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SUMMARY

4

We consider a method, based on the coherent repetition of Stern-Gerlach kicks, which
aims at separating the opposite spin states of the (anti)protons revolving in a storage ring.
Drawbacks associate with damping and technical accuracies are analysed together with
possible cures. Quantum-mechanical limitations are discussed and proven to be harmless.



1. Introduction

The polarization mechanism presented here is based on the Stern-Gerlach effect: in an
inhomogeneus magnetic field particles with spin aligned parallel to the field are deflected
in opposite direction. The spin-orbit coupling term of the Hamiltonian is:

H=-uS B (1.1)
with "
€
B = QE (1.2)

which in the (anti)protons case yields u = 1.41 x 1026 JT—1, Crossing a quadrupole lens
of field B = G(22 +z2) and length lg, the particle experiences a variation of its transverse
momentum: Glo

&pz = S, % (1.3)

where the transverse location of the particle during the transit in the magnet have been
considered constant (kick approximation). The angular divergence of that particle is there-
fore encreased by the amount

Ops B uS.Glg
p  B?ymc?

n= (1.4)

In the original experiment a neutral beam, at thermal energy, crossed a magnetic
field with a transverse gradient and the effect was detected in a single pass. For a beam
of antiprotons or protons the energy cannot be reasonably lower then 100 or 50 MeV.
Therefore it is necessary to implement a constructive mechanism that allows the kicks to
add up turn after turn for particles accumulated in a storage ring. In order to explain this
process some notions of spin dynamics in an accumulation ring are required; for sake of
completness we shall recall them in the next section.

2. Spin Dynamics

The time evolution of the spin vector § along a ring is described by the B.M.T.
equation:

i e 4 - o .
i m—,ys X [B +a(B) +7BL)] (2.1)

with a=1.793 proton anomaly and with the usual meaning for the other symbols. Here S
is in the particle frame and B is in the laboratory reference system. This equation has the
same form as the cyclotron precession equation
dv ~
2 L ixB=ax7 (2.2)
dt  my

where ' is the particle velocity and & = ——_";2 is the istantaneus cyclotron frequency.



The reference orbit solves equation (2.2) and defines a curvilinear coordinates system
(£,7,2), where 7 is always oriented as the reference particle velocity and 2 is vertical at
s = 0, being s the length of the arc.

If there is no coupling between the motions in the two planes, we have that 2(s+ L) =
#(s), with L the length of the ring. We may now express equation (2.1) in the coordinate
system (&,, 2); we have:

dS — =g - =
d§ e & R

Both equations preserve the modulus of S ; therefore the spin transfer matrix for one
revolution, solution of egs. (2.3) and (2.4) between s and s + L, is a rotation:

S(s + L) = RoS(s) (2.5)
RyRT =RTR, =1

being I the unity matrix.

The spectrum of eigenvalues of a real tridimensional rotation is given by 1 and two
complex conjugate values. Therefore the spectrum of Ry can be written as:

(1, ezm’u, ) e—21riu,) (2.6)

where the quantity v,, number of spin precessions in one revolution, is called spin tune. If
v, is integer, Ry = I and we are in a degenerated case. Otherwise the eigendirection 7i(s)
associated to the eigenvalue 1 is uniquely defined:

Ry(s)7i(s) = 7(s) (2.7)

The direction 7(s) is called the equilibrium direction of polarization and has some
interesting features. If we inject polarized particles with their polarization parallel to 7,
such polarization keeps its direction turn after turn (and for example it can easily be
measured by a polarimeter).

Moreover the polarization injected along 7i(s) is stable with respect to perturbations due to
focussing and error fields. In fact if we consider for example the focussing field, each particle
will experience a slightly different spin transfer matrix R(e), where € is the perturbation
parameter proportional to the amplitude of betatron oscillations (emittance). It is assumed
R(e = 0) = Ry and the dependence upon the parameter to be smooth.

The direction of injection of the polarization along 7 secures the conservation of the po-
larization under more general conditions than the other two. Let’s justify this sentence:
P is defined as

P=<§> (2.8)



where < > indicates the average over the particle distribution. More precisely we here
consider the polarization vector P as the macroscopic average over the particle distribution
in the beam, joint with a quantum average evaluated by the quantum statistical matrix.
After k turns we have:

P; =< §; >=< R(e)*S; >=< R(e)* >< §; >=< R(e)* > P, (2.9)

where the independence of the two averages has been used.

Let now (nq,np,n) be a base in which Ry is diagonal. The perturbed rotation can be
written as:

e 0 0
Rle)=T.| 0 e % o|TT (2.10)
0 0 1
Here e*% are the complex conjugate eigenvalues of R(¢), T, is the rotation that over-

laps 7., real eigen-vector of R(e), to #n. The matrix after k iterations can then be evaluated
to be:

e&ki 0 0
Rle)*=T.| 0 e 0% go|TT (2.11)
0 0 1

Performing the average over ¢, one has to calculate:

< ki > 0 0
< R(e)* >=<T. > 0 <e > 0|<T.>T (2.12)
0 0 1

The conservation of P - 71 is related to T, which is a characteristic of a single turn.
Following the language of dynamical systems we may say that P-7 is stable in the Ljapunov
sense: for any value £ > 0 we can find an € such that:

|P; -t — P;- 71| < i

As far as the conservation of the others two components is concerned, it becomes important
the average of the eigenvalues of R(e)*:

<efi>= /deg(e)e“k = ez""’k/deg(e)ez"m’(e)ki (2.13)

where g(€) is the distribution function and Av = §/27 — v, is the spin-tune shift.

