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Abstract

The transverse dynamics of a charged particle beam throughout a generical device is
approached here by means of the thermal wave model. A solution of the thermal-wave
equation is proposed by means of the Galerkin method.

I -INTRODUCTION

The impressive analogy between electromagnetic beam optics on one side and the
propagation of relativistic charged particles, in paraxial approximation, on the other side can
be easily understood for the latter if we conjecture that the transverse beam profile is
described by a wave function satisfying a Schrédinger-type wave equation (Thermal Wave
Model) [1]. In electromagnetic wave optics the propagation of a monochromatic beam can be
described starting from the Helmotz equation and introducing the so-called slowly-varying-
amplitude approximation along the propagation direction. This enables us to describe the
envelope of the rays (paraxial approximation) which represents the r.m.s. (spot size), over the
transverse plane, of the electromagnetic energy distribution around the beam axis (Fock-
Leontovich parabolic equation) [2].

Similarly, the usual description of the transfer of a relativistic charged particle beam,
characterised by the longitudinal factor ¥, involves a sort of paraxial approximation by which
the transverse dynamics can be expressed in terms of an envelope of many trajectories of the
beam particles. Also in this case the envelope describes a slow variation of the beam spot size
along the propagation direction.

Let us consider the transverse dynamics of a relativistic charged particle beam which
travels along the z-axis with uniform velocity Bc (B=1). It interacts with the surrounding



medium through a potential u(r,, z) (r;=(x1, x2), being x; and x3 the transverse coordinates),
and suffers the thermal spreading. According to the thermal wave model (TWM) [1], in the
case of negligible longitudinal dynamics, transverse beam dynamics is governed by a
Schridinger-type equation for a complex wave function ¥¢ |, z) called the beam wave
function (BWF) [1]

ie%—f:-%Vi‘Pa—U(rl, DY, L)

where we have introduced the dimensionless potential U(r ', Z) as

Utry, 2= 202
mo‘Yﬁ c2

This dimensionless potential is a sort of effective potential as a result of the interaction
of the charged particles with the surrounding medium. Usually, in the conventional
accelerating machines, this potential is obtained by means of magnetic devices such as
dipoles, quadrupoles, sextupoles, etc., whose typical transverse effects are focusing and
defocusing of the beam as it propagates along its orbit.

In particular, in the case in which the vector potential A(x,y,z) (cartesian coordinates) is
along z, the x and y component of Lorentz force on each particle are, respectively:

d
Fy = o (qBcA) =- % u(x,y,z) ,

Fy = % (qBcA) =- % u(x,y,z) .

Consequantly, by using (1.1):

Ux,y,z) =- f?_o A(xy,z) ,

where q is the particle charge and Pp=mgp?c2 (m being the particle rest mass). Therefore, the
esplicit form of previous equation can found by giving the magnetic field B = B(r 1 Z)
generated by the device and using B = VA€, z). For example, for regular multipoles, i.e.
those for which the field in the plane of the machine is parallel to the main dipole field, the
component By(x,y,z) can be expanded, up to decapole, as [3]:

q _9q ki@ k@), ;5 5
P B(x,y,z) = Pg B(0,0,z) + I X+ S0 (x%-y4) +
+ k3T('Zl (x3-3xy2) + # (x4 - 6x2y2 + y4),
where forn=1, 2, ...

q a“By)
Po \ 9x" Jo,0.2)
are the multipole strengths.
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We note that equation (I.1) is homogeneous, linear, and with variable coefficients. In
this equation the role of the diffraction parameter is played by the transverse emittance € and
the analogue of the time t is represented by the longitudinal co-ordinate z=ct. Bearing in mind
the well-known norm conservation law for Schridinger-like equation, we get the physical
meaning of the wave function which can be related to the density of the beam. In fact, if N is
the total number of particles and p the particle number density, we have the following
relationship

p(r, 2) =N I¥(r}, 2)°,

provided the normalisation for ¥
2 2
Y@, z) " dr, =1. (1.2)

Hereafter we consider the special case of cylindrical symmetry. This hypothesis can be
considered in the case in which the source produced an initial beam density profile with equal
vertical and orizontal emittances, say €x=€y=¢ (round beam).So, by using the cylindrical
coordinates (r, j, z) we assume:

U=U(@,z), ¥Y=V(,2). (1.3)

In particular, the physical meaning of the wave-function ‘¥ in this symmetry will be discussed
in some details in Section II. Besides we shall show that, under suitable conditions (boundary
conditions and initial conditions), equation (I.1) has a unique solution in Section III, whereas
in Section IV the Galerkin method to solve this partial differential equation will be proposed.

