ISTITUTO NAZIONALE DI FISICA NUCLEARE

Sezione di Milano

INFN/TC-95/18
19 Giugno 1995

M. Bartolucci:

FUNCTIONAL EQUATIONS OF AN ELEMENTARY OPERATOR SET

SIS-Pubblicazioni
dei Laboratori Nazionali di Frascati

INFN - Istituto Nazionale di Fisica Nucl

Sezione di Milano

19 Giugno 1995

FUNCTIONAL EQUATIONS OF AN ELEMENTARY OPERATOR SET
II\)/{. Ba;toluccidl . dell

ipartimento di Fisica dell'Univrsita di Milano and
]N%N—Sezione di Milano, Via Celoria 16, I—2°0?%3 Milano, Italy

This report represents an extended discussion and a full representation of the equations of
a set of algebraically operators, parametrically defined, elsewhere already presented

[1,2].

1. Introduction

Many complex algorithm computations heavily involve the use of floating point
arithmetic. Numerical algorithms are in general decomposed in the repetition of a limited
number of operations on integers or floating point numbers. As a consequence the overall
algorithm execution time may be substantially reduced to the number of operations
performed times the average time needed to perform such an operation.

84 === = computation with Universal precision format
computation with 11-bit mantissa format
— ¢ -~ computation with 15-bit mantissa format

counts

channels

fig.1. Particle Identification Function computed with three different
floating point formats.

The single-operation execution time does not depend only on adopted implementation
technology, but also on design and target application constraints.

In ret.1 is shown how the computation of particle identification function (PIF=(E+DE)*-
EX), i.e. of an algorithm essentially based on the computation of two integer basis, real
exponent powers, may be performed using custom defined floating point format that
allow a computation faster than that obtained with operators defined on standard floating
point formats. In particular the computational outcomes when modifying the floating
point format mantissa size have been compared. The agreement obtained in the
computation of particle identification function with 64, 15 and 11-bit mantissa format is
shown in fig.1.

In the following some considerations on floating point representation are made in order to
introduce the Boolean description of the multiplier and adder operators.

2. General considerations on the floating point representation.

Real number properties are altered in finite floating point representation (from here on
Rpp)- As a consequence the algebraic properties of R (real number set) lack in general for
Rpp (e.g. the closure for addition and multiplication). For the aims of the present work
only a base-2 parametric floating point representation (Rg) is introduced. A generic
element X of the set of positive floating point numbers is X =sg,27(1+ M), where sgx is
the operand sign and q is an integer exponent, with -2~ m-D_p< q< 27(m=D yhere m
is the number of bits composing the binary word used to encode the exponent
(q—aiZ“‘EA(i)] and M is the mantissa of X with 0sM <1,
i=1

The mantissa algebraic expression is M= 27"*"' DA(i) where DA(j) is the j-th bit of the

i=1

n-bit word encoding mantissa (DA(j), 1<j<n). The exponent encoding is obtained biasing
g exponent by an additive quantity, 20m=D _1: the exponent word is always an unsigned
integer. So when the encoding word is Q (Q and 1 are 0..0 and 1..1 vectors of arity
implicitly defined in the equalities) it represent the largest negative exponent
(27" ~D _1)) while when it is 1 it encodes the largest positive one (2m-Dy,

As an extension the term 'mantissa’ is also used for 1+M depending on the context; in
fact the 1 added to M is usually omitted in the mantissa representation and concatenated,
for computational aims, to the word representing M in position n+1 ((n+1)-bit DA word).
In the following R} is the label for positive subset of Ry, and Ry the negative one.
Multiplication and addition operators are defined on R%,. The natural way of multiplying
elements of R is:

XeY=s5g,2%(1+ Mx)~sgy2"’(l+My)

while that of adding them is given by:
X+Y =5g,2% (1+M,)+58,2” (1+M,).