If we do assume the distribution as uniform in the interval —% <Av< % the average
becomes:

2/k . 1 )
k / dAver™Avki — / dée®™ =0 (2.14)
—2/k -1

and the transverse polarization is completely lost.



This is of course an extreme case; if Ag(€) is sharply peaked at zero there is a con-
servation also of the transverse polarization component for a high number of turns. As
a general conclusion we can state that the 7 component of the spin is stable, and the
depolarization in this case is related to the rotation of the precession axis and is indepen-
dent of the number of turns k we wait before measuring the polarization. For the two
transverse components instead the depolarization is related to the entity of the spin-tune
spread Av(e) multipied by the number of revolutions k.

If the machine is planar, we have a great simplification: B is always vertical, 7(s)
corresponds to Z and the spin tune is ¥; = a7y. In the general case one has to compose the
spin rotations due to the single elements of the machine, and then to calculate Ry and its
spectrum.

In particular when in the ring there is a spin rotator, called Siberian Snake, realized
by a solenoid or a sequence of vertical and horizontal bending magnets, the calculation of
the 7-axis is the first step of the spin dynamics analysis. It is easy to prove that in the
configuration of Fig. 1, with a ring equipped with a device that rotates the spin of 180°
around the particle trajectory, 7 is longitudinal in the point opposit to the rotator and the
spin tune is half-integer.

3. Requirements for the Spin Splitter

In its basic configuration the Spin Splitter [1:[2:B] consists of a strong doublet with a
solenoid that rotates of about 180° the spin in between. Due to the quadrupole gradient the
(anti)protons experience a small kick in a direction that depends upon the sign of S, and
because of the spin rotation the kick of the second quadrupole adds up. The solenoid acts
as the Siberian Snake mentioned in the previous section, so that 7 lies on the horizontal
plane.

If the polarization is kept in the direction 7 the kick repeats at the same azimuth turn
after turn as it happens for the imperfections which affect the betatron oscillations; thus
the effect would add up only if the betatron tune is either integer or half-integer, i.e. in
situations where the machine is unstable.

The way to overcome this problem is to make the polarization P rotate of an angle A
turn after turn; more precisely, the component of P that is transverse to the motion at the
azimuth of the Spin-Splitter should rotate with this rate. If this is the case, the condition
for a coherent adding up of the kicks becomes:

A =27rAQy (3.1a)
or
A =27rAQvy (3.1b)
where
AQH = |Qu — (integer and/or half — integer)| (3.2a)
AQv = |Qv — (integer and/or half — integer)| (3.2b)



being @ and Qv the two betatron tunes.

The first condition gives a coherent growing up of the horizontal oscillations, the
second of the vertical ones.

There are basically two means to implement the spin rotation A:

(a) by constructing the polarization in the direction orthogonal to 7 and choosing v,
proportional to A or to AQgy, v (see Ref. 3 and Sect. 4);

(b) by using an RF solenoid which adiabatically rotates 7 of an amount ) turn after turn.

The approach (a) is much easier to be implemented, but it requires a previous veri-
fication that the spin-tune spread in our operating conditions is small enough not to mix
the two transverse components in the time we need. This is the reason why we began
an experimantal verification at IUCF [* to test the conservation of the transverse spin
components in a condition suited for the Spin Splitter.

It is interesting to observe that in a planar machine (i.e. without Siberian Snake)
the condition v, proportional to AQy,y corresponds to one of the so called intrinsic
depolarizing resonance”, where all the focussing fields contribute coherently to depolarize
the beam. The Siberian Snake succeeds in removing the unwanted effects caused by any
kind of depolarizing resonance.

4. Coherent Stern-Gerlach Kicks

The Stern-Gerlach kicks must be coherent with the betatron motion in such a way that
the transverse momenta be continuously enhanced. To this end, the transverse impulse
and the trajectory slope of the test particle must coincide.

We here like to recall that the spin splitter device conmsists of two quadrupoles with
opposite gradient, separated by a solenoid which rotates the spins by 180°, and that for
ay=half-integer the spins precess, after a revolution, by an amount equal to

1
ay2r = (n + 5)27r =2nm+ 7 (n integer) (4.1a)

Hence the spins capsize after one turn but restore their previous alignements because of
the solenoid crossing. In this situation Qv should be an integer in order to make the
trajectory slopes keep the same direction turn after turn.

Similarly Qv should be half an integer when the spin-precession is

ay2r = 2mm (m integer) (4.1b)

In fact, the trajectory slope of the test particle alternates sign every second turn,
whereas the spin, though keeping its direction during a revolution, is reversed by the
solenoid and then follows the direction of the betatron oscillation.

In order to have a steady growth of the betatron-oscillation amplitudes, under the
effect of the Stern-Gerlach force, but staying simultaneously outside both integer and half-
integer resonances, several methods have been proposed:

1) a periodic variation of the spin-precession frequency (Sect. 8 of Ref. 3);
2) a periodic bump of vertical betatron oscillations [¢];



3) a jump of the whole spin-splitter device properly synchronized with the betatron tune
(Sect. 9 of Ref. 3);

4) a spin rotation different from 7 (Sect. 10 of Ref. 3 and Ref. 7).

For sake of compactness, these four methods have been respectively defined as spin-
precession kicks, vertical orbit bumps, missed spin-splitter and spin-precession lag (or
advance).

In this Section we shall first prove how the induced spin-precession mentioned above,
succeeds in giving rise to the desired adding up of the Stern-Gerlach kicks. In order to
find a description of this controlled precession, based upon the rotation R introduced in
Section 2, we shall use the Pauli-matrices formalism (8, finding that all the other methods
will yield rotations quite similar [?] to the one just obtained. Only the missed spin-splitter

proposal will be left aside, since it would require quite a big amount of hardware to be
realized.