We want to underline that the initial condition implies the knowledge of the function ¥
at z=0, formally

¥(r,z=0) = WYo(r), O<r<R, (L4)
whereas two reasonable boundary conditions can be written in the form
ai —_— 0 ’
or |0 (L5)

lim ¥|.g=0.
R—oo

The first condition, essentially due to the azimuthal symmetry; implies immediately that

aw
or

b

=0

while the second one states the distance R from the symmetry axis is the upper bound where
one can find particles, namely R is the radius containing the bunch.



II - PHYSICAL INTERPRETATIONS

The physical meaning of the function ¥ can be fully revealed if one is able to write the
equation for its modulus and phase. Let us put, therefore,

\P(I'J_,Z) = M(rl’z) éi o(ryz)/e

where M and ¢ are real functions, and let us try to find the differential equation governing
M(r,z) and ¢(r,z). Because

d¥ (oM +i 0] i/
oz az M )etpe

Vi = {v M+ E[Vl- (MV.10) + V. M- V,g) - £M2 V0P eiore

substituting in equation (I.1) and splitting the real part from the imaginary one, it is
oM
‘g =- E V_L (MV_L(p) V_]_M V_]_(p N

(IL.1)
lMiag=§—V_LM'7|V_L(pI -

oz 2

The first partial differential equation of the system (II.1) can be rearranged as follows

oM
Mg=-¥VJ_- (MVJ_q>)-1\2—4VJ_M- V.o,

or using a vector identity [5]

aa£2+ V.- (M2ve)=0.

Introducing the vector field

u(r,z) =V, 0(r,z), (11.2)

the last equation is easily rewritten as

oM?
0z

Equation (II.2) can be interpretated as a continuity equation.
On the contrary the second equation of the system (IL1) can be rearranged as follows

+V, - M2u)=0. (I1.3)

99 1 2

5;—2MV_LM > IV,i0l”-
If we take the transverse gradient on both side of this equation and we remember the
definition (II.2), we have

du 1 2_g2 1 o2
Srlvie=¢ vilﬁvlm)-vlu,



namely, using the convective derivative [5]

d_-9,.v.v
dz az” +

we can finally write
du _e2y (1 giml.
u _¢ VJM viM)-v.U. (IL.4)

This equation can be interpreted as the balance momentum equation where the forcing term
can be imagined composed by a pressure term

P=-£ viM
and by the conservative potential term U. We point out that M describes the density profile
and it is related to the macroscopic transverse velocity field by means of equation (II.2): the
macroscopic transverse velocity is a conservative field and ¢ is its scalar potential.

We observe that the results of this Section are independent of the particular symmetry
choosen.

In order to solve equation (I.1) we have to assign the initial and boundary conditions.
The boundary conditions are already known and homogeneous, whereas the initial conditions
of the BWF depend on the initial beam configuration in terms of number density and
macroscopic transverse velocity field. The initial value of the modulus ¥ is given by the
particle number density, and initial value of the phase is related to the transverse velocity
field. We immediately assume that the phase is defined unless than a constant which doesn't
produce any effect.