It is simple to show in both cases that the operation is not closed on Rg,: so exceptions
and exception handling rules are introduced. Four subsets (exception sets) have been
defined in Rgp :

[+Q0]= {,V € Rfp/y exponentis — (2™ - 1)}
[-00]={y € Rzp/ y exponent is - (2" -)
[+eo}= {)’ € Rip /y exponent is 2"'"}
= {,V € Rrp /yexponent is 2"‘“}

tab.1. Multiplication exception table.

Some algebraic rules for the exception
handling in the product

l. oeco=mcoeX=Xoo0o=00 X € NERFP

2.90+q0=q0*X=X+q0=q0 X € NERFP

3. g0 * o =0 e g0 = NAN

4 X «Y=u0 X,YeNERFPe .
EXPX «Y)<-(2 -1)

5. X eY=q0 X,Y e NERFPe
EXP(X + V)=~ (@"11)

6. X eY=0 X,Y e NERFPe
EXP(X «Y)22™"

NAN is Not A Number

NERFP is the Rrp subset of not-exceptions

EXP() extracts the real exponent of the number in brackets

In the following any element of the above exception sets has been represented with the
symbols £Q0, e or Q0,e= respectively when the sign information is determinant
(addition) or not (multiplication).

The flag UFW is used to signal an 'underflow zero' u0 that is to say a QO element
generated by multiplication according to tab.1 and tab.2 rules. The flag OFW is set when
oo result is determined. The symbol q0 represents QO 'quiet zero' elements (input
operands QO are always q0, the rules for their generation as result of operations is in
tab.1 and tab.2). When set together they signal Not A Number (NAN) operation results
(refer to the tables).

In tab.1 and tab.2 the rules defined for exception handling in the product and sum are
shown.

With the semantic given in tab.1, q0 behaves like the real zero when multiplied by itself
or some other not-exception floating point number.

Before introducing boolean equations of multiplication and addition operators, the
notation used to write equations is explained:

X(j) is the j-th component of the vector X of boolean elements (0,1).
X(i,j) represents the word extracted from X with i starting and j final positions.

Xj(i) represents the i-th bit of the j-th vector of X, where X is a sequence of vectors.

tab.2. Addition exceptions.

Exception handling in the computation of
floating point addition

1. (+00) + (-00) = NAN = (-00) + (+00)

2. (+00) + (+0) = oo

3. (£e0) + Q0 = q0 + (£o0) = to0

4. (q0) + (q0) = +q0

5X+q0=q0+ X=X X &€ NERFP

6.(to) + X=X + (k) =*eo X& NERFP

7.X+Y=0 XY e NERFP A EXP([X+Y]) 22

X +Y=2Z XY,Ze NERFP A EXP([X+Y])< ™!

8.X+Y=u0 XY e NERFPAEXP([X+Y]) <-(Z* -1)

X+Y=Z X,Y.Ze NERFP A EXP([X+Y >~ 1)

9.X+Y=q0 XY e NERFP A EXP([X+Y]) =-F1-1)

10.X+Y=q0 X,Y € NERFP A EXP(X) = EXP(Y)
MANTX)=MANT(Y) SG(X)=-SG(Y)

NAN is Not A Number
NERFr is the Rep subset of not-exceptions
EXP() extracts the real exponent of the number in brackets

In order to simplify the equation form the following notation for a special functions used
in the adder that is not in explicit form (AND-OR-EXOR) is shown:

xi = 1 if X boolean word equals the integer j
" 10 otherwise

I 1-bit sign m-bit exponent n-bit mantissa® g

n 1 position

m 1

™1 2951 2" weight

*The n+1-th bit of the mantissa is fixed at '1' and thus omitted in the representation

fig.2. The general floating point format chosen.

The equations are built with logical operators AND (represented in equations with symbol
"." or most commonly omitted, while symbol "[]" stands for for multiple-operand
AND), OR (symbol "+" or "X" for multiple-operand OR), EXOR (symbol "®") and
NOT (a bar over the variable or expression as symbol) and if not explicitely put in

evidence with underlining, they involve single bits. When variables involved in equations
are underlined, those equations hold bitwise.

The floating point representation choosen is shown in fig.2.