4.a) Spin-precession Kicks

A pulsed (Elﬁ) device, synchronized with the RF, is implemented; its aim is to vary the
precession angle of the spins by a small amount ), or precession kick, which coincides with

the one of egs. (3.1a,b), as it will be demonstrated in Appendix A.
We like now to find how the action of the Stern-Gerlach force influences the vertical

position of the particle. To this end we define, as done in Sect. 8 of Ref. 3, the variable

i=z—1ifyal (4.2)

while the details of the spin precession in the successive revolutions, together with the 180°
rotation inside the solenoid, are discussed in Appendix A.

After N crossings of the spin-splitter device, eq. (4.2) transforms into

N N
iy = eiNuv {zo — iBvn [Z e hlnv A 4 " e_ih(""_’\)] } (4.3a)

h=1 h=1
N N -
in = elVmv {zo —iBvn [Z(—1)"e—"‘("v+” + Z(—l)he_'h(""_’\)] } (4.3b)
h=1 h=1

with 7 given by eq. (1.4) and where:

pv = 2wQvy is the phase-advance of the vertical betatron oscillations;
Zy = z9 — 1Py zly , being zg, z/y the coordinates of a generic particle at the initial time.

Bearing in mind what discussed before, we may write:
ay = half —integer, Qv =k — AQvy (4.4a)
1
ay = integer, Qv =k + 3~ AQv (4.4b)

with k=integer and AQv given by eq. (3.2b).

If we want a growing term to appear in both eqgs. (4.3a,b), we have to set



pv + A =27k (4.5a)
pv +A=2rk+x (4.5b)

which, bearing in mind eqs. (4.5a,b) and the definition py = 27rQy , yield:
X = 2rAQy (4.6)
Of course egs. (4.5a,b) and (4.6) imply that
v — A =2k - AvAQv (4.7a)
pv — A =21k + 7 - ArAQvy (4.7b)

After straight-forward manipulations of egs. (4.3a,b) and into account eq. (3.2b) we
obtain for both ay=half-integer and ay=integer:

; 1
iy ~ etlVuv {Eo -~ EiﬁVﬂN + fading off terms} (4.8)
or
2N = Zgcos Nuy + Byzlysin Nuy (4.9a)
zly . 1
zZIn = —,3_ sin Npuy + 2zl cos Nuy + §N17 (4.9b)
Vv

Formulae (4.9a,b) clearly show that the 2N7 term represents the global kick after
N revolutions and we obtain for the separation between the centres of mass of these two
groups of opposite polarized particles:

Aztes = %Nﬂvn (4.10)

Thus we have proven that, no matter how distant from either an integer or a half-

integer resonance of the machine is, a building up of this separation takes place, provided
that the conditions (4.4a,b) are fulfilled.

The two polarized bunches we obtain in this manner have their spins pointing (3!
parallel or antiparallel to a vector which rotates in the horizontal plane (z,y) around the
z-axis continuosly by steps of .

Let us use now the formulae introduced in Appendix B; the polarization vector I_i,
after N = 2n revolutions (we remind that one kick gives A and the next gives -A) is

P, 1 cos 2nA
P, =R"|0|=|sin2nA (4.11)
Py 0 0
where
cos2\ —sin2X 0
R=|sin2\ cos2\ 0 (4.12)

0 0 1

{ 1hO)
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is obtained by inserting eq. (B.9b) into the rotation (B.5).

Then we may state that eq. (4.11) describes the wanted continuous precession of
the spin, by steps of A per revolution. Besides the precession axis, in correspondence to
the entrance of the solenoid, coincides with the stable solution 7, i.e. the polarization
P rotates in the horizontal (z,y)-plane: this can be easily proven by plugging into the
definition (B.6a) the coefficients given by eqs. (B.9b,c) obtaining a vector of components
(nz = 0,ny = 0,n, = F1). Moreover eq. (B.7) yields as spin-precession tune

v, =(25+1) £ AQvy (4.13)

for both cases ay=integer and/or half-integer.

4.b) Vertical Orbit Bump

The same results can be achieved by supplying alternate kicks to the vertical betatron
oscillations. In Appendix B there is the demonstration that the spin tune is the one given
by eq. (4.13) and that, at the solenoid location, P rotates, lying in a plane, around the
x-axis, if ay=integer, and about the z-axis if ay=half-integer.

4.c) Spin-Precession Lag or Advance

In this case the spins have to undergo a precession, inside the solenoid, which is different
than the usual 180° by an amount equal to +§¢. Always in Appendix B we may find that
we have a continuous precession of the spin by steps of

§¢ = 2) = 4TAQy (4.14)
and with spin tune
1 I m
vy = #21)— - % +2AQy (4.15)

only for ay=integer=m, while for ay=half-integer we have constantly v, =half-integer thus
the precession P restores the same alignement each second revolution; this means that
the betatron oscillations make particles receive the Stern-Gerlach kicks alternately with
respect to the orbit slopes.

This would be solution of our problems if we could work over a perfect half-integer
betatron-tune: but this is either impossible to achieve with the due accuracy or dangerous
to be implemented since destructive resonances of the betatron oscillations would take
place.



5. Forced Oscillations vs. Damping

Any force, of strength F and azimuthal distribution f(0), acting on the (e.g. vertical)
betatron oscillations modifies the coresponding motion equation in the following way:
d?*z 2 R?
hadiied - 0 1

2yme2

In our case F' = Gpu, with u given by eq. (1.2), and f(8) is the Dirac function
lg
0) = 142 ko 2
F(6) = o= (1+ k§=lﬁ cos kf) (5.2)

since the quadrupole length g is much smaller than the average machine radius R. Hence
the motion equation (5.1) becomes:
d?z

R oo
k=1

with 7 given by eq. (1.4).

