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A possible scheme to perform bench measurements of coupling impedances
[1, 2, 3, 4] is to insert in the accelerator component under test a wire on which
a current pulse of the same shape of the bunch is riding. For a discussion of the
method, we may refer to a paper by Sands e Rees [5].

This method needs a complex numerical manipulation, by means of FFT and
IFFT, because of the unavoidable presence of the multiple reflections in the mea-
suring apparatus. We want to discuss an improved method of measurement which
does not need this manipulation. The discussion of the bench measurements will
be given in a quite general way, and we will recover the results well known in
literature as particular cases. The validity limits will be given as well.

1 Analysis of the coaxial line method for impedance
measurements

The insertion of the wire behaves together with the component as a coaxial line.
We describe how the characteristics of a coaxial line are influenced by the presence
of an accelerator component.

We use the telegraphist equations in the time domain and we synthesize the
time domain response by means of an adequate Fourier Transform.

The method is quite general, so that we will describe it regardless the char-
acteristics of the component to be measured (Device Under Test = DUT) and of
the reference line (Reference = REF).

In order to extract the coupling impedance from the measurements we trans-
form the coaxial component in an equivalent line with distributed parameters.

The equivalent line of the REF has a resistance Ry, an inductance Lg, and
a capacitance Cp per unit length: the Device Under Test introduces a further
complex term { = Zj/l = R + jX, which represents the DUT impedance ex-
ceeding the REF one (fig. 1)[3], where [ is the length of the DUT and Zj is its

longitudinal impedance.
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Figure 1: The line equivalent cell for DUT

The DUT propagation constant is given by the following expression:

kp = w\J (1 —jR:;C) ColLo (1)

while the REF one is

kp = w\/(l —J&) CoLo (2)

wLo

Furthermore the characteristic impedance of the REF is:

_ |Lo—jRojw
ZO_”—C'O_ (3)

In principle it is possible to get the quantity Z from kp, kr € Z; by means of

the formula (k2 2 )12
Zy=(l=jz~ 22—~ (4)
kgl

Now we show that from transmission scattering coefficients, Sy, of the equiv-
alent lines of DUT and REF it is possible to get kp, kg, and then Z.
The scattering matrix of a bipolar circuit is defined as

S=(Z-2I(Z+z.0D)™" (5)
where
Z. is a reference impedance;

Z is the impedance matrix of the circuit defined as follows:



le Zl2
7 =
( Zo Zn ) (6)

The matrix Z relates the voltage vector and the current vector by means of
the following matrix equation:
i} _ I
(4)-2(%) "

For reciprocal circuits the condition Z;; = Z,; is always satisfied, and all
passive circuits satisfy it. Furthermore, for a symmetrical circuit we have Z,, =
Za3: in this case we may define a characteristic impedance as Z, = \/IET .

In our case the circuit is a coaxial line for which the impedance matrix behaves

—iZ
7= 7 o(coikl 1 ) (8)

as

sin k! cos k!l

Resorting to the definition of scattering matrix as given by equation (5) we
obtain

1 (lzl—zg 27.7,, ) 9)

S =
|Z| + 22+ Z(Z11 + Z22) \ 2Z:242 |Z)- 27
which for a symmetrical line (Z;; = Z,;) becomes

(22— Z%)sinkl  —2§Z.7,
—2jZ.Zy (22— Z%)sinkl

(Z&+ Z2%)sinkl — 257, 7 cos ki

(10)

We see that if, and only if, the reference impedance Z. is equal to th char-
acteristic impedance of the line Zp, namely if the line is matched, the scattering
matrix, denoted now with the index 0, is zero on the diagonal and the only
scattering parameter becomes

512 = exp(—jkl) (11)

Consequently, according to eq. (4) with the condition Z, = Z;, the longitu-
dinal impedance can be written as
SOR
Z) = Zoln% [1 +
Stz

oD
In S7; ] (12)

In SOR

which gives Z) as a function of the scattering parameters S and SPF of DUT
and REF respectively.

Allowing for the transverse impedance, this quantity can be calculated in
a similar way, measuring the transmission coefficients at the ends of two wires
supporting opposite currents which are equivalent to a current dipole exciting



transverse modes. One should point out that the measurement gives the longi-
tudinal impedance of a dipole mode.

Resorting to the definition of the transverse impedance [1] and to Panowski-
Wentzel theorem we get the expression

7, =
L= oA 50D [C T 5oR

(13)

where A is the distance between the wires.

The expressions in the literature [5, 2, 4] are slightly different from eq. (12)
and from eq. (13) and are only a first approximation of them.

Indeed, if In S95 is quite close to In SPP, their ratio in eqs. (12) and (13)
can be approximated by 1, while expanding In(S%%/(SPP) in series we get the

standard formulas
S - 5P

Zy =22 TR (14)
12
_ 9% Si7 — Siy
21 =275 5m (15)

which however should only be used in the case of matched line.