The partameters n,m,k, stand respectively for:

n { number of mantissa bits in the chosen format
m { number of exponent bits
k { number fo bits saved in the shift to avoid rounding error [8]

3. Multiplier functionalities and boolean equations

In this paragraph the equations of the multiplier are unrolled: the equation discussion is
briefly introduced by multiplication generic properties followed by detailed functional
step-by-step algebraical discussion of the operator.

The multiplier functionalities are mainly divided in two parts: an integer multiplier section
(the most critical part of the whole multiplier design) and an exponent and mantissa
handling section.

In the following equations the integer multiplier is represented as a composition of adders
with carry look ahead[3]. On the contrary, today fast integer multiplier use algebraic
techniques to reduce the carry propagation overhead [4,5,6]; but it is not possible in the
present general work to propose a fully optimized product, because final optimization
depends strictly on the technology chosen to implement the design.

The result of the product may be in one of two possible configurations ¢f7 and cf2 .
Given two Ry, operands (sign handling is trivial in the product) X and Y of DA and DB
mantissa and q and r exponent, the product result satisfies algebraic constraints.

The operands are:
X= 2‘1[1 + 2 2"”"1DA(1’)J Y= 2'(1 + 2 2"'*"103(1')]
j=1 =
Fixed the exponents q and r a lower bound for the product when DA(1,n)=0 (from here
on X(k,l) is the portion of X word ranging from position k to 1 included) and DB(1,n)=0
is determined, while the upper bound is obtained when DA(1,n)=1 and DB(1,n)=1:
n 2
(X Y)min =24+ (X- Y)mnx - 2q+r[z 2-n+|’—l) < 2q+r+2 (1)
i=0
It is easy to observe that it is possible to transform the product of the two input mantissas
in an integer product multiplied for a fixed factor (2'2"):

n=l n-1
Mant(X)Man(Y) = 2'2"(2" +3 2'DA,-+,)(2" +3 2'DB,-+1) =27 L1, 2"<1,,I5s2"" -1
i=0 i=0

The exponents q and r are coded in the biased two m-bit words EA and EB respectively.

In the following the boolean equation of the multiplier are described referring to fig.3
directly referring in the text to the corresponding modules in figures.

MUL. (multiplier)

The n+1-bit words DA and DB are multiplied as integer words to yield the (2n+2)-bit
word integer mantissa product PP.

The partial product VPP are computed as function of the input operand mantissas and
then they are all added (carry look ahead adders) to form PP.

DA(n+1)=1
DB(n+1)=1
SGA SCB 1 DA it EA EB
E_SH_CTR
ME
MUL
OPW ADDI1
(UNSIGNED INTEGERS NAN
MULTIPLIER) EQT"‘"
" EETEE
oS |EICM |— INC2
PP(n2n+2) PP@n+2)
PP(2n+2) ERTN1
BFS
; ' N
=
& oM
J =
SG_OUT 1 1 }m
OFW UFW EO
fig.3. Floating point multiplier scheme.
VPP.(j)=0 1<j<r-1
VPP.(j) = DB(r)DA(j +1~r) r<j<n+r (1<r<n+l
VPP.(j)=0 n+r+l1<j<2n+2

SPR(j)=VPR(j)
J=1 -l

SPB., ()= [2 G.® 1P (l))e Pa(D|1€j<20+2
i=l I=i+l 1<r<n

P ()=SPF.()Y® VPP ())

G,41(j) = SPE.(j)VPF,,,(j) J
PP(j) = SPP,,,(j) 1<j<2n+2

SEL1. (multiplexer)
The product of two mantissas (as integer product) is a vector with MSB always in

position 2n+1 or 2n+2.
Not all these bits are useful for the product output mantissa computation, so H is

extracted from PP depending on the following two configurations of PP:

¢f2 = PP(2n+2)=1 that implies H(0,n)=PP(n+1,2n+1)
¢fl = PP(2n+2)=0 and PP(2n+1)=1 that implies H(0,n)=PP(n,2n)

These are the only two possible configurations (from eq.1).