If the appropriate synchronism-conditions described in the previous Section are ful-
filled, the f-dependent terms succeed in creating a resonance for the spin-tune, achieving
thus the wanted coherent adding up of the kicks. On the contrary, if nothing of specific is
done, the right-side of eq. (5.3) gives rise to a tiny closed orbit deformation of the order
of 7 (i.e. of the order of #).

Representing this synchronism as a linear resonance, we reduce eq. (5.3) to the one

of a dampless harmonic oscillator, of self-frequency w, driven by a constant forcing term
fo cos Qt:

d?z 2 fo
—_— == 4
7D + wz mcosﬂt (5.4)
whose solution is:
Z(t) = Zfree T Zresonant = zf + 2zr (550.)
with )
z = zgcoswt + —zysin wt (5.5b)
w
and P
0
Zp = Tn(T_Qz)(COS Qt — COS wt)
o 2f Q+ Q
0 . w . — W
= t i .
z (@ T w)(@ = o) sin( 5 ) sin( 5 ) (5.5¢)

In order to have steady blow-up of the oscillation amplitudes, (! must be as close as
possible to w fulfilling the condition

0 —
%t <1 (5.6)

AL
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Under these hypotheses eq. (5.5¢) reduces to
_ K

T 2muw

Zr

tsin wt (5.7)

showing a linear increase of the amplitude as a function of time.

Since the spin-splitter experiment can last a long time, e.g. of the order of thousand(s)
seconds, the condition (5.6) implies that:

-wl o —25 =4x 1071 (5.8)
w w

having put, for instance, w = Qv 27 frep = 5.3 x 107sec™ 2.

But the condition (5.8) pertains to the case of an external driving force of frequency
{2, like e.g. a RF-system. In our example, each particle, after receiving the Stern-Gerlach
kick, undergoes betatron oscillations always keeping its own frequency w, which becomes
coincident with €, at least in principle.

Actually, particles receive these kicks turn after turn, with the same uncertainty which
affects the revolution period T, say
dT
— ~10"¢ 5.9
. (59)
It is very well known, from the statistical treatment of measurements, that the relative
error of a sum of quantities, carelessly how many they are, is of the same order of magnitude
of the relative error of each term; thus the accuracy required for our experiment coincides
with the typical accuracy of any machine.

Even in an ion ring, oscillation amplitudes trend to damp down becuase of the energy
distribution from each oscillator to the other ones (Landau damping), to the residual gas
molecules and to the electron of a possibly existing e-cool system.

As first hypothesis, let us consider this damping as viscous, i.e. the drag-force is
proportional to the velocity; then the motion equation (5.4) is modified into:

d?z 2dz 5 )
2t S twia= f(t) = fosin Ot (5.10)
Every revolution we have a constant energy-input 6U;.; supplied by the forcing term,
accompanied by an energy-loss §U},,,, related to the Landau damping.
As demonstrated in Appendix C, 6Uj,,, increase as the oscillation amplitudes grow,
giving rise to a saturation (see Fig. 2) of the stored energy

U(t) = Uno(l — e"75) (5.11)
with Us, depending on the ring characteristics and where
1
TE = 5T (5.12)

being 7 the same quantity appearing in eq. (5.11).



If the driving term is removed, the oscillation amplitude decreases and after n revo-
lutions reduces its value by a factor e(=2.7182818...). If N is the number of revolutions
required for reaching the saturation, we demonstrate in Appendix C that

1
N < 3" (5.13)

or that any further action of the driving force is useless if applied for periods longer than
the damping time characterizing the ring.

Since in the proposed experiment we have a sequence of kicks, rather than a driving
term acting continuosly, i.e. oscillation amplitudes increase suddenly after each Spin-
Splitter crossing, and then decrease smoothly (see Fig. 3) with the same damping-time 7
as in eq. (5.12). This behaviour can also be described analitically in the following way:

1st turn: oy
ay = a.oe'r_
2nd turn: Crm _r 7 _T
as = (ay +ap)e” - =(ap+a)e™ = age™ (14+e™)
after N revolutions:
—NT—!N—I!T :l
an = (an-1+ao)e g = (ap +an-1)e”"
of =T =T —2T —(N-1)Z
ay =age ™ [L+e7 ++e 7 +...e ]
i.e.

_r1—eNT
anN = aoe_fT——e—_- (5.14)

1—e~
Since T is of the order of some microseconds while 7 can vary from a few milliseconds
(bad vacuum) till hours (very high vacuum), we have in eq. (5.14):

T
l—e 7 ~—
T
or r
NT)QG,()

T -
an ~ Go‘f(l —e (5.15)

el

as soon as the number of revolutions N exceeds the ratio %. Fig. 4 illustrates the time
dependence of eq. (5.14) for 7 ~ 10733 and T ~ 10~8s.

Therefore, in this example of viscous friction, the amplitude may stop growing after a
time which can be shorter than the one required by achieving the spin-states separation.
In fact the lost energy is proportional to the squared amplitude: thus a stage will always
be reached when the energy-loss equalizes the energy-gain.

Indeed, the fast Landau-damping depends on the various kinds of scattering from
either the electrons of the e-cool system or the molecules of the residual gas (bad vacuum).

