated carefully. 

IV. DRIFT TUBE 
In this Section we shall show how the problem of the pipe of finite length can be 

formulated as a system of dual integral equations, how this system can be rewritten as a system 
of linear algebraic equations by means of a Neumann series, and how to solve it in order to 

obtain the longitudinal coupling impedance. 

Statement of the problem 
As in the previous case, all the electromagnetic quantities, fields and/or potentials, can be 

imagined as the superposition of two terms: the free space solution, discussed in Section II, and 

the solution sustained by the current induced on the surface of the metallic tube (r=a) 

j = z J(z) . (IV.! ) 

This density current flows (Figure 6) along the z-axis and produces a TM propagation 

(like in the case of the free space solution). 

-h h 

a 

Fig. 6 - Drift tube. 

We choose as unknown of the problem the transform of J(z) in the wavenumber domain, 
namely (we used the same symbol used above for the circular iris, but the physical meaning is 
completely different) 

F(u) = 2~ f~ J(z) exp(juz) dz . (IV.2) 
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Let us start to write the vector potential as a function of the selected unknown, The 
apparent azimuthal symmetry enables us to affmn [40] 

- ~ ~ a ex -'kR) 1- [i2" J A = Z Az{r,z) = Z ~ _~ J(1.o) ° p( i dq>o d1.o, (IV.3) 

R is the distance between the generic observation point P(r,<p,z) and the source point 
Po(ro,<po,ZO), namely 

R2 = r2 + a2 - 2ra cos(<p-<po) + (z-1.o)2 = D2 + (z-1.o)2 

and D represents the distance in the transverse plane, Using a relevant result of the theory of 
Bessel function, useful to express the Green's functions in cylindrical co-ordinates, one can 
write [40] 

exp(-jkR) = 1.1-Ko(DVu2-k2)exp[-ju(z-zo)] du , 
R 7t 

-~ 

where Ko(x) the modified Bessel function of zero order. 
It is worth noting that, as for the case of the iris, the previous integral converges if we 

take into account a small imaginary part for Ie, and the branch cut has to be chosen such that 
ImVk2_u2 SO, 

The above result enables us to factorize the spatial dependence on r and z, that is 

i
2

" f-exp( ~kR) d<po = 2 G(u,r) exp[ -ju(z-ZO)] du , 

° -~ 

(IV.4) 

and the function G{u,r), because! of the addition theorem of the Bessel functions [38] 

L £D In(mp) KD(mr) cos(nx), pSr; 
n=O 

L £D In(mr) Kn(mp) cos(nx), p~r. 
n=O 

can be simply written as 

I Neumann's symbol E" is defined as 

II ifn=O, 
En= . 2 ifn=I,2,3, .. , 



-18 -

(IV.S) 

The knowledge of the function G(u,r) allows us to find intelligible integral relations 

linking the potential and the electromagnetic filed to the unknown F(u) and, as we shall see, it 

will be rather simple to write an integral equation describing the phenomenon; in other words, 

G(u,r) is the function which renders algebraic the links between the spectra of the fields and the 

potential. Coming back to the vector potential (IV.3), it is (~o is the characteristic impedance of 

the medium filling the whole space) 

Az(r,z) = a~o I~ G(u,r) F(u) exp( -juz) du , 

that is the electromagnetic field 

I- aG u r . 
Hq>(r,z) = -a _~ F(u) ~r ') exp( -]uz) du , 

a~o f- aG(u r) . E,. (r,z) = - k _~. u ar' F(u) exp( -]uz) du , (lV.6) 

EzCr,z) = j a~o f~ (u2_k2) G(u,r) F(u) exp(-juz) du , 

and in particular we have the longitudinal component of the electric field that has to satisfies the 

opportune boundary condition on the metallic surface of the pipe. So if we suppose that the 
waveguide is infinite, we can write a single integral equation by inoposing that this component 

vanishes on the lateral surface (r=a) of the pipe, namely 

f~ F(u) T(u) exp(-juz) du = - q: Ko(Ka) exp(-jzkJ~), '<Iz, (lV.7) 

where the kernel T(u) is given by 

Integral equation (IV.7) can be interpreted as a Fourier transform [41] because it is 
homogeneous on z. Thus we have immediately 



F(u) = _ q/)(u-k1~) , 
27taIo(KlI) 
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(lV.S) 

where /)(x) is the usual Dirac's function. The function F(u) is the key function to compute the 

whole electromagnetic field; but here we fix our attention only on the current induced on the 
pipe I(z)=27taI(z), given by the inverse transform of equation (IV.2) 

J-
. ex (-'zkI ) 

I(z) = 27ta .~ F(u) exp( -Juz) du = - q io(JlCa) ~ . (IV.9) 

The current I(z) is in fact the Fourier transform of the current i(z,t) flowing along the 
. metallic tube. It is not easy task to come back to the time domain; but this is possible [42-43J. 

