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ABSTRACT

The effective thermal conductivity in the transverse direction is one of the less predictable
parameters of a superconducting coil. In the framework of the construction of a high field solenoid
(18 Tesla — 100 mm free bore at 4.2 K) at the LASA lab, we built an apparatus for measurements of
thermal conductivity of pure materials as well as of composites and coil blocks, the main aim of the
experiment being the measurements of the thermal conductance of pieces of real NbTi and Nb3Sn
windings. This paper starts with a discussion of how the thermal conductivity affects quench
properties of superconducting magnets. The main features of the experimental apparatus are
described together with a calculation and a measurement of the thermal loss. Finally preliminary
measurements on some pure materials as well as on coil blocks are presented.



1 INTRODUCTION

Magnetic fields in the range 10 to 20 Tesla by means of superconducting magnets are nowa-
days available. Nevertheless the problems of reliable operation and of protection in case of
quench is still open and under investigation. This is especially true when very high fields,
B > 15 Tesla, are reached by means of superconducting coupled adiabatic coils[1][2] [3].
In fact the use of fully epoxy impregnated coils wound with cable with small amounts of
copper (or without) is very effective in cost saving but can result in poor protection of the
magnet in case of quench and several papers have been recently published about the quench
propagation[4][5]. In our lab we are developing a numerical code to describe the quench
propagation in adiabatic, multicoil, multisection magnets[6].

It has been shown[4][5] that in an adiabatic magnet the transverse propagation, i.e. turn
to turn and layer to layer, is the dominant mechanism of the quench propagation. While the
longitudinal propagation, along the cable, is dominated by heat diffusion through the metal,
the transverse one is mainly determined by the heat diffusion through the insulation.

The longitudinal velocity of the normal zone propagation, v;, can be analytically derived
and the transverse velocity v, is usually given as :

Ve =1 X \//\g//\[

where A; and A; are the longitudinal and transverse thermal conductivities of the winding.
This simple expression can be modified, according to[7], to take into account the fact that
heat does not diffuse significantly into the resin in the longitudinal propagation but it does
so in the transverse one. The importance of the effective thermal conductivity of the winding
is evident in the above formula.

The values of A; can be fairly well calculated, both as a function of temperature and
magnetic field. Indeed it involves only properties of metals, mainly of the copper. Even in
the case of a small percentage of copper, or no copper at all, A\; can be calculated with a
reasonable degree of accuracy by considering all the metals of the cable acting as thermal
conductances in parallel.

Very different considerations apply to the evaluation of A,. Wires for high field are
generally composed of Nb3Sn or (NbTa);Sn filaments embedded in a CuSn matrix and
generally the stabilizing copper is protected by a thin barrier made out of tantalum or other
suitable materials and a simple model based on parallel or series of thermal conductances is
not reliable. The situation is more complicated for multistrand cables, where the interstrand
contacts can give a non negligible contribution to the transverse heat conduction, even if the
twist of the cable can reduce the importance of the interstrand thermal contacts.

Even if A along the cross section of the cable can be computed, one must still evaluate
A through the insulation, the most relevant parameter. The insulation is generally either
glass braid (or tape) or, for NbTi single wire, a thin coating of enamel (such as formvar).
After casting of the coil with epoxy resin, in the case of glass insulation one has a composite
whose properties can be thought very similar to the properties of G10 or G11 fiber glass
composite. In case of formvar insulation generally the thermal properties of formvar-epoxy
composite are considered to be similar to the epoxy resin.

The thermal conductivity of the resin- glass fibre composite is not so easy to predict as
it is for the metals and different values are given in the literature[8][9] and in the case of a
composite like epoxy - glass braid the relative cross section of every component is difficult
to determine and depends on the considered directions (anisotropy). Moreover, another
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source of uncertainty is given by the effective thermal transmission between the metal and
the insulation, i.e. the surface conditions can strongly affect the quality of bonding between
the different elements, with possible non negligible surface thermal resistance.