It is worth to emphasize that most of measuring devices give the scattering
matrix referred to an impedance Z. = 5082 which in general differs from the line
impedance Z,.

Our aim is then to find a suitable algorithm and to envisage a correct set of
measurements in order to get the DUT and REF matched scattering matrices
from the mismatched scattering matrices, to be inserted in egs. (12) and (13).

2 The improved method of measurement

In the previous section we have shown that it is possible to get the coupling
impedance from the measurements of the scattering coefficients S}, of the de-
vice under test and of the reference line. It is worthwhile to remark that these
coefficients should be measured (or computed) with reference to the impedance
Z. = Zp. Generally speaking, this is not possible by means of a direct measure-
ment, since the scattering coefficients given by the measuring device are always

referred to a value of Z, = 5010.

In addition to this, we point out that, for mechanical and electrical reasons,
in some cases both DUT and REF cannot be directly connected with the ports
of the measuring instrument: indeed we need some electrical and mechanical
adaptors, like cones and lumped I-circuits. As a consequence, the scattering
matrices which are measured are those of the whole configurations represented
in Fig. 2.
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Figure 2: Ezperimental configuration: a) Reference line, b) Device Under Test

We must face the twofold difficulty to get, from the measurements, the scat-
tering matrix of the device under test (or of the reference line) alone, and to find
this matrix referred to an impedance Z, equal to the characteristic impedance of
the line.

We will now show that, by means of the measurements of the matrix ™ of
the whole configuration as shown in Fig. 2 (where M stays for the DUT or for the
REF), and of the matrix S of the configurations of the two contiguous adaptors
as shown in Fig. 3, it is possible to get the quantity S9, satisfying to both the
above requirements without any restriction as to the impedance Z, respect to
which we measure the matrices S¥ and S°.

This means that we may get the quantity of interest by means of the mea-
surements of the mismatched matrices, as they are given by the measuring in-
struments, namely with Z, = 50 Q.

In order to analyze the electric characteristics of the configurations shown in
fig. 2 and fig. 3 it is convenient to use the Hybrid matrix H treatment, instead
of characterize them by means of the usual .§ matrices.

It is well known that input and output currents and voltages are related by
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Figure 3: Configuration of the contiguous adaptors

the matrix H as follows

(2)=Cai) ()= (5) oo

We have chosen to use hybrid parameters because the representation by means
of H matrices is very helpful to treat cascade circuits as those shown in fig. 2

and fig. 3 are.
In Appendix A some useful relations can be found, which involve matrices H,

Z and S.
As a reminder, hereafter a few properties of hybrid matrices are given. First

of all, in a symmetric circuit
|H| = h%; = hizhay =1 (17)

is always satisfied.
Furthermore, the relationship between the scattering matrix and the hybrid

parameters, in the simplest case of a symmetric line is

Y.hio — Zchy 2
s 2 Yohiz — Zchoy

Ychiz + Zohoy + 2k

where the admittance Y, is the inverse of Z..
Allowing for a matched circuit, the matched matrix S° must be zero on the

diagonal, as already said in sec. 1, which implies that

(18)

2t == (19)

and, therefore, eq. (18), with the condition (17), becomes (as shown in Appendix

A):
o _ 0 hiy — J\/1 — k3,
S° = — V (20)
h“ -7 l—h%l 0



If we interpret the parameter h;; as
hi1 = cos ©
where © in a complex angle, then the scattering parameter S;; can be written as
5?2 = exp(—jO)

which is in agreement with eq. (11).

The result of eq. (20) is very important, because it shows that the knowledge
of the only parameter k), is enough to get the quantity S?, we are interested in
(6]

Let us turn now to the object of our investigation. We have already said,
without demonstrating it, that from the measurement of the (mismatched) ma-
trices S¢ and S™ we are able to get the transmission parameter we are interested
in. We start from the relevant hybrid matrices H® and HM™. Let us label the
circuits preliminarily: A are the mechanical (cones, spacers) and electrical (pos-
sible I' circuits) adaptors; D and R are the device under test and the reference
line; A~! is the reversed adaptor. The configuration in fig. 2a is then labelled
ARA™!, whilst the one in fig. 2b will be called ADA™!; the configuration in fig. 3
will be instead AA™.

Let us start with the analysis of the hybrid matrix H relevant to the con-
figuration AA™'. Naming the matrix of the adaptor H 4 and defining the matrix

L as Lo
LE(O _1) (21)

the hybrid matrix H® becomes
C _ -1 _ a b
H _HA(LHAL)_((aZ—-l)/b a) (22)

Bear in mind that the hybrid matrix of the reversed adaptor is the inverse of

LH,L. In the equation above the quantities a and b are measured quantities,

or can be obtained from the measurements of the S as shown in Appendix A.
Allowing for the matrix

HCL=H,LH} (23)

we note that the matrix H 4 can diagonalize the matrix HCL of eq. (23) and
that the eigenvalues of HL are -1 and 1.