A



By considering that the momentum transfer in such collisions is rather small, we might
assume that the lost energy is quite independent of the oscillation amplitude, as is our
purpose to verify with the an experiment of the RF knock-out type. In this hypothesis the
growth is steady as shown in Fig. 5 and demonstrated in the following:

1st turn:
a3 =ag —at

2nd turn:
as =a; +ag —at =a, +a; = 2a;

after N revolutions:

ay =aN-—1 +ap — at = anN-1+a; = Na1 (5.16&)

provided that the condition

(5.16b)

is fulfilled.

6. Quantum Mechanical Implications

Protons (or antiprotons) in an accumulation ring, where the guide magnetic field
points into the z-direction, assess themselves in such a way that the beam polarization is

defined as:
Ny —-N_
Ny +N_

where N, and N_ are the number of particles with their spins "up” and ”down” respec-
tively, thus simplifying the general definition given in Sect. 2. Of course, the case Ny =N_
corresponds to an unpolarized beam.

P, = (6.1)

The Stern-Gerlach force acts and adds up in a repetitive way, at our leisure, in the
quadrupole of the Spin-Splitter device, once an appropriate synchronism (see Sect. 4) is
achieved between orbital and spin motions, thus determining kicks in opposite directions
for the two groups Ny and N_ of particles.

We recall here that each particle of the two sets exhibits the adiabatic invariant I, +.5,
and I, — 5, respectively:_’ these are rigorously motion constants in absence of the coupling
between the precessing S and the spinless action I,.

At this stage we must consider the intensity of the classical Stern-Gerlach kick in
relation with the true features of the particle motion which undergoes the uncertainty
principle and follows the laws (%] of quantum mechanics.

We therefore recall that in a storage ring made of FODO cells the motion equations,
regarding transverse degrees of freedom, are of different types; for the vertical motion we
have:

d?z 2 .
Zz Twer= 0 (focusing quadrupoles) (6.3a)

2
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d2
# — Ké z=0 (defocusing quadrupoles) (6.3b)

d?z

i 0 (straight sections and bending magnets) (6.3¢)

while for the horizontal motion we have the same equations plus another one for the
bending magnets:

d?
5 +whe =0 (6.4)

moreover there would be another equation dealing with solenoids and regarding both co-
ordinates ¢ and z: 7

e ]® 2) %\ _

£ ol o -

The frequencies and the time-constant appearing in the previous equations are defined

as follows: 8eC
2 efc
wh =—K} = g (6.6a)
B
wiy = eijn;” (6.65)
ws = :—?n—s— (6.6¢)

where Bjs,Bs are respectively the magnetic field in the bending magnets and in the
solenoid(s) and p is the bending radius.

Therefore, in all the elements where eqs. (6.3a),(6.4),(6.5) hold on, the (anti)proton
stationary eigenfunctions are the ones of the harmonic oscillator, i.e.

un(2) = un(z) = Nan(az)e_%"‘zzz (6.7)
being H,(az) the n-th Hermite polynomial with
2 a

= —— 6.8

Nn \/m2mn! (6:8)

a? = 22 (6.9)

h

where w is one of the frequencies given by egs. (6.6a,b,c).

Instead, the “corresponding state” functions are:

P(z,t) = \/laemp(—%(f — &y coswt)? — i(%wt + é€o sinwt — %fo sin 2wt)) (6.10a)

m4

P*(z,t) = gewp(——;-(f — ¢ocoswt)? + i(%wt + &€o sinwt — ifo sin 2wt)) (6.100)

with £, = az,, being z; the oscillation amplitude.

Bearing in mind the usual quantum indetermination Ap, of p,



P

Ap, = /< P2 > — < p; >? (6.11)

taking into account the stationary eigenfunction(s) (33) and easily verifying that < p. >=

0, we obtain:
too dz'u.n
Ap? =< p? >= —hzj n .2 —"dz = Api(n+ ) (6.12)

with

Apy = ha = Vhmw (6.13)

While reiterating the same operations with the “corresponding state” eigenfunctions,

we attain:
< pr >= —Apoép sinwt (6.14a)

<pE>= Apg(% + ¢2 sin? wt) (6.14b)
which, inserted into eq. (6.11), yield:

Apo
V2

that corresponds to the ground state (n=0 in eq. (6.12)) of the harmonic oscillator.

Apz = (6-15)

We may proceed in a similar way for the conjugate variable z, obtaining:

1
Az = Azyy/n + 3 (stationary eigenfunctions) (6.16a)
AZO @ . " .
Az = — (“corresponding state’ eigenfctns) (6.16d)
V2
with
k
Az = 4] — (6.17)
mw

As discussed in Refs. 1,2,3 the (anti)proton-energy must fulfil the requirements
ay=half-integer or ay=integer. Since a=1.793..., the smallest kinetic energy attainable is
W=0.108 GeV (p = 0.464 GeV/c = 2.481 x 107'° Kgms~!), as the minimum half-integer
with physical meaning is % =1.5,ie. W=1.3%4 GeV.

After an approximate estimation of the IUCF Cooler Ring [*l parameters at W=0.108
GeV, we may insert into egs. (6.6a,b,c) G ~ 4.6Tm™!, By ~ 0.645T, p ~ 2.4m,
Bs~ 2.5T, obtaining:

wy ~ 5.54 x 107rad/s < ws ~ 2.15 x 10°rad/s < wg ~ 2.29 x 10°rad/s (6.18)

Disregarding wps, since we treat vertical motion only, and putting wg into egs. (6.13)
and (6.17) we get:



Azy =1.66 x 10" %m (6.19a)
Apy =6.35 x 107" Kgms™? (6.195)

The latter can be manipulated to yield the angular indetermination

. A
Azy = % ~ 2.56 x 10~5rad (6.19¢)

The wave-packet centre corresponds to the “classical” particle: in our case a 0.108 GeV

proton crosses a quadrupole of length L ~ 0.5m and undergoes “classical” Stern-Gerlach

impulse and kick
_ GuLg

Be

6p.
52 = i ~ 9.83 x 10~ %rad (6.200)

op,

~ 244 x 107* Kgms™! (6.20a)

A quick comparison between egs. (6.19b) and (6.20a) shows that the classical impulse
is 7 orders of magnitude smaller than the quantum uncertainty. This confirms the Bohr’s
old proof that no splitting can be achieved through a single crossing of a region endowed
with magnetic gradient.