While different approximations in computing the effective A, of the winding can give
a reasonable degree of accuracy, we believe that an effort to work out the above described
problems can be useful in reaching a better prediction of the normal zone growth in adiabatic
superconducting magnets. In particular it should be very useful to have data both of any
single component and of the composite, versus temperature and at different magnetic field
levels, especially in the 20 Tesla range.

We started an experimental program aiming to build two thermal conductimeters. One
is for measurements of A of rods or bars and will be used for metals, cables, insulators.
The other conductimeter will be mainly dedicated to measurements on coil blocks, cut out
from real windings, and on composite materials which are difficult to obtain in bar. In this
conductimeter it is possible to measure samples under low or moderate pressure. Both the
systems can work between 2 and 350 K. In 1994, when the high field facility SOLEMI
[1] will be at our disposal, the two thermal conductimeters will be arranged to perform
measurements of A = A(T, B) .

2 THEORY OF MEASUREMENT

The thermal conductivity represents the capability of a material to transport heat between
two side at different temperature, without net mass flow.

Macroscopically, it is defined as the heat (in a time unit) which flows in a steady state
through a plate with section S, thickness L and thermal gradient AT between sides:

. AT
—_ 1
Qo §= (1)
Generalizing, this relation can represent the Fourier - Biot law:

. d
@=-rs2 (2)

where A is the thermal conductivity and it generally is a function of T. The negative sign
means that the power flows in direction opposite to the thermal gradient.

There are many different techniques to measure A, which can span more than 5 order
of magnitude passing from an insulator to a metal. We can distinguish between stationary
methods (called static) and non stationary ones (dynamic); in the first one, a time constant
thermal gradient is produced into the sample and once a steady state is reached, the thermal
conductivity is directly obtained by measuring the heat flow per unit area and the thermal
gradient. '

Heat flow then can be radially or axially directed: in the first case a cylindric or spheric
sample is crossed by a radial heat flow directed from the axis (cylinder) or the center (sphere)
to the center surface. In the second case, a cylinder is crossed by a longitudinal (along the
axis) heat flow. In any case all possible technical solutions are used in order to reduce
radiative and convective thermal losses.

Using the experimental method of the axial heat flow the thermal conductivity, can be
obtained by (derivative approximated method):
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A= S AT (3)
which comes from:
__0a

replacing dl/dT with L/AT and considering S as a constant. The integration of the equation
4 between T and T, gives:

QL
/n MT) dT = / —S—dT— dT = -~ (5)

showing that the equation 3 represents the mean value of A(T') in the temperature range
between T; and T5:

- 1 T; L
AT T = 3z [ AT =~ (6)

According to this method we assign this A "mean value” to the mean temperature between
T) and T,, that means:

MT) =2 (7)

where:

: Q

Actually M(T) = X only if A(T) is a linear function of T, or a constant one, otherwise
this approximation holds only if AT is small. But even if AT is few tens of degrees the
error is always very small if A(T) is a slowly varying function of the temperature [10]. For
example, in figure 10 is shown a comparison between measured and tabulated tungsten
thermal conductivity: the values of A at temperature of 20 K or next to it are derived with
temperature differences of about 20 + 30 K. Here A is not a locally rapidly varying function
of T and, as it can be seen, the errors are very small. A useful quantity, that will be used
later, is the thermal conductance, defined from the Fourier - Biot law as

Q S

Q = CAT so C = = /\(TI,T2) (9)

Our interest is mainly directed to the measurements of composite materials, like super-
conductive wires or coil blocks. The previous equations can be used to obtain a simple
theoretical model describing these situations.

In fact, in case of a composite material, where the thermal conductivity of each component
is known, a theoretical evaluation of the effective conductivity can be done, describing the
composite by an appropriate model. As a matter of fact, a coil block can be represented as
a sequence of different materials thermically connected in series and, from the Fourier - Biot
law, we get

Aess(T) = —%—L— (10)
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In this case the above relation cannot be directly integrated, without knowing the tem-
perature profile along the sample. Once the temperature profile is known, the integration
of the thermal conductivity can be done and the value of the conductance and of the mean
conductivity can be determined.