The not-rounded output mantissa is selected depending on the integer product output
configuration.

In cf1 configuration PP(2n+1)=1 so this bit is not passed to H word (the most significant
.mantissa bit is always omitted in the representation). The final H equation is:

H(j)= PP(n+ j)PP(2n+2)+ PP(n+j+1)PP(2n+2) 0<j<n

INC1. (incrementer)
The rounding of output mantissa is performed on the base of H(0) bit:

Do [HD HO=0
eLn= increment(H(L,n)) H(0)=1

where the increment function adds 1 to H(1,n) considered as an integer.
By means of the rounding bit (least significant of H) the remaining part of the H word is
incremented or not. The rounded mantissa (output mantissa) is so obtained.

j-1
DO(j)= []‘[H(i))@ H(j) 1<j<n
i=0

EICM. (exponent increment control module)

The PP word is sufficient to obtain information useful for the determination of the output
exponent. If the input mantissa product is in ¢fI configuration, the output exponent is
determined only by the exponents of the two input words. If the configuration is ¢f2 the
resulting output exponent have to be incremented by 1.

It is possible that even if the input mantissa product is cfI, the rounding operation, by
means of a carry generation, produces a ¢fl — ¢f2 transition.

The EICM module in fig.3 determines whether to increment or not the output exponent

(by means of E_SH_CTR control bit).

e If PP(2n+2)=1then E_SH_ CTR =1:
the ¢f2 configuration determines the output exponent increment.

« If PP(2n+2)=0 and PP(j)=1 with n<j<2n (PP(2n+1)=1 necessarily)
then E_SH_CTR = 1:
the ¢fl -> ¢f2 transition determines the output exponent increment.

e If PP(2n+2)=0 and 3}/ PP(j)=0 with n<j<2n then: E_SH_CTR =0:
the configuration ¢f/ does not change the output exponent sum.

The E_SH_CTR equation is:

E_SH_CTR=PP2n+2)+ ﬁPP(j)

j=n

ADD1. (adder)

The two m-bit exponents are added together obtaining an (m+1)-bit result (EQ word): the
integer result equals the sum of the unbiased integer values of the two input exponents
plus 2™ - 1) where (2™ - 1) is the bias.

The adder is again a carry look ahead adder:

m m+]
EQm+1)=Y G [T P(r)
i=l r=i+l
j-1 j-1]
EQ(j) = (PO P(r)) ® P(j)
=1 r=1+l

P(j) = EA(j)® EB()) lsj<m
G(j) = EA(j) EB(j)

INC2. (incrementer)
Depending on E_SH_CTR value, EQ is incremented or not: the result is an (m+1)-bit
word (the maximum possible value for EQ is 11...10).

-1
ER(j)=(E_SH_CTRhEQ(i)J ® EQ(j) 1€j<m+1

i=1

BFS. (bias factor subtractor)
The bias 2™~ D _1 is subtracted from EQ to obtain ER:

!

EU(m) (ER(i)J@ER(m)
=1

j-

1
ER(i)J ® ER(j) 2<j<m-1

=1

EU(j)=(

EU(1) = ER(1)

OM. (output module)

In absence of exceptions the output exponent EQ is set to ER. If one of the two inputs is
g0 (exponent ‘0", and the other is different from o ('1'), the output value is q0.

The o= exception may be determined by the computation; to detect this situation it is
enough to analyze the ER word. If the current integer value of this word is 2
2(2" ~1)+ 2™ the output exponent is set to 'L’ (OM module).

EO(j) = EU(j)ER(m + 1)SUFW + EU(j)ER(m)SUFW +

-1
EU(j) SUFW ER(m) ER(m+1) mHER(i)+
i=1

m—1
ER(m+1) H ER(i)+ ER(m) ER(m+ 1)+ SOFW 1<j<m
1=2

ME. (exception early detection module)
The following first two lines detect respectively at least one q0 or one o input while the
third detects input couples q0-ee or e-q0.