Nevertheless, if we succeed [*l in adding up coherently these kicks, the size of the
quantum uncertainty is reached after 26 x 10° revolutions or 17 s, as easily inferred from
egs. (6.19c) and (6.20b).

Then, at the azimuth where 8y = (v )max ~ 46 m, a vertical displacement §z ~ 10~2
mm should be attained; therefore, wanting a detectable shift of the order of 0.1 mm at
least, 1.3 x 10° turns, or roughly 14 minutes, are required. Notice that a factor 2 is gained
as the Spin-Splitter supplies two kicks.

Outside the focusing quadrupoles the steady-state Schroedinger equation is

2
Ldu 2™ B~ V()] <0

u dz2 —h—

since

0 straight sections + bending magnets
V(z) = %eﬂcG’z2 -

Therefore no discrete levels can exist in such situations and a continuos spectrum is
attained. Consequently, the free-motion wave-packet endures a time dependent dilation

defocusing quadrupoles

Az(t) = Azo(t)\/l + Aia:‘é(:_rfl, 2 (6.21)

where £ is the time taken by the wave-packet centre, or proton, to cover the average distance
L between two successive focusing quadrupoles.

Taking into account eqgs. (6.6a) and (6.17), the already estimated values of By, G,p
, the definition p = fymc = eBpp and assuming:

Ring Circumference 86.83 m

L= =
2 [Number of F — quads] 9

= 90.65m

A3



eq. (6.21) becomes:

2
ALYy = 4| —T . 1+ B L a7ax10-Tm (6.22)
ev/BuGp 4Bnp

The result of the same order of magnitude, achieved by using the angular quantum
indetermination (6.19c),

Azo(L) = LAzy ~ 2.45 x 10~ "m (6.23)

makes sure that the size of the wave packet resets to the ground state when the particle
enters the focusing quadrupoles.

7. Conclusions

The Spin-Splitter method should work, at least in principle, since we have demon-
strated that there are not any quantum mechanical constraints againts this method.

Those same arguments can also be valid for counteracting the criticism arising from
problems related to accuracy. In fact, as in the quantum mechanical approach we referred
[5] to a “probability cloud”, in the example of classical randomness we may assimilate all
the imperfections to a noise and then tackle the problem as one of stocasticity threshold.
Moreover, if we consider that quantum mechanics can be interpreted as the deterministic
motion of the wave-packet centre surrounded by a random-walk, the analogy between
quantum and classical randomnesses is complete.

Other source of errors can be either periodic tune-modulations, easy to be dealt with,
or slow drifts of the machine tune; the latter could constitute a problem, at least in
principle, but we are studying the possibility of adapting some stochastic cooling technique
to this process. However, we may state that the required accuracy of 4 part in 10!! does
not regard our experiment, since eq. (4.11) applies in an oversimplified example which
substantially differs from the actual mechanism of the cumulative Stern-Gerlach effect.

The various methods proposed in Sect. 4 all imply a beam polarization aligned to the
stable solution fi. In a recent experiment 1% carried aout at IUCF we have demonstrated
that quite an amount of polarization is preserved even if the spins are orthogonal to i.
Then a first step towards the feasibility of the Spin-Splitter method has been moved.

Next experiments should verify the actual possibility of accumulating the Stern-
Gerlach kicks, against counteracting effects like multiple scattering on molecules of residual
gas, intrabeam scattering, damping due to beam-environment interactions, etc. In order
to do so, we need a very high vacuum (e.g. 107!2 torr instead of 10~° torr used so far)
and, above all, a Spin-Splitter device with quadrupole gradients much stronger than the
ones currently used in a low energy storage ring. The latter requirement implies a deep
modification of the optics of any existing ring but, if fulfilled, all the drawbacks related to
the smallnest of the effect could be disregarded.
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APPENDIX A: Spin Components Evolution

Let the spin, lying on the horizontal plane, form an angle a with the y-axis (parallel to
the) motion direction at the spin-splitter entrance, after one turn this angle is transformed
into:

1
[(2k + 5)271' —a+ A]a-y:ha.lf—integer
[2m7r —a+ A]a.‘y:integer

since « is reversed by the solenoid and the crossed-fields device has given a (e.g. positive)
kick. After another revolution we obtain:

[—4k7l' —Tt+a—-Atdkr+r—A=a— 2A]a‘y=half—integer
[—4m7l' +a— A + dmm — A = — 2A]a-y=integer

having now considered a negative kick, together with the usual 7 reversal. By iterating
this procedure it is easy to show that the angles between spins and motion direction vary
as follows:

ay=half-integer
a, —a+m+4kr+ A, a—2\, —a+ 7+ 4kw + 3\
ay=integer
o, —a+2mr+ A, a—2\, —a+2mr+ 3
. In this case the Stern-Gerlach kicks affect the component P, of the polarization vector
P, that is
ay=half-integer
sina, sin(a — ), sin(a — 2}), sin(a — 3))...
ay=integer
sina, —sin(a — A), sin(a — 2X), —sin(a — 3))...
or fora = 3
ay=half-integer
1, cos A, cos2), cos3A...
ay=integer

1, —cos A, cos2A, —cos3\...