Neglecting radiative and convective losses the temperature profile is determined by the
continuity condition

dQ
=0 (11)
That is
LD =0 (12)

That drives to the equation

d*T 1 dX(T),dT,, 1 dS(z)dT _

i TNT) af &) T 5@) dr dw (13)
With the boundary conditions

T(z=0)=T, T(z=L)=T; (14)
The solution of the equation cannot be analytically determined, being non linear and
with variable coefficients; furthermore there is no analytical relation for the values of A(T),
that are determined by a linear interpolation of experimental data. Therefore a numerical
code has been developed in order to solve the equation 13 and to compare the ”theoretical
data” for Acss for a composite material (where the A(T') of each component is known) and
the measured A.s;.
To solve the equation, the Taylor method with the procedure of the “garden hose” has
been used. The method of Taylor consists in dividing the length of the conductor into equal
segments and propagating the solution using the Taylor expansion, thus:

1,d*T
T(s +82) = T(e) + (50) | Az 4 H(E2) | (s (19)
The second derivative is given by 13. The second order expansion gives good approxi-
mation of the solution so we did not tried to use higher order.
At the first step we guess a possible value of (dT/dz) |o. The first derivative at the
following steps is calculated by the continuity condition, 11, dotQ(z) = dotQ(z + Az):

dT

MT)S(=)(2) == A(T(2 + Az))S(z + Avv)( ) |z+az (16)
dT NT)S(=)(4E) |-
(35) l=+as= T + AT)S(z + Az) (17)

Starting from the lower terminal, z = 0, step by step the temperature T(L) of the higher
terminal is calculated. Then the initial slope guess is modified until the calculated temper-
ature profile satisfies the upper boundary condition T(L) = T, (garden hose procedure).

This model can describes only a sequence of materials, it is clear that the model is quite
simple, because a superconducting coil has a quite complex composition; furthermore no
thermal resistance at the interfaces between the materials is taken into account.
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Figure 1: Sketch of the thermal conductimeter

3 DESCRIPTION OF THE MEASUREMENT AP-
PARATUS

The apparatus has been designed in order to measure the transverse thermal conductivity
with the stationary method of the axial heat flux. The apparatus is basically constituted
by 2 heat sinks at different temperatures; the sample is placed between them. The cold
heat sink is at direct contact with the cryogenic fluid, while the warm one is typically an
electric heater [11]. Two or more temperature sensors are placed along the sample, and,
in stationary conditions, knowing the power flowing through the sample, the value of the
thermal conductivity can be determined through the Fourier - Biot law.

AT) ~ % (18)

In fig. 1 a section of the measurement apparatus is shown. The block of the material
under measurement (the sample) is held between the copper heat sinks by a pressing sys-
tem, in order to have a good thermal contact between the heat sinks and the sample. In
principle, measurements of the thermal conductivity at different values of clamping pressure
are possible, to evaluate the effect of the thermal contact resistance. The pressing system
and the support for the sample is a thermal conductance in parallel with the sample, so it
has been designed in order to have a low conductance, to minimize the thermal losses from
the sample to it. The pressing system consists of two G11 plates separated by 3 small nylon
cylinders. The upper plate supports the heater, a copper block with wounded the heating
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coil. The junction between the G11 pressing plate and the heater is achieved through a
hinge, allowing a maximum angulation of about two degrees, and providing a good contact
between the copper and the sample even if the two faces are not perfectly parallel. The
lower G11 plate of the pressing system is connected to the upper part of the pressing system
with 3 stainless steel rods. The clamping pressure can be varied by acting on the loading
springs which compensate also the small differential thermal contraction between the stain-
less steel rods and the sample holder, so that the compression is almost constant at different
temperatures.