SUFW = ﬁ EA(j) +f[EB(j) (QO on an input operand)

i=l i=1

SOoFw =[] EA()+[] EB() (overflow on an input operand)

1=1 i=1

NAN = [1EAG) [1EBG)Y+ [TEAGD]TEBG) (not a number)

i=l1 i=1 i=1 i=l

UOM. (underflow-overflow module)

The detection of u0 is based directly on ER analysis if q0 is not detected and flagged in
input by SUFW.

One of the two inputs may be oo; in this case if the other operand is not q0, then OFW is
set. This situation is detected by ME module and flagged by the SOFW line to UOM.

When the product e=-q0 is detected NAN forces 1 both to UFW and OFW line.
m=—1
UFW = ER(m+ 1)ER(m)SU 2&([)) +NAN (underflow bit)

i=1

m—1
OFW = ER(m + I)H ER(i)+ ER(m+ 1)ER(m) + SOFW + NAN (overflow bit)
1=2

OS. (sign determination module)
The output sign is determined simply as EXOR of the operand signs.
SG_OUT=SG_A® SG_B

—10 —

4. Adder Functionalities and Boolean Equations

As for the multiplier after a generic discussion, the equations are detailed.

The addition of equal sign floating point operands in the format of fig.2 is explained first.
Called X and Y the two operands, their addition satisfies the following two constraints.
The first is obtained when the mantissa of one of the two operands (e.g. X) DA(j)=0
with 0<j<n and its exponent q is at least equal to r+n+2 where r is Y exponent. In this
case DB, the second operand mantissa, is shifted away when adjusting exponents:
X+Y=271+ Z 2_"+j'IDAj]+ 2’[1+ Z 2‘"+f"DBjJ 227 (2)

j=1 j=1

The second constraint is obtained when DA(j)=DB(j)=1 with 0<j<n and g=r:

(n . n .
X+y<291+ Y27 414 22"‘”‘"1] =292 (1-270*) < 2% 3)
p=

j=1

If the input operand signs are opposite, a subtraction of the module of input operands is
performed: the mantissa of the less exponent input operand, is shifted and subtracted

from the other.
tab.3. Positional reference.

52:::& 205! E 'EZ'n 2-n-l :[2-&‘{' l: 574
Position| n+1 : .:l 0 : -k+1|k : q+
A 11[x| X . J..X|0]..l00]. .0
B |1 X| X X[@] .]0@].'.|0] -
C |10/0]0.01X.'X|X]| . fXX[..]X

The result of the subtraction presents more than two simple configurations with respect to
the equal sign addition.

o
= B 1 :
5 " 3
r E n+2+k é n+2+k § n+l+k 5 n+l z n 00
1 [a] DI E F G
D A m— g A s C E <
DB n 2] n [7;] +1+k 8 D ‘ PSMC
+2+k > &
k zeri Dl
ED FE- 2 OFC3
EDtme1) +—t ! EBF g (aekel)|
SUB1 [& uRw1 8
SG_A — z L o)
Q F2 o0
SG_B @ b =)] OFW
Gl Yo ol U
- 2= =
-:AS!AS e R EPPPO & p—=EO
UFW
G_OuUT
EA EB

fig.4. Floating point adder scheme.

—11 —

In general it is necessary to normalize mantissa and to balance exponents. Moreover in
the addition of opposite sign operands, problems may arise when the truncation of the
shifted mantissa influences the rounding operation [2].

In the following the positional reference defined in the tab.3 is used: as a consequence,
once defined positions and weights for all bits of B, positions and weights of other word
bits are referred to that of B.

SUBI. (input exponent subtracter)
The difference ED of the two input exponents EA and EB is computed (CLA subtracter).
The two operands are unsigned m-bit operands, and so ED(m+1) holds the subtraction

result sign.

