ISTITUTO NAZIONALE DI FISICA NUCLEARE

Sezione di Bologna

INEN/TC-92/16
15 Maggio 1992

E. Ugolini:
GUIDE TO VI AND EX EDITORS

Servizio Documentazione Z
dei Laboratori Nazionali di Frascato

Guide to VI and EX editors

E. Ugolini
INFN - Sezione di Bologna

Abstract

The following document is a comprehensive description of vi commands with ex
extensions to introduce UNIX visual text editing for generic users and expecially for
system administrators who are forced to use vi during system setup and emergency
recovery.

1 Introduction

UNIX has a number of editors to process the contents of text files. There are line ditors,
such as ed and ex , which display a line at a time of the file on the screen, and there are
screen editors, such as vi , emacs and edt, which display a part of the file on our terminal
screen.

The most useful standard text editor is vi , that is found on each UNIX system with
the same features. With vi we can scroll the page, move the cursor, delete lines, insert
chars, and more.

The following report is intended as guide to vi usage and addresses people with a basic
UNIX knowledge. vi belongs to the editor class that works by context, i.e. a command
mode and a editing mode. Commands apply to specific actions as delete text, while to
type text insert/append mode is entered by a command and exited by an escape.

As all UNIX products vi is case sensitive. Commands are usually one char and the
same char can have different meaning depending on context. One important feature of vi
is the capability to interact with the shell in any moment and to switch back and forth
to ex to make use of a more complete editing environment.

The following documentation describes the complete set of vi and ex commands in
tabular form with examples for the most complex situations.

vi commands can be composed in a way similar to option specification in UNIX. If
a command acts on a char or a line prefixing the command with a number expands the
action to the next n elements:

x delete one char
10x delete 10 chars

2 STARTING AND ENDING A SESSION 2

in the same way different commands when typed in sequence produce a combined action,
thus:

x delete one char

P put from local buffer
xp transpose char

Y cut line

Yp duplicate line

2 Starting and Ending a Session

vi filename
view filename
ex filename
ex -R filename
vi -r filename
ex -r filename

ZZ :x :wq<ret>

:q<ret> :q!<ret>
:w<ret>
<ctrl>L

open a file with name filename in vi mode

open a file with name filename readonly

open a file with name filename in ex mode

open a file with name filename readonly

recover editor file after a system crash in vi mode
recover editor file after a system crash in ex mode
indicate blank lines on screen (not a command)
write contents to file and exit; if file is readonly,
command aborts, we can save file with new name
(see later)

quit session without storing text

save text without exiting

refresh screen

vi means visual, ex means external (line editor), v means write, q means quit.
The vi calling sequence is:

vi [-t tag] [+command] [-1] [-r] [-vn] name...

The meaning of the options is:

-t tag

Specifies a list of tag files. The tag files are preceded by a

backslash (\) and are separated by spaces. The tag option should
always be the first entry.

+command

Tells the editor to begin by executing the specified command. A useful

example would be +/pattern to search for a pattern.
-1 Sets the showmatch and lisp options for editing LISP code.
Retrieves the last saved version of the named file in the event of
an editor or system crash. If no file is specified, a list of saved
files is produced.
-wn Sets the default window size to n. This option is useful for starting
in a small window on dialups.

=T name

3 CURSOR AND DISPLAY CONTROL 3

3 Cursor and Display Control

We can move cursor with arrows or n arrow.

o |
$
/

1G
nG
<ctrl>G

:#<ret>
H

L
M

n|

nh
nj
nk
nl
n<bar>
n<ret>
n+
n-

:f<ret>

nH
nL

move cursor to col 0 or n on current line

move cursor to first non-blank char on current line
move cursor to last char on current line

find matching ({[13})

move cursor left one or n chars

move cursor down one or n lines

move cursor up one or n lines

move cursor right one or n chars

same as 1

move cursor to beg of next or n lines

same as <ret>

move to first non-blank char in prev or n prev lines
move cursor to first non-blank char in last line of file
move cursor to first char in first line of file

move cursor to first non-blank char in line n of file
display file informations at bottom screen, for example:
"vi_ex.doc" [Modified] line 29 of 486 --5Y--
display at screen bottom cursor line with line number
and prompt for return to continue

move cursor to BOL at top of screen or n lines

move cursor to BOL at bottom of screen or n lines from bottom
move cursor to BOL at middle of screen