All the system is enclosed in a gold plated stainless steel radiative shield, to minimize
the radiative losses. Two heaters are placed on the radiative shield in order to get on it a
temperature profile similar to that one on the sample. The flange where the radiative shield
is attached has the feedthroughs for the thermocouples, the control signals and the heaters
and acts as a cold junction for the thermocouples. The thermal sensors are AuFe(0.07%
at.w.)-Cromel P thermocouples. This kind of sensors have been chosen for their easy use at
low temperatures, small dimensions, low thermal capacity and because of its reliability in
vacuum.

The system together with the radiation shield is enclosed in a vacuum chamber (made
of stainless steel) which is maintained at a pressure of about 10~® mbar by means of a
turbomolecular pump, to avoid convective losses. The vacuum chamber is immersed in the
cryogenic fluid. All the dealings of the flanges are indium seals. The maximum dimensions
of a sample are 35 mm diameter and 70 mm length, and the measuring temperature
range is 4.2 - 350 K[12]. Lower temperature measurements, down to 2 K can be available
by pumping over the helium bath.

4 HEAT LOSSES IN THE SYSTEM

Many sources of power losses are present in the apparatus: heat conduction through the sup-
porting system, radiation and convection. Each source can cause a wrong thermal evaluation
of the power flowing into the sample.

4.1 POWER LOST THROUGH THE SUPPORTING SYSTEM

To evaluate the thermal conductivity we measure the temperature T} and T, and the power
dissipated in the heater. Actually not all the dissipated power flows into the sample. For in-
stance part of the power will flow through the supporting system, which can be considered as
a thermal conductance in parallel to the sample. An evaluation of this parasitic conductance
is needed to correctly determine the conductance of the sample. In this case the supporting
system is described by a sequence of materials thermically connected in series, following the
schematization and the model reported in section 2. In this case the model is more accurate
because the structure of the supporting system is not so complex as a superconducting coil
block, so the calculated conductance is a reliable value.

The temperature profiles along the supporting system calculated with the boundary
conditions (temperatures of the heat sinks) 7} = 4.2K, T, = 70K and T}, = 77K, T, = 300K
are shown in fig. 2.

The non smooth temperature profile at the junction point between different materials is
a consequence of the heat flow continuity condition, i.e.

(52 L= (“Z52) esas (19)
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Figure 2: Typical temperature profiles along the supporting system of the thermal conduc-
timeter

The discontinuity of the temperature gradient comes from the sharp variation of S and
Awhen passing from one material to another. While the change of A gives actually a dis-
continuity of the temperature gradient, the discontinuity can be artificially amplified by the
rough approximation used for the solution of the equation: the hypothesis that the thermal
flow takes place in the whole section of the conductor and the ”transition zone” reduces to
a point. This is not true because the heat flow lines do not follow the geometrical profile
of the conductor but tend to smooth the geometrical discontinuities, so the effective section
for conduction is the geometrical one only at a certain distance from the discontinuity.

So the conductance and the power flowing through the system is actually less than the
values calculated with the rough model, where the actual section is certainly overestimated.
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Figure 3: Profile of the supporting system. Solid line: geometrical profile; dashed line: linear
smoothing approximation; dotted line: ad hoc approximation



T [K]

g rriyr{rr¢r1rJrrrryrryyrr1r1rJrerrrr T T T T T T T T T

Q=221 mw

5 Q=244 mW /

4
cm—l’llllllllllIlllllllllllLllllllllllllLiLlLl

%.0 10. 20. 30. <0. 50. 60. 70. 80. 90. 100.
X [mm)]

Figure 4: Calculated temperature profile with smoothed sections

By supposing a linear smoothing among the sections as shown in fig. 3 we get the tem-
perature profile shown in fig. 4 and the corresponding power flow is 24.4 mW for Ty =42K
and T; = 70 K, and 221 mW for Ty = 77 K and T, = 300 K, (about 38 % less than the non
smoothed case).

The linear smoothing overestimates the effect of the transition zone but surely will give
estimations closer to the real situation than the “hard edge” approximation. Nevertheless
the temperature profiles obtained with the linear smoothing approximation are not much
more realistic than the hard edge ones.