ED(m+1)= ﬁ P(i)+ i G() ﬁ P(r)

i=1 i=1 r=i+l
j-1 j-1 j-1
ED(j)= [1‘[PO+ Y,GO [] P(r)]@ P(j)
i=1 i=1 r=i+l

P(j) = EA(j)® EB(j) 1<j<m
G(j) = EA(J)EB(j)

SEL1. (selector)

Depending on the sign of EA and EB input exponents difference ED, the two input
mantissas DA and DB are distributed on B and A word: the B word contains the mantissa
of greater exponent input that is not shifted to match exponents. ED(m+1) is used as

control for the selector.
B(n+1D=1

B(j)= DA())ED(m+ 1)+ DB(j)ED(m+1) 1<j<n

SEL2. (selector)
A contains the mantissa word of the less exponent operand.

A(n+D)=1

A(j) = DA()ED(m +1)+ DB()ED(m+1) 1<j<n
A()=0 -k+1<j<0

Z.

If one of the two operands (X) is q0, the shift module (MS) erases its mantissa, to let the
other operand mantissa to pass unchanged in the adder.

STOP_A= ﬁﬁ(i) + ﬁﬁ(i)

i=1 i=1

—12 —

SM. (shift module)
C word contains the A word left shifted a number of places that equals ED word. Only k-
bit of the shifted word are saved in C, the other are lost: it is possible to determine
optimal values for k to avoid or limit rounding error propagation[8].

j+l j+l
Cn-j)= STOP_A(ZED'A(n—j+i)+ Y EDT A(n—j+i)) -1<j<n+k-1

1=0

1=l

AS. (addition-subtraction selector)

AS commutes the floating operator in adder or subtracter of the absolute value of the
input operands depending on their signs.

AS=SG_AS®SG_B

COMP. (two's complement operator module)
If the operand signs are opposite, the less exponent operand is always shifted and
complemented (D word). So the ADD1 module (adder) performs two's complement

subtraction.

n+l
D(n+2)=AS Y C()

i==k+1

J=1_ -
D(j)=(AS HC(i)]@(C(j)AS+C(j)AS) —k+1<j<n+1

1=—k+1

ADD]1. (mantissa adder)

The adder performs the addition of B and D words yielding DI: if the operand signs are
opposite the result of addition may be a positive number or a negative two's complement
number. The sign of the result is determined by DI(n+2).

If the operand signs are equal, DI addition result may be in one of two possible
configurations (from (2) and (3)). The configurations are shown in fig.5.

DI word rounding bit
2° 27"
0 I 1] not-rounded output mantissa | x| /&1 configuration
2'2° l‘
I 1[not d output I X[X] ¢f2 configuration
[| [|
11 LI |
n+2 n+l 1 0
fig.5. Possible configurations in the

addition of equal sign operands.

The positions and weights in the figure are set according to positional reference of tab.3.

—13 —

It the signs of the operand are opposite DI(n+2) is a sign bit for the two's complement
subtraction performed (B operand is always positive while D may be negative and
represented as a two's complement number).

The adder equations are:

n+l
DI(n+2)= [H P(i)]@ D(n+2)
i=l

Jj-1 -1

DI(j)= [2 GO [1 P(r)}e P(j)

1=] r=1+l
P(j)= B(j) ® D(j) 1<j<n+l1
G(j)= B(j)D(j)

SEL3. (selector)

If the input operand sign are opposite (AS=1), E word is made of D] word and a part of
D word. No configuration shifts are performed in this case (E(1,n+1)=DI(1,n+1);E(-
k,0)=DI(-k,0) since the result is eventually shifted in the following.

When the input operands signs are equal (AS=0), SEL3 sets E to different words
depending on possible adder output configurations.