We point out that from the matrix H it is not possible to get the hybrid
matrix H 4 of the adaptor alone, since there is an infinite number of unit matrices
which diagonalize HCL. Let U be an arbitrary unit matrix which diagonalize



HC L, the hybrid matrix H 4 of the adaptor alone can be obtained from U, to
within an arbitrary constant, according to the equation

t 0

HA:U(O -1

)EUT (24)

where ¢ is an arbitrary complex number. Indeed, plugging eq. (24) in eq. (23) we
get

H,LH}' =UTLT'U'=ULU™! (25)
We chose for the matrix U the expression
1 1 b
U=ﬁ((a—1)/b a+1) (26)
therefore the matrix H 4 of the adaptor alone is
_ 1 1 b t 0
HA_UT_7§((a—1)/b a+1)(0 t“) (27)

Let us turn now our attention to the hybrid matrix H™ relevant to the
configuration ADA™! or ARA™!. Letting H* the unknown matrix of the DUT
or of the REF, we obtain the expression

hM pM
HM = (H,)H*X(LH;'L) = ( BoLa2 ) (28)
ha1 k2
In this equation too, the matrix H™ is a measured quantity or can be obtained

by measuring the relevant scattering matrix as shown in Appendix A.
From eq. (28) we get the following formula for the hybrid matrix HX:

HX =H'HMLH,L (29)

Introducing in eq. (29) the matrix H4 found with the first measurement and
expressed by eq. (27), to within an arbitrary constant, we obtain

HX =T-'U'HMLUL My ke
- - (% 1) (30)
21 My

We remark that in eq. (30) all the matrices are known (because they are
measured or can be obtained from measured quantities) except the matrix T°
which, by definition, is diagonal and unitary,

It is easy to demonstrate that, by premultiplicating and postmultiplicating
an arbitrary matrix by the matrices T~ and T, this operation does not modify
the values of the diagonal elements. Therefore A equals the element 11 of the
matrix before the operation, i.e.

RE = [U'HMLUL], 31
11



The quantity defined by the equation above is known because the matrices U
and HM are known, since they can be deducted from the measured scattering
matrices relative to the configurations of fig. 2 and of fig. 3, as it has already been
pointed out.

The expression of h{ (see Appendix A) is

1 a? -1
hﬁ=§[2ah’l‘{—bh§{—-—b—

& (32)

from which, according to eq. (20) and to the algebra developed in Appendix
A we get the result we are looking for:

1 2
S¥ = 5o {ng+5{‘gz—(sﬁ—s{‘{) + (33)

~/[(55% - 51" - (55 - Y] (5 + 5t° - (55 - st

We point out that the measured matrices, S™ and S©, are not necessarily
the adapted ones, and then they can be measured by means of standard network
analyzer.

This expression can be written for X = R and X = D, namely when M
stands for ARA™!, and when M stands for ADA™!, respectively. Therefore, we
obtain the transmission parameters SP5 and S%2, which, plugged in eq. (12) yield
the longitudinal impedance for the case of one wire measurement, while, plugged
in eq. (13), yield the transverse impedance in the case of two-wire measurement.

As a conclusion, in order to derive exactly the longitudinal and transverse
impedances we may measure the mismatched scattering S¢, SP e S%, relative
to circuital configurations described above.

A

The general relationship between the matrix S and hybrid parameters is:

( Yohia — Zohgy + (h1y — ha2) 2 )
2 Y.hi2 — Z.h ha —h
P 12 21+ (h22 1) (34)

Yohiz + Zohay + iy + ha

For a symmetrical circuit (h;; = hiz) we may define the characteristic impedance
Zy. If the circuit is matched (Z, = Zp) the diagonal is zero, which implies

Zo = Pz (35)
han
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In this case eq. (34) takes the form

1 01 . 01
SO: ,h12h21+h11(1 0)=[hll_.] h%l_]‘](l 0) (36)

where we took in account that

|H| = hfl — hmhgl =1
The inverse relation of eq. (34) is

1 1—|S|+Su—3S52 Z1+|S|+ S+ S2)

H=—
5 (vt oy AU B )

In order to derive eq. (33) from eq. (32) we resort to the expression of the
hybrid matrix HC as a function of the measurable matrix S€ given by eq. (37);
the result is

_ ! c
a= 25102(1 |5™1) (38)
Ze c
b= —=(1+]|S"|+25n) (39)
251,

where, because of the symmetry, we took S¢; = SS,.
Likewise, for the quantities AM, AM hM we get:

1
bl = g (1~ 15"

Z.
A = (1 +|SM| +25})
pM = Yo ) 4 1sM|_ oM
21 = saar(1+|SY] 1)

These expressions inserted in eq. (32) and eventually in eq. (20) yield the
eq. (33).
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