A true evaluation of the temperature profile can be achieved by determining the heat
flow lines in the transition zone. An approximated ad hoc evaluation of the effective section
for conduction gives the temperature profiles of fig. 5 corresponding to different boundary
conditions.

Fig. 6 shows the calculated equivalent conductance of the supporting system in ad hoc
evaluation model, experimental points are shown too.

4.2 CONVECTIVE LOSSES

A bad vacuum into the conductimeter chamber affects the heat flowing through the sample.
According to a simple model, the heat transferred (per unit surface) by conduction through
a gas at low pressure P between two surfaces at T} and T temperature is given by[13]:

Q =cost ag P (T —Th) (W/m?) (20)

where:
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Figure 7: power lost in convection vs. vacuum pressure

cost = typical gas constant (2.1 for He gas)
ay = geometric factor
P = gas pressure

This formula describes the heat transfer for low pressure gases, when the mean free-path
[ of a molecule is much greater than the dimension of the vacuum chamber d (e.g. I > d),
and the value of 2.1 for the constant is the He typical value. Given a geometric factor
as ap = 0.36 [13] (for our sample typical dimension), we obtain the heat transfer vs. gas
pressure, see figure 7.

In figure 8, the power loss for different level of vacuum versus the sample mean temper-
ature in the two cases for shield temperature of 4.2 K (for He) and 77.3 K (for N) is
plotted. As shown, at 10=° mbar these kind of loss can be neglected.

4.3 RADIATIVE LOSSES

There are many and different models describing radiative heat transfer between two surfaces
at different temperature[14], related by the Stefan-Boltzmann constant and four-power of
the temperature. Because of the T behaviour, radiation losses usually are negligible below
20 K but can became very important when T is the temperature of the liquid nitrogen. To
evaluate the losses three models were chosen to describe radiative heat exchange between
two surfaces: in every one the first surface completely includes the second one. All these
models give the heat radiated between two surfaces depending on the surfaces form: in the
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Figure 8: power lost in convection vs. sample temperature

first model the sample and the thermal shield are two generic shape surfaces, the greater
(thermal shield) including completely the smaller (sample). In this model, the simplest
one, the heat radiated by the S surface at T} temperature toward the other surface at T
temperature is given by:

O=Sea(Ti-Tf) (W) (21)
where:

€ = inner surface emissivity

5.67 x 1078 (W/m?K*) Stefan — Boltzmann constant

In the other two models the emissivity of both the surface and a geometric factor appear.
In one case the thermal shield and the sample are described as two concentric cylinders; in
the other case they are described as two concentric spheres. The thermal flow by one surface
(sample) toward the second one (thermal shield) is:

Q = Seie; Fipo (T} - T}) (W) (22)
where:

€1 = first surface emissivity

€1 = second surface emissivity

S = sample surface

F,, = ezchange factor



- 13 -

Radiative loss

10" L 1 IllllII 1 1 IIllllI i 1 L 1 1 1.
ower radiated from the sample ’
o o the thermal shield according s 0
to two different models 7
10-3
. .
o shield temp.=77.3 K
o
5 0°
o
— 7/
. 7/
-8
g v ,/
8_ /
0 shield temp.= 4.2 K
10-.
10-. Ll § I LI 1 1 LI 1 L L
1&0 ' 1&1 ' 1&8 10'8

sample temperature (K

Figure 9: power radiated by the sample to the shield

The exchange factor F;; depends on the symmetry chosen, cylindric or spheric (for
example, Fy, = 0.35 for the cylindric symmetry for our sample typical dimension). In
figure 9 two models are presented: the power radiated is plotted vs. sample temperature,
being thermal shield temperature held at 4.2 K (for liquid helium) and at 77.3 K (for
liquid nitrogen). In this figure we suppose €; = 0.3 for the sample (for both the models) and
g2 = 0.03 for the thermal shield, having a gold surface.