OnJy for shortness we do not give here some details of this interesting computation. 

Dual integral equations system 
We have considered an infinite waveguide only to introduce formulas and relations; we 

are going now to use for the case of a cylinder of finite length. 
Let us consider a drift tube (Figure 6) and, as usual, the charged particle moves at 

constant velocity along the symmetry axis of the system. This is an electromagneiic system 

whose metallic region is finite. 
The system of integral equations governing the unknown F(u), space-time transform of 

the current flowing on the pipe,. can be easily written using the previous results, and in 
particular equation (lV.6) representing the electric field sustained by the induced current and the 
field in the free space given in Section II. We have the following system of dual integral 

equations 

f~ F(u) exp(-juz) du = 0 Iz~; (IV. 10) 

f- 2 _~ F(u) T(u) exp(-juz) du = - q; Ko(lCa) exp(-jkzJ~) Izkh. (IV. I I) 

Equation (IV.!O) states that the current must be zero outside the pipe, whereas equation 
(IV.! I) represents the boundary condition on the tangential component of the electric field. The 
kernel T(u) is the same as before. 

Solution of the system of integral equations 
The basic idea to solve this system of dual integral equations is to find an adequate 

representation of the unknown satisfying automatically one of the two equations and 
transforming the other one into an expression, easy to manage and/or to treat numerically. What 
we defined' a numerical manageable expression' will be a system of algebraic equations. 
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There are many ways to conceive this transformation; we shall select the shorter one, 
namely the same we have recently used to solve a classical problem of antennas theory, 

Hamn's equation [44]. The method we are going to apply is also well described by Eswaran 

[12]. 
In order to find a solution of the system of integral equations (IV. 10) and (IV.lI) we 

adopt an expansion of the complex unknown in series of analytical functions whose generic 

term has one or more Bessel functions, or other functions related to these ones. Any series of 

the type 

~ 

feu) = 2. an JIl+V(cru) 
n=O U

V 

is called Neumann series, although in fact Neumann considered only the special type of series 
for which v is an integer (0" is a given real constant). The investigation of the more general 
series is due to Gegenbauer. The possibility of expanding an arbitrary function into a Neumann 
series is discussed in the Watson's monumental treatise on Bessel functions [38]; the theory is 
not so important as it appears to be at fIrSt sight, because, as the reader will presently realise, it 
has to deal with functions which must not only behave in a prescribed manner as the variable 
tends to :too, but must also satisfy an intricate integral equation. Recently Eswaran solved the 
question of the expansion; he demonstrated that any function whose Fourier transform is of a 
compact support can be developed in a Neumann series [12]. 

Equation (IV.IO) states that the Fourier transform of the unknown F(u), namely the 
current density J(z), is a function of a compact support (the function J(z)=O for Izl>h). Thus 
F(u) can be expanded in a Neumann series defined as [12,44] 

F(u) = _ q~S (Kaf Ko(Ka) i bn In.l+s(uh) , 
7t(ka)2s n= 1 US 

(IV.12) 

where bn is an expansion coefficient. It is immediate to verify that equation (IV.IO) is 
automatically verified if we use expansion (lV.12) because [14] 

1- . Jr+ (u) 
exp( -lUX) P du = 0 , 

uP 
-~ . 