E(j) = DI(j)AS + DI(j)DI(n + 2)ED(m + 1) + DI(j + 1)DI(n + 2)AS 1<j<n+1
E(0) = D(0)AS + D(0)DI(n + 2)ED(m + 1)+ DI(1)DI(n + 2)AS
E(j) = D(j)AS + D(j)DI(n+ 2)ED(m+ 1) + D(j + 1)DI(n + 2)AS —k+1<j<-1

PCOMP. (two's complement operator module)
E word holds the two's complement of DI word if DI(n+2)=1 (negative addition result)
and AS=1 (opposite sign input operands). Otherwise E(-k+1,n+1)=DI(-k+1,n+1).

j=l_ _ . -
F(j)= [Dl(n +2)AS [] E(i)]@ (E(G)DI(n+2)AS + E(j)AS + E(j)DI(n + 2)) —k+1<j<n+1

i=—k+1

PSM. (normalization module)
The normalization of F is performed left shifting F a number of places equal to the
number of most significant zeros. At the end the first not null bit on the right (if any) is

discarded, while the other fills G(0,n).
n+k—=j-2(|
Gn—-j)= 2’ ([[F(nn—r)JF(n—i)F(n—i—j—1) 0<j<n

r=0

1==1

INC1. (incrementer)
This module performs the rounding of G word to match final output format of DO. The

rule applied for rounding is the same of module INC1 of the multiplier.
j=1
DO(j)= [l‘[G(i)]eG(j) 1<j<n

i=0

—14 —

SEL4. (selector)
EPQ holds the greater input exponent determined, subtracting EB from EA, by ED(m+1).
EPO(j) = EA()ED(m + 1) + EB(j)ED(m + 1) 1€j<m

PSMC. (F=0 detection and exponent balancing control determination)
UFW1 detects a null E word.

n+l
UFwl=[]F)

==k +]

EBF is an m-bit word where only the least significant [log,(n+ k + 1)] bits differ from 0
(assumed m>[log,(n + & +1)]). This word computes the number of F leading zeros when
E(-k+1,n+1)20 while EBF=0 when'F(-k+1,n+1)=0. This word is used to adjust

exponent after normalization.
n+k+1

el 1 271
EBF(p)= Y {{H [TF(n+1-27*r- uJ f(n+1 2P _ 27— u)}
u=0

=0 r=0 u=0
n+k+1 1| Atk+]
[27 JzP-l_ k-2 l J
[l:!)F(n+1—2"“r—u) 2 F(n+1—2“J ZPHL%J-uJ

0< p<[log,(n+k+1)]-1
EBF(p)=0 [log,(n+k+1)]<p<m

SUB2. (exponent balancing)
The difference of EPQ and EBF is computed to balance normalization on F yielding

EPPO.
EPPO(m + =[] P+ 3 G&) [T Pt

i=1 i=l k=i+l
. -
EPPO(j)= []’[PG+ Z G(i) HP(k)J@P(fd)
=1 i=l k=i+1
P(j)= EPO(j)® EBF(j) I<sj<m

G(j) = EPO(j)EBF(j)

OFC3. (configuration transition detector)
This bit detects ¢fI —¢f2 transition induced by rounding operation on G when the input

operand signs agree.

OFC3=DI(n+2) AS + [[G()
i=0

—15 —

INC2. (incrementer)
When the following conditions arise together:
. OFC3 bit is high (there is a ¢fl — ¢f2 transition),
] E(-k+1,n+1) is not null,
EPPQ is incremented.

7-1

EPPPO(j) = (0FC3 UFW1 EPPO(m+ I)H EPPO(I)]@ UFW1 EPPO(m+1) EPPO(j) l1€j<sm
I=1

OFCS5. (overflow module)

OFCS5 (also OFW bit) is set when one of the input operands is = (EPQ=1) or when the
following conditions arise together:

. OFC3 bitis high (there is a ¢fl — ¢f2 transition),

. FE(-k+1,n+1) is not null,

. EPPO=011...10

OFC5 = OFC3 UFW1 EPPO(m + 1) EPPOD) [| EPPOG) + [| EPOG)

i=2 i=1

OFW = OFCS

SELS. (selector)
The output exponent is chosen between EPPPO (OFC5=0) and 1 (OFC5=1; overflow is

set);
EO(j)= EPPPO(j) + OFCS5 1<j<m

SGN. (operation result sign determination)
This module determines the sign of the addition result. If the operands have equal signs,
the sign of the result is simply the sign of one of the two operands. Otherwise the result
sign depends on input signs, sign of the input exponent difference (ED(m+1)) and sign
of mantissa subtraction (DI(n+2)).
SG_OUT=SG_A SG_B ED(m+1) DI(n+2)+