III - UNIQUENESS OF THE SOLUTION

The first task we have to do is to prove that the solution of equation (I.1) with initial
condition (I.4) and boundary conditions (I.5) is unique. In fact, let imagine that two solutions
of this problem can exist: we call them ‘¥; and V5. Because of the linearity of the problem,
one can introduce a new solution defined as the following difference

AV = ¥, (IIL.1)

which is a new solution of differential equation (L.1). Formally one can say that this new
function has to satisfy the differential equation

e d(AV)

== 82_2 ViA¥) + U AY (II.2)

with the homogeneous initial condition

A¥Y(r,z=0)=0, O0<r<R, (1I11.3)



and boundary conditions

d(AY) =0

I oo (IL.4)
lim A¥|r=0.
R—oo

Multiplying both sides of equation (IIL.2) for the conjugate of A, it is

a(A‘P)

ie (AW) §— (A‘P) \Y J_(A‘P) +U AP, (MM1.5)

The vector identity [5]
* * *_2
V.- [(aw)' v.aw) = Viaw) Va9 + aw) Vi)
enables us to rewrite equation (ITL.5) in the equivalent form

2
ic A
2 0z

We have to integrate equation (II1.6) all over the range (0,R). Because of the boundary
condition (II1.4), it is

=-£ (v, [aw)'V.iaw)- IV, a¥)P) + U 1aw. (IL6)

R R .
f 1V [(AP) V. A¥) dr = f raér-[(A‘P)‘VJ_(A‘P)]dr=
0

0

R
f %[r (AW)'V,(AP)] dr =1 (A®) 'V, A¥) g -1 (A¥) V.o(AW)_, =0,
0

and we can conclude

R R R
%dﬂz_] rlA\mzduﬁ;] rIVl(A‘P)Izdr+f rUIAY’ dr. (IIL7)
0 0 0

The left side of equation (IIL.7) is an imaginary quantity, whereas the right one is a non
negative, real number; they have to be simultaneously zero, and therefore

R
% f rIAPP dr=0. (IL8)
0

From equation (II1.8) it follows at once

R
f T IA‘I’I2 dr = constant with z, (111.9)
(]



where the constant has to be zero for (II1.3). Thus we can conclude that in (II1.9) the integrand
function has to be zero, and that

IA¥1=0 = Re(A¥)=Im(A¥)=0.

This implies immediately that ¥; = ¥, namely the solution is unique.

IV - THE GALERKIN METHOD

It is very hard to find the solution of partial differential equation (I.1) for a generical
potential function U. Particular solutions have been found [4] in the case of symmetrical
geometries and for a polynomials expansion for U. In this Section we propose a general way
to find an approximate solution of this problem by means of the Galerkin method [6]. We start
with the trial function

N :
¥N=D, 4(@) W), (Iv.1)

i=1l

with wj(r) real known basis function of compact support, and a;(z) complex and unknown
function describing the time evolution of the system. Formally

wi(neR, a(z)eC, Vi=1,...N .

l .0 :\ o o o o =9 w
Y, W, Wh-1 / N
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Figure 1 — Expansion basis.



The basis functions we want to use for numerical simulations are the piece-wise linear
functions (namely triangular pulses) shown in Figure 1, defined as

f[1-ua  Osr<a,

Wy = _ (Iv.2)
\() otherwise ,
andfori=2,3,..,Nitis
2-i+1/A (i-2)Asr<(i-DA,
Wi=1i_r/A (i-1DASI<iA (Iv.3)
‘() otherwise .

The set of all piece-wise linear functions in (0,R) is dense in L2(0,R). The derivative
with respect to the radial co-ordinate r (we shall indicate with the dot for shortness) are given
by

) {- 1/A O0sr<A,
Wi =
0

otherwise , av.4)
and fori=2,3,...,Nitis
’ /A (2)ASI<(i-DA,
Wi=1_1/A (-1)A<r<iA, (Iv.s5)
‘o otherwise .

We want only to underline that, for the particular choice for the basis functions
discussed, all the wj(r) vanishe for r=R, that is wj(R)=0.
Substituting the proposed expansion (IV.1) in (I.1), it is

182 %w, il 2 a % dw, +U 2 aw; . (IV.6)

Making the projection of equation (IV.6) onto the functional space described by the basis
functions, with the inner product defined as

R
({f(r).g(m)= f 1 f(r) g(r) dr,
0
one can affirme that
. N da; 82 N 1d dw: N
leg. ap WirWi)=- 7;;. 3 <—d— ey Wj>+ U g. ay{wi, Wj) . av.7)

Now, an integration by parts enables us to write

(% % r Wi wj> T Wi Wil g -TWj Wi - (Wi, Wi) = - (Wi, W;). (IV.8)