Ixl>l . (IV.13) 

Equation (IV. I I ) becomes 

~s 2 ~ f-_a_ 2. bn T(u) In_l+s(uh) exp(-juz) du = exp(-jkzJ~) , 
(ka)2s n=1 _~ US 

Izkh. (IV.l4) 
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The last equation could be already used to compute the expansion coefficients; but an opportune 

projection will transfonn it in a system of algebraic equations with a symmetric matrix of the 

coefficients. In order to realise this, it is necessary to transfonn the complex exponential exp{

juz) in a Bessel function. Gegenbauer polynomials [14] can help us and, because (m=I,2,3, ... ) 

f+h (h2 2\5· 1/2 "" (zIh) (' ) d _ h' 1t21 '~ -jl"'. 1r(2s+m-l) lm. I+Jah) 
-z J '-m.1 exp -Jaz z - , ' 

. b (m-I)!r(s) a 

equation (IV.14) can be formally rewritten as the following algebraic (complex) system of 

linear equations 

L Am.n bn = lm.I+s{kh/~) , {IV. IS) 
0= 1 

whose coefficients matrix is defined by 

Am n = An m = -I-f .... T{u) I n. I+,{uh) l m.I+,{ub).dl!... 
, 'a2(,.I) u2' .-

The kernel T{u) is an even function; therefore the expansion coefficients Am.n are non 
vanishing if n and m are both even or odd. In this situation, it is 

An,m = 2a r-- T(~) In'I+~X~) lm. I+~X~) -%;. )0 x 
(IV.l6) 

The numerical evaluation and the strategy of the acceleration the convergence of the matrix 

coefficients (IV.16) are discussed in [44]. Accordingly the matrix of the coefficients is of the 
following fonn 

AI,l 0 AI,3 0 Au 
0 A2,2 0 A2,4 0 

A 3.1 0 A3,3 0 A3,s 
A= 

0 A4,2 0 A4,4 0 
As .I 0 AS.2 0 As.s 

The structure of the this matrix renders simpler the numerical evaluation of the expansion 
coefficients bn. The problem, in fact, can be considered as the superposition of two 

independent problems: the subsystem for the even, and the one for the odd coefficients . In 
detail it is (r = 1, 2, 3, ... ) 



L A2r-l.2p- 1b2p-l = 1zr-2+s(kh/~) 
p=l 

L A2r.2pb 2p = 1zr_l+s(kh/~) 
p=l 
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(IV.17) 

(IV.l8) 

System (IV.IS) is now decoupled into two systems (IV.17) and (IV.IS) for the 

evaluation of the odd and even coefficients, respectively. 

Longitudinal coupling impedance 
We are now ready to compute the longitudinal coupling impedance defined in Section I. 

From relations (IV.6) we are able to evaluate the electromagnetic field. and in particular the 

longitudinal component of the electric field evaluated at r=Q 

(IV.l9) 

Substituting (IV.l9) in the definition of the impedance (I.l), we have [14] 

ZII(k) = - 2jso q~:~2 Ko(Ka) F(k/~) , 

or, using the Neumann series (IV.l2) defining F(u), it is 

(ka)3-2s 2 ~ 
ZII(k) = 2jso KQ(Ka) L bn In_l+s(kh/~) . 

,Af.l2(2-s) 
1 ..., D=l 

(lV.20) 

As an example, a plot of this impedance is given in Figure 7; the nonnalization factor is 

the impedance of the free space SO. For numerical calculations the maximum value of s has been 
chosen (s=2). It is worth noting that the real and the imaginary part of tbe impedance assume 
tbe same value in the asymptotic region (large values of ka). We did not discover any 
asymptotic fonnula at the moment, but some approximation proposed for similar cases are 
under investigation. 
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Fig. 7- Nonnalized values of the longitudinal impedance (JV.20) . 

V. CONCLUSIONS 
We have presented a method for computing the longitudinal coupling impedance of a 

circular iris in an infinite, perfectly conducting plane, and of a metallic tube of finite length. 
Both problems have been fonnulated as systems of dual integral equations. 

From a ma thematical point of view the proposed methods of solution represent the two 
fundamental approaches to the study of such kinds of coupled system of integral equations: the 
transformation into a single Fredholm integral equation of the second kind with continuous 
kernel is the strategy of solution used for the case of the circular iris, whereas the reduction to a 
linear system of algebraic equations is the one adopted for the case of the drift tube. 

From a numerical point of view the method of moments can be used to find an 
approximate solution of the Fredholm integral equation; we have discussed 'an ingenuous 
application in order to show the wide range of possibilities and improvements that did not still 
fmd an adequate arrangement. 

From a physical point of view two relevant problems in accelerator physics have been 
discussed. The problem of the asymptotic behaviour of global parameters (longitudinal 
coupling impedance), useful in the machine project, is still an open problem and the scientific 
community of the accelerator is perfonning a large effort to solve it. 
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