SG_A SG_B ED(m+1) DI(n+2) +

SG_A SG_B ED(m+1) DI(n+2) +

SG_A SG_B ED(m +1) DI(n +2) +

SG_ASG_B

NAN. (underflow module)
If the exponent balancing (EPQ-EBF) induced by normalization generates a negative
EPPO (EPPO(m+1)=1), the u0 result is generated and flagged (UFW=1). UFW (and

—16 —

OFW to00) is set also if input operand sign are opposite and the input operands are oo

(EA=1, EB=D).

UFW = EPPO(m+ 1)+ (SG_A@ SG_ B)ﬁ EA(i)l_m[EB(i)

=1 i=1

5. Conclusions.

The study of a parametric set of operators is suited, in the design phase of a project, to
extablish the very computational needs for a given application (by means of slow but
design compliant simulation package). Once the design parameters have been project
tuned it is possible to think about implementation of the set with available technology:
Gate Arrays (for small n, m, k parameter values), or ASIC when the parameter size
becomes too wide.

Considering exact input operands, the relative error induced in multiplication or addition
operations with respect to the exact one is at most a value about 2~“*", This becomes the
design correctness constraint. To evaluate equation correctness in particular frames
software tools have been used: a C program simulation was written taking into account
boolean functionality description. Boolean sets have been represented with characters
while boolean operators were replaced by logic and bitwise character C operators.

The three design parameters n, m and k were fixed for each simulation. Input streams
were generated using ANSI C standard library random number generation function.

Test operation results were computed for each input and compared with those computed
in MC68882 extended precision format[7] (n=68 and m=15). For coherence reasons n,
m parameters were kept slightly less than MC68882 correspondent one (n<25, m=8). A
value of k=3 has been chosen: this value does not allow the complete elimination of
rounding error{2] for the tests done.

At the end the reduction of boolean functionalities to the target technology may require
complex fitting algorithms to decompose equations. In general the decomposition is not
possible with equations in their general parametric form. So the above description of
operators may be used as an intermediate level between design functional description and

final technological implementation.
Acknowledgements.

I am grateful to dr. G. Sechi of IFCTR-CNR (Milan) for his interest and guidance
throughout this work and the particular care given in all discussions.

—17 —

References.

(1]

(2]

[4]

(3]

(6]

[7]

BARTOLUCCI M., GUAZZONI P., MANFREDI G., SECHI G., ZETTA L.: "A
Set of Parametric Operators, Algebraically Defined for Real Time Data Processing”,
EUROMICRO 94: SYSTEM ARCHITECTURE AND INTEGRATION, Liverpool
September 5-8, 1994, published on the conference proceedings.

BARTOLUCCI M., SECHI G.: "Rounding Error in the Computation of Opposite
Sign Floating Point Number Parametric Addition: a Case Study", short note session
of EUROMICRO 94: SYSTEM ARCHITECTURE AND INTEGRATION,
Liverpool September 5-8, 1994, to be published on a special issue of
Microprocessing and Microprogramming.

UNGER STEPHEN, "Three Realization of Iterative Circuits", IEEE Transaction on
Computers, Vol. C-26, No. 4, APRIL 1997, 365-383

TAKAGIN.,YASUURA H.,YAJIMA S.: "High Speed VLSI Multiplication
Algorithm with a Redundant Binary Addition Tree", IEEE, Trans. on Comp.,
September 1985, 789-796

HAO -YUNG L.: "High Speed Signed Digit Multipliers for VLSI",
Microprocessing and Microprogramming, 29, 1990, 205-215

AVEZZINIS A.: "Signed-Digit Number Representation for Fast Parallel
Arithmetic",IRE TRansaction on Electronic Computers, 1961, 389-400
BORENSTEIN P., MATTSON I.: "THINK C User Manual", SYMANTEC, 1991