Thus, using the notations

R
Ajj = Aj = (Wi, W) = f T wi(r) wi(r) dr,
0

R
Lj=L;=- (W,',Wj) = -f I Wi(r) wi(r) dr, (Iv.9)
0
R
Vij(Z) = Vji(Z) = (WiVU, ijU) = f T U(I‘,Z) Wi(l') Wj(l') dr,
0

and introducing the unknown vector!

as (al9‘ ° ':aN)T ’
equation (IV.7) can be written in the matrix form by means of (IV.8)

eAda €21 0 va=
1eAdz+2]La Va=0,

or as the initial values problem

.dj.zi_ 'li _]
‘dz eA [211.. V]a,

V.9
a(0) = ao . V-9

The matices A and L are computed in the Appendix A, whereas details about the initial
condition ag are given in the Appendix B.

All the properties of the approximate solution (IV.1) are written in the system (IV.9),
which is a first order differential equations system. The solution of this system could be found
in a closed form, but it is easier to solve numerically by means the fourth-order Runge-Kutta
method, for example. Its properties are defined by the properties of the matrices:

A areal, symmetric and banded matrix, defined positive;
L a real, symmetric and banded matrix, defined negative;
V a symmetric, banded matrix.

Explicit calculations cannot be performed for the matrix V, whose elemets depend upon
the selected (quadrupole, sextupole, octupole) potential U.

1 In this paper the vectors will be indicated by lowercase and bold letter (p), whereas the matrix by an
uppercase and outline letter (K).
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IV - CONCLUSIONS AND PERSPECTIVES

In this note, in order to find a numerical solution of a Schrédinger-like equation, within

the framework of TWM [1], we propose to use Galerkin method. It is shown that the partial
differential equation describing the model can be rewritten as a system of ordinary differential
equations which can be solved in a robust way by using, for example, a fourth-order Runge-
Kutta method.

We hope, in a near future, to perform numerical calculations in order to study the non-

linear transverse dynamics of a bunch, interacting with a device made of quadrupole with
sextupole and octupole deviations, or, more generally, with a given profile of magnetic field.
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APPENDIX A

In this appendix we have to compute the matrices A and L, defined by (IV.9). These
matrices are symmetric and banded, and the non-vanishing elements are [4]

2

A _A
Au—12 Ap= 17"

2A%(-1
Al,x-l-% Au—_3(l_) Aii+1
A% pn= 287D
[ANN1=755 AN, 3 (A.1)

12 (i=2,...,N-1),

=.1 1
Lu > ,Liz= >

Lu.l—l-— Lii=2-2i, Ln+1—1-— (i=2,....N-1),
LN,N_I_N-%,LN_N_z-zN.

(A2)



APPENDIX B

To compute the initial condition ag one has to know the initial transverse ditribution of
the beam; this implies that one has to do a choice, and thus the calculations are not general.
But a particular initial transverse distribution of the beam which is commonly used in all the
simulations code,. is the gaussian distribution, namely the initial transverse condition

¥(r,0) = ¥ —L_e 05007,
(1,0) = Wo(r) = 2 (B.1)
verifying [4] the normalisation condition (1.2).

The knowledge of the initial distribution can be used to compute the initial value of the
vector a, that is

N
¥(1,0) = 3, ai(0) wi(r), (B.2)

e

or projecting onto the base functions space, we obtain [4]

N
by = (%(5,0), wi(®) = Y, (wi(®), wi(0)) a(0) = 2 A 2(0). (B.3)

i=1

.

In a matrix form, to obtain tha values a;(0), one has to invert the matrix A (computed in
Appendix A), formally

a(0)=Alb
The vector b is easily computed [4] observing that

r¥(r,0)= L_e05@of=_0 d ¢05@of
®0) o Vrr dr

and therefore performing the integration (j=2, 3, ..., N)

A
b =] r¥(r,0) wi(r)dr = —9—
0 2 of %)

. (B.4)
b; = f 1 '¥(1,0) wj(r) dr=-C { G- l)A] o 2)A d)( jA \}
0 AVZ

o2 |

The function F(x) is the error function defined as [4]

-2 2
(I>(x)-’/_1_t_f0 et dt.