In figure 9 dashed line curve describes equation 21, full line equation 22 and it is reported
for the cylindric symmetry only, because the spheric symmetry gives an almost identical
result. As shown, the two equations give results which differ by an order of magnitude, and
we usually use the cylindric model, which appears more realistic. According to this model,
we can say that when the temperature difference between the sample and the thermal shield
is not greater than 20 + 30 K, the radiated power is about 102 times less than the total
supplied power.

In fact, if we consider for example the power radiated by the V b3Sn sample (described
in the next section) at T = 30 K toward the thermal shield at T = 4.2 K, it is about
Q ~ 10~* (W), while the power given to the sample by the warm heater is, in this case,
Q = 0.17 (W). When the sample is at T = 100 K and the shield at T = 77.3 K, the power
radiated is about @ ~ 1073 (W) and heat generated in the resistance is Q =072 (W).
In these cases, radiative losses can be neglected.

Anyway in case of measurements with high AT are needed, the shield is provided with
two heaters and two thermocouples to generate along the shield almost the same thermal
gradient that exists along the sample. The shield, in order to be mechanically strong, is made
of stainless steel, 0.2 mm thick, and it has a large conductance: for example, at T = 80 K
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Figure 10: tungsten thermal conductivity

it is about 4.4 x 1073 W/K, between the bottom heater and the top flange.

If the Nb3Sn sample is heated up to a mean temperature of 100 K, there is a temperature
difference of about 35 K between the heat sinks. To reach the same thermal gradient,
about 0.14 W must be generate in the shield, but this heat power can warm the thermal
anchorage of the thermocouples (which is the mechanic anchorage of the shield) and modify
the temperature measurements. So it is better to generate in the shield a thermal gradient
smaller than in the sample to avoid this kind of problem.

Indeed, this effect is greater in liquid helium measurements, because of the conductance
of the shield and of the thermal anchorage is smaller again, but in this temperature range
we are not forced to use it.

5 APPARATUS CALIBRATION

Calibration of the conductimeter was achieved by measuring reference materials of known
A. A tungsten NIST SRM (Standard Reference material) sample is used (3.2 mm diameter,
50 mm length) with 3 temperature sensors along the sample (AuFe/K P thermocouples).
A good thermal contact between thermocouples and the sample was achieved by 3 copper
rings, in contact with the sample, in which the temperature sensors are fixed.

After first measurements and minor modification in the path of the wires (both thermo-
couples and heater) to avoid risk of thermal short circuit, we got a good agreement between
our measurements and NIST reference values, see figure 10.

We are confident that our absolute accuracy is within 10 % with one limitation: the



- 15 -

temperature difference in the sample must be at least 1 K and the power flow should not be
larger than 750 mW, limiting the maximum achievable AT. The reasons of these limitations,
which are important for temperature ' < 6 K and T > 30 K can be understood after a
brief analysis of the error sources.

5.1 ERROR SOURCES

Experimental thermal conductivity values are obtained through measurements of many quan-
tities: @, AT, S and L. Using the general formula error propagation and indicating with o
the standard deviation (or the uncertainty) we obtain 3:

2
T\(3) +(B) (%) + (58
gr _ < L -2 23
A\J(Q)+L+S+AT (23)
In many measurements the temperature is the dominant error source, since instrument

sensitivity is 0.1 degree and for small heat powers the measured AT can be less than 0.5
degree. In this case:

gar 99 . 95 | 9L
AT Q' 57T

and we can reduce the expression 23 to:

[+5Y 1

3 = apV(on) +(on) (24)
because in the determination of the AT errors we have to take in account the overlapping
of the errors on the measurement of the two temperatures (T and T3).

5.2 ERROR ANALYSIS AND ACCURACY ESTIMATION

In thermal conductivity calculation by mean of:

QL

S AT

a correct evaluation of Q, i.e. the heat flow corresponding the AT, is of primary importance.

The first remark must be done about the current leads. The warm heater was made
with a manganine wire, with a resistance of 25.7 /m: so part of the power generated by
the wire was not given to the warm heater but it was lost toward the upper flange of the
condutctimeter (see fig. 1); it was about 2% of the entire heat power given to the measuring
sample.