In the prev list n is any positive integer but it cannot exceed the number of lines between
the current line and the end or beg of the file or screen if movement is vertical. If n exceed
the vi prediction we hear the beep and the command is ignored.

4 Text Scrolling Commands

<ctrl>B n<ctrl>B
<ctrl>U

n<ctrl>U

<ctrl>D n<ctrl>D
<ctrl>F n<ctrl>F
<ctrl>Y n<ctrl>Y
<ctrl>E n<ctrl>E

scroll backward one or n prev screen

scroll backward one half screen

set half screen scroll to n lines, then scroll
backward one half screen

same as <ctrl>U and n<ctrl>U but forward
scroll forward to next or nth screen

scroll backward one or n lines

scroll forward one or = lines

The default half screen is 12 lines. Specifying n in one of the above commands resets the

default value.

5 POSITIONING CURSOR LINE IN DISPLAY WINDOW 4

5 Positioning Cursor Line in Display Window

To move the line on which the cursor is into a different position (scrolling surrounding
text accordingly):

z<ret> moves current line at top of screen
z. moves current line at middle of screen
z- moves current line at bottom of screen

Do not confuse z with H M L commands, which move the cursor and do not change the
location of text lines on screen.

6 Searching for Text

/regular_expression<ret> forward search

?regular_expression<ret> backward search

n repeat search in same direction specified (/ or ?)
N repeat search in opposite direction

If EOF is encountered before the pattern is matched, the search wraps to BOF and
continues until the pattern is found or the cursor location is reached (in this case we have
a message: Pattern not found).

7 Searching one char in line

Four movement commands are provided for searching forward and backward in the current
line for the next or nth occurrence of a given char. They do not search beyond BOL or

EOL.

fc nfc forward to next or nth char ¢

Fc nFc backward to next or nth char ¢

tc ntc forward to char before next or nth ¢

Tc nTc backward to char after next or nth ¢

; n; to next char c or nth in same direction as prev search

, n, to next char c or nth in opposite direction as prev search

8 Word Commands

w nw forward to next or nth BOW or first non-alpha char
W nW forward to next or nth BOW; whitespace only as separator
e ne forward to next or nth EOW or first non-alpha char

9 SENTENCE - PARAGRAPH - SECTION 5

=

nE forward to next or nth EOW; whitespace only as separator
b nb backward to next or nth BOW or first non-alpha char

Word commands are not restricted to current line, cursor is wrapped to preceding or
following lines in order to meet specified word count.

9 Sentence - Paragraph - Section

Three movement commands enable to skip backward or forward over sentences, para-
graphs and sections. A sentence must end with . ? ! followed by two or more spaces. A
paragraph is defined as default by a line beginning with:

JP .LP .PP .QP .P .LI .bp

A section is defined by a line beginning with: .NH .SH .H .HU

Any string at BOL beginning with . can be defined as section or paragraph delimiter by
the commands:

:set paragraphs=STRING

:set sections=STRING

where STRING is the user definition without .