APPENDIX B: Matrix Treatment

A very useful tool to describe spin manipulations is the SU(2) representation of rota-

tions. The polarization vector P can be associated to a two dimensional complex spinor
¥ = [g:] through the relation

P =utsw (B.1)

being ¥+ = [¥} ¥3] and where & is a 3-dimension vector having as components the Pauli

matrices
o — 0 1 o — 0 —2 (1 0
== \1 0 v=\i 0 72 =\0 -1

The evolution of P from 6=0 to a generic azimuth 6 of the ring is a rotation that can
be represented either by the orthogonal matrix R, defined in Sect. 2, which acts upon P:

P(6) = RE(0) (B.2a)
or by a unitary matrix M acting on 1:
$(8) = M+(0)(B.2b)
the relation between the two being:
R& = M*éM (B.2¢)

Since the composition of Pauli matrices is rather easy, it is often convenient to use eq.
(B.2b), having expressed the matrixes M as

M =1ICy—i7-C (B.3)

where

Co and C =(C,,C,,C,;) (B.4)

and C2 + C2 + C? + C? = 1 because of the unitariety of M.

After trivial but tedious calculations it is possible to evaluate the elements of R as a
function of the coefficients (B.4):

2(C.Cy + CoC;) C2—CE+C2—-C?  2(C,C. — CyC,)

C3+C2—C2—C2 2C.Cy—CoC.)  2C:C:+ CoCy)
R= (B.5)
2(C.C. — CoCy)  2CyC.+CoC:) Ci—C%—C2+C?

which will be used for the various cases considered.
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If R is the spin transfer matrix for one revolution, the coefficients (B.4) provide the
components of the periodic or stable solution 7, according to the following formulae:

iC: Y,z
oy g = ——% B.
n 'Y Sln£ ( 60’)
with
siné = 4/1—C? (B.6b)
Besides, according to what discussed in Sect. 2, we have that
COS TV, = %T'I‘(M) = Cy (B.7)

since the Pauli matrices are traceless.

Referring to the example of the alternate kicks supplied to the spin introduced in
Section 4 (Spin-precession Kicks), we may find that, over two revolutions and for both
ay=half-integer and ay=integer cases, we have:

M = {M(m)M(2; ) M(®1)H{ M(m)M(23 ) M(®:)} (B-8)

where

M(m) = —toy [spin rotation inside the solenoid]

M(®5 ) =1Icos3(®, — A) —io,sin3(®2 — A) [orbit—part with negative kick]
M(®F)=Icos3(®s+A) —io,sin2(®;+ A [orbit—part with positive kick]
(with A = 2mAQv as given by eq. (4.7))

M(®,) = Icos %Ql — 10, sin %‘I)l [completion of the revolution]

being ®; = ayf and P, = ay(2wr—80), where 6§ is the azimuth of the (E.LE) "undeflecting”
kicker; then eq. (B.8) reduces to:

M = —Icos ) +i0,sin ) (B.9a)
which yields
Co=—cosd, C; =Cy=0, C,=—sinA (B.9b)
and, due to eq. (B.6b),
sin§ = sin A (B.9¢)

Bearing in mind the definition (B.7) of the spin tune, we have:
1 A
vs = — arccos(—cosA) = (28 +1) = —

.y T

or

Ve = (25 +1) + 26Qv (B.10)

having considered eq. (4.7).
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As far as the Vertical Orbit Bump is concerned, we have after two revolutions:

M = {M(x)M(®)M(~5)M(S)HM (r)M(2)M(+6)M(8)} (B.11)
where

M(r) = —igy [spin rotation inside the solenoid]

M(®)=1Icos2 —io,sin 3 [half —revolution : & = aym]
M(—8) =Icosf +io,sin$ [downwards vertical kick]

M(+6) =Icos$ —io,sin$ [upwards vertical kick]
then eq. (B.11) splits into the two following ones:

M = —Tcos§ +ic, sin§ (ay = integer) (B.120)
M= —Icos§+ioy(—1)siné  (ay= 2’“2+ L _ haf —integer) (B.12b)

which yield respectively:
Co=—cosé, Cp=—sins, Cy=C,=0 (B.13)
Co=—cosé§, C,=0, C,=(-1)*siné, C,=0 (B.13b)

again eq. (B.6b) yields:
sin ¢ = sin§ (B.13c)

Obviously, egs. (B.13a,b) prove that the spin tune for both examples is the same as
in eq. (B.10), since we have Cy = — cos § in the three cases.

By inserting the coefficients (B.13a,b) into the rotation (B.5) we shall have two solu-
tions:

1 0 0
R=|0 cos2f —sin2é (B.14a)

0 sin286 cos26 .
a-F=nteger

and
cos 2§ 0 —(—1)*sin26
R = 0 1 0 (B.14b)
(-1)ksin2§ 0 cos 26 a~=halfinteger
Applying the rotation (B.14a) to a spin parallel to the z-axis we find again a continuous
precession of the spin, by steps of § per revolution. At the solenoid entrance this precession
takes place around the stable solution fi= (+1,0,0), which coincides with the x-axis;

consequently the polarization P rotates lying in the (y,z)-plane.