On the other hand, it can not be substitute by a wire with a too small resistance, like
one made of copper, because if p is very small, then A is very great: in this case the wire
can conduct a considerable part of the power generated toward the upper flange. A copper
wire with a diameter of 0.1 mm can conducts away about 2% of the whole generated heat.

The best solution is then to use a cryogenic wire of a copper alloy to realize the current
lead. We choose the QUAD-LEADTM (from LakeShore Cryotonics, Inc., a quadrupole wire
of phosphor bronze, ¢ = 0.2 mm). Its electrical resistance is 2.85 §/m and its thermal
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conductivity is about 103 times less than copper conductivity. The power losses through this
wire is less than 0.3% of the whole generated power.

Other sources of thermal losses are present, like parasitic thermal conductance caused by
the thermocouples wires or by the compressing system.

The thermal conductance of the compressing system is about 0.2% at 20 K up to 2%
at 100 K of the SRM tungsten thermal conductance, while the thermal conductance of the
thermocouple wires is about 0.3% at 20 K up to 0.6% at 100 K of that of the same sample.
This comparison shows that the presence of the compressing system and of the thermocouple
wires can not be neglected.

The whole parasitic thermal conductance can so be estimated around 2% of that of the
SRM tungsten bar and then we suppose that a part of the heat flowing into the sample is
taken away through the stainless steel rods and through the thermocouple wires. Calling
Q1oss this part of the power generated by the heater but lost through the compressing system
and the thermocouples, we can write:

Qtot = Qeff + Qloaa

where Q.. is the whole generated power and Qef s is the part of it really flowing into the
sample.

If QM is used instead of Qe 7¢ an over-estimation of A occurs: in fact the AT measured
is corresponding to Qef s and we can think it is less than the AT that the whole Q1ot could
generate. As said before, the whole conductivity of the compressing system and of the
thermocouples wires is about 1.5% of the tungsten SRM conductivity and so about the 1.5%
of the power generated by the heater is lost through them. If the radiative and the convective
heat losses and conduction through the power leads are considered too, it can be come to
the conclusion that the A experimental values are greater than the actual one by about 3%.

A strict analysis of the tungsten SRM thermal conductivity measurements shows this
problem (see fig. 10). The measured values in the coldest range (under 10 degree) can not be
considered because, as previously said, the error on A measurements is as greater as smaller
is AT, and in these cases the error on AT is so great to hide the error on Q. But for the A
values between 10 and 30 K it can be seen that they exceed tabled values of about 2 + 3%,
confirming the previous analysis.

As previously said, it is important to consider the ratio of thermocouple conductance
versus sample conductance (and compressing system conductance versus sample one). When
we consider the other thermal conductivity measurements made on coil block data, presented
in the next section, we get an over evaluation of the real values that can be estimated around
5% for NbTi and Nb3Sn . In fact, for example, the thermal conductance of the compressing
system at T = 50 K is about Ceomp.sys. = 0.45 x 1072 (W/K), while, as it will be shown,
the Nb3Sn sample conductance is about Cyp,sn = 14 x 1072 (W/K) at T = 50 K: this
means that Ceomp.sys. is about 3.5% of the Cnp,5.. Now it can be said that to have good
enough measurements between 4 K and 20 K temperature, it is necessary that the sample
conductance is:

5x107° < C <20 x107° (W/K)

In fact, to have thermal gradients not smaller than 0.5 K (that is, an error on the thermal
conductivity measurement not greater than 10%) with small heat supplied too (and then
at low temperatures), it must be: C < 20 x 10> W/K. On the other hand, to have a
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compressing system and thermocouple wires conductance not greater than 5% of the sample
conductance (into 4 + 20K range) it must be : C > 5 x 10~3 W/K. Moreover, if C is very
small in the sample there will be a great thermal gradient and because just the same thermal
gradient will must be generated in the shield, causing the troubles previously shown. Now
we could notice that, according to the former remarks, it is necessary to complete the error
analysis: into equation 23 it can not be neglected the error on the heat flow at least when
the temperature difference is greater then 1 K:

2 o \?2
3=+ (3

Since:
A U_Q ~ Accomp.sys. — Ccom £
Q C p.3ys. S
where:
comp.sys. = compressing system conductance

sample conductance
sample section
= sample length

N0 QQ
1

a very useful formulation of the errors is given by:

9 _ (U 1)2 + (U 2)2 Ccomp.aya. L/S ?
T_\J T(AT)zT +( )\ ) (25)

6 MEASUREMENTS ON COIL BLOCKS

Some measurements were made on coil blocks cut from real coils, made by NbT'i and Nb3Sn,
wound with rectangular and round section cables. In all these cases transverse thermal
conductivity was measured, because it is of great interest in magnet protection, as previously
said.

To measure a sample it is necessary to fit it to the conductimeter, so its dimension must
not exceed the maximum one permitted by the system and the sample faces which are in
direct contact with the heat sink must be as smooth as possible to allow a good thermal
contact. Usually the thermal contact is improved by means of a special cryogenic grease,
containing a high percentage of copper. But first of all the sample must be prepared to make
its conductance inside the optimum conductimeter working range, as previously described.
Sometimes, this fact forces us to measure the sample more than once, to obtain data with
errors as low as possible.

Measured data are compared with conductivity curves calculated from thermal conduc-
tivities of they components: figure 11 is a plot of the measurements of the transverse thermal
conductivity of a Nb3Sn/Cu coil wound with a flat cable into the temperature range between
4 + 150 K; figure 12 shows the measurements of the thermal transverse conductivity of a
small NbTi/Cu coil wound with a round wire into a low temperature range (4 + 40 K),
which is the most interesting one for our purposes. Measurements were repeated on both
the coil blocks and a good repeatability of the data was obtained, as shown in figures.
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Calculated curves are obtained using suitable routines for thermal properties evaluation.
By these routines, thermal conductivity of a composite like a coil block can be calculated
like a thermal circuit, where the thermal conductances are connected either in series or in
parallel. In this schematization the thermal conductivity of each element must be known,
which requires to know both the A = A(T) of each material and the temperature of the
element. By assuming a fixed temperature value is then possible to evaluate the effective
conductance following the same rule for electric circuit. We refer to this schematization for
composite as to “lumped circuit” approximation.

We made distinction between rectangular and round cable. In fact, in each case, a
different arrangement of the materials composing the coil is obtained. The routines for
thermal conductance evaluation were built for rectangular cables only, but they can work
well enough with round cables too. In figure 13 is shown a typical round-wire coil package.

A library of material properties enable us to calculate many different kinds of composite
cables into the temperature range between 4 and 300 K.

The richest section of the library is that relative to the thermal conductivity data: it is
possible to refer to any superconducting materials, like NbT% , Nb3Sn , V3Ga , Nb, Va, Pb,
Tz; or to stabilizing metals like Al, Cu, CuSn, Ta, BeCu; or to some insulator like vitreous
silica, silica glass, Teflon, G10 and G11 in normal and parallel direction, Nylon, Perspez and
G10 rod; or to other metals largely used in magnet facility, like stainless steel, Phosphorous
Deozidate Copper or reference material like W.

Then, starting from the thermal property of each single material it is possible to cal-
culate longitudinal and transverse thermal conductivity of a composed cable. As shown in
figures 11 12, routines to calculate thermal conductivity of a composed cable give a good
agreement with the experimental data, in spite of the strong anisotropy and the non homo-
geneity of a coil.

Our purpose is to increase the number of these routines and of this library, because
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a correct description of the transverse thermal conductivity of a coil is one of the most
important aspect in magnet design and protection.

Finally two photographs of the thermal conductivity apparatus are shown: in figure 14
the sample holder and in figure 15 the thermal shield and the vacuum chamber.

Figure 14: photograph of the sample holder without thermal shield and vacuum chamber

Figure 15: photograph of the thermal shield of the apparatus and the vacuum chamber
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