) n) move cursor forward to next or nth adjacent BOSentence

(n(move cursor backward to next or nth adjacent BOSentence
} n} move cursor forward to next or nth adjacent BOParagraph
{ n{ move cursor backward to next or nth adjacent BOParagraph
1] n]] move cursor forward to next or nth adjacent BOSection

[l nf[move cursor backward to next or nth adjacent BOSection

10 Recovering Mistakes or Deleted Text

u undo last text change not regarding cursor position
if the last change was an undo, undo the preceding undo
U undo all changes made in current line (can be used only once)

not allowed if cursor is moved from current line

When change, delete or yank command are executed, the object is copied into a buffer
for a possible recover:

p put buffer contents in text after cursor pos
P put buffer contents in text before cursor pos

We can use p command to swap chars or lines:

xp swaps current char with following char
ddp swaps current line with following line

11 ADDING NEW TEXT

11 Adding New Text

insert text before cursor pos

insert text before first visible char in current line
append text after cursor pos

append text to EOL

open new line after current line

open new line before current line

terminate insert or append mode

00 > M H H

<esc>

12 Insert ASCII Control Char in Text

It is possible to insert ASCII Control Chars during insert, append, replace or substitute.

Some Control Chars are inserted directly by typing <ctrl>z:

<ctrl>G
<ctrl>L

Be careful: <ctrl>z can operate directly as editor command (i.e. <ctrl>[operates insert
break). If we want to insert a visible <esc>, we must use: <ctrl>V followed by <esc>.

form feed

13 Deleting Chars, Lines and Words

x
X

D or
dOoO or

dd
dG
diG
dnG

d+
dw
db

If one or more words beyond the end of current line are deleted, the following line is

nx
nX

ds
d|

ndd

nd-
nd+
ndw
ndb

delete one or n chars starting at current cursor pos

delete one or n chars starting with the char immediately
preceding the current cursor pos

delete all chars from current cursor pos to EOL

delete all chars from first left col to char preceding

current cursor pos

delete current or n lines beginning at current line

delete all lines starting with current line to EOF

delete all lines starting with current line to BOF

delete all lines starting with current line to line n

(forward or backward depending on pos of line n relative to
current line)

delete current and preceding line or 7 lines

delete current and following line or n lines

delete from cursor pos to end of current word or n words
delete from nearest preceding beg of word or n words to char
before current cursor pos

appended to current line during deletion.

14 DELETING SENTENCE, PARAGRAPH AND SECTION

14 Deleting Sentence, Paragraph and Section

d)
d}
d]
d(
da{
dl

15

nd)
nd}
nd]
nd (
nd{
nd [

delete from cursor pos to first or n following EOSentence

delete from cursor pos to first or n following EOParagraph
delete from cursor pos to first or n following EOSection

delete from closest prev or n BOSentence to char before cursor
delete from closest prev or n BOParagraph to char before cursor
delete from closest prev or n BOSection to char before cursor

Deleting to a Text Location in Line or File

dfc dnfc
dFc dnFc
dtc dntc
dTc dnTc
d/pattern<ret>
d?pattern<ret>

delete text from current pos to first or nth occurrence of ¢

on current line toward EOL (including ¢) forward

delete text from first or nth occurrence of c on current

line toward BOL to char preceding cursor (including c)
backward

delete text from current pos to first or nth occurrence of ¢

on current line toward EOL (not including ¢) forward

delete text from char following first or nth occurrence of ¢

on current line toward BOL to char preceding cursor backward
(not including ¢)

delete text from current pos to first occurrence of text
matching pattern forward to EOF (not including pattern).
If search wraps to BOF before pattern is matched, deletion
begins with pattern and all text is removed up to, but not
including, current cursor pos.

delete text from current pos to first occurrence of text
matching pattern backward to BOF (including pattern but
excluding cursor pos). If search wraps to EOF before pattern
is matched, deletion begins with current pos and continue up
to, but not including, the matching pattern .

16 Replace and Change Text

H ..

mgw

ns

swap lowercase < — > uppercase at cursor pos

! tr ’[a-z]’ ’[A-Z]’ swap current line to uppercase

replace one char at cursor pos

repeat n times the char to be replaced at cursor pos
(overstrike)

replace text until <esc> at cursor pos (overstrike)

insert n times text replaced until <esc> at cursor pos
replace one or n chars with text