P, 0 0
P,| =R"|0|=|—sin2né (ay = integer) (B.15a)
P, 1 cos 2né

n



and applying the rotation (B.13a) to a spin parallel to the x-axis we re-obtain a continuous
precession of the spin, by steps of § per revolution, in the (x,z)-plane around a stable
solution fi= (0,+1,0), i.e. directed as the y-axis at the solenoid entrance; namely:

P, 1 cos 2né

“ 2k +1

P,| =R*|0|= 0 (ay = 2 — half —integer) (B.15b)
P, 0 (—1)* sin 2né

Thus we have two different precession axes, according whether ay is integer or half-
integer; instead the spin tune remains the same, as discussed before.

In the case of the Spin-Precession Lag or Advance the spin rotation induced by the
solenoid is no longer m but

Q" =7+ 5(]5 (B].G)

then the matrix M(7), met before, must be replaced by the matrix M(®)). Let us choose
the spin-advance case; for ay=m=integer, we have over a revolution:

1
M ={Icos %(ﬂ' + é¢) — ioy sin E(?l’ + 6¢)](I cos aym — 10, sin ay)

or
M = (~Isin 6—; — igy cos %)cos mr (B.17)
which yields:
Co = (~1)™ sin%ﬁ, C,=0, C,=(-1)" cos%’?, C, =0 (B.180)
and 56
cin £ — sin 22 (B.18b)

2
The insertion of eq. (B.17a) into the rotation (B.5) gives:

—coségp 0 Fsinédg
R = 0 1 0 (B.19)
tsind¢ 0 —cosbg

where the upper sign, when appearing, refers to the spin-advance.

By applying the rotation (B.19) to a spin parallel to the x-axis we find a contin-
uous precession of the spin, by steps of §, in the (x,z)-plane around a stable solution
fi= (0,+1,0), i.e. parallel to the y-axis, with a spin tune
1—(-n)™ 1

2 — 5 +26Qv (B.20)

Vs

in fact:



- 24 -

P, 1 cosné¢p
P,| =R"|0|= 0 (B.21)
P, 0 sinnd¢

Notice how eqs. (B.19) and (B.21) almost coincide with eqs. (B.14b) and (B.15b); then
by analogy we may state that

0 =6 =4m6Qv (B.22)
For ay = 2—"2'1'—1=half-integer, we have over a revolution:
M = —o,sin L 0, COS 5 sin(2k + 1)I (B.23)
2 2 2
which yields:
Co=0, C,=(-1)Fcos %, C,=0, C.=(-1)F sin%lS (B.24a)
and
siné =1 (always!) (B.24b)

Therefore the rotation (B.5) becomes:

cosd¢ 0 Fsindod
R=| 0 -1 0 (B.25)
Fsind¢ 0 —cosd¢

where the upper sign, where appearing, refers to the spin-advance.

By applying the rotation (B.25) to the most general polarization vector
P = (Py,, Poy, Po.), we obtain:

P, Py, Py cosbdp F Py, sinbo
P,| =R|Py, | = —Py, (B.26)
P, 1 P()z :FP();,, sin5¢ — P()z cos 5¢
and
Pz Pz PO:!:
P,| =R|P,| =|P,, (B.27)
Pz 2 Pz 1 POZ

i.e. the polarization repeats itself every second revolution. Notice how the stable solution

at the solenoid has components n, = (—1)* cos éf, ny =0, n, = (—1)*sin %‘é.
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APPENDIX C: Damping(s)
By definition of Q-value we have:

U wlU
dt

with U=Stored Energy and P = —‘fi—[tj = Dissipated Power; then eq. (C.2) becomes

dUu w
T = —-6dt (C.3)
whose integral is
Ult) =Ux(l—¢ 75) (C.4)
being
_2_Q_2Q
TE= == 2‘"_T (C.5)

Eq. (C.4) means that the stored energy, and then the oscillation amplitudes, cannot
grow indefinitely but a saturation energy U is reached.
Over one period T, we may set dU = —6UL,s5 and dt ~ T', then eq. (C.3) becomes

§Uross WwWI' 27
“Loss - _ 20 C.6
v Q7 Q (©6)

For t << 7 eq. (C.4) reduces to

U(t) ~ Uoo;t— (steady growth) (C.7)
E

Besides it is reasonable to assess that, over a time interval t, the stored energy U(t)
cannot exeed the energy-loss times the number of revolutions, i.e.

[
U(t) Z |6ULoas|E{ (C.S)

then by combining egs. (C.7) and (C.8) we obtain:

i [
Uoo;"E_ — |6UL033|T

or

T Q
Uoo —- T’IaULoasl = 2—7;|6UL038| (09)

on the other hand

2t



Uoo = N‘SUkick (010)

where N is the number of revolutions required for reaching the saturation value U, via a
constant energy input equal to §Up;.qx.

Bearing in mind another definition of Q:
Q=mn (C.11)
where n is the number of revolutions required for reducing the oscillation amplitude by a

factor e (=2.7182818...), when the resonance is removed.
An easy combination of eqs. (C.9) and (C.10) gives us the following relation:

N6Ukick 2 gaULoss

or

N<

N3

(C.12)

since it is trivial that §Ug;.x must be bigger than or equal to §UL ;.
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Fig. 1: Spin-Splitter configuration.

Fig. 2: saturation of the stored energy of a harmonic oscillator in resonant conditions and
with viscous damping.
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Fig. 3: graphical demonstration of how constant Stern-Gerlach kicks, followed by exponen-
tial decays proportional to the amplitude (viscous friction), may not succeed in enhancing
the oscillation amplitudes.

Fig. 4: representation of eq. (5.14) ay = age 17

l—e™

29



Fig. 5: constant Stern-Gerlach kicks, followed by decays with constant energy-loss (differ-
ent kinds of scattering), accomplish the required amplitude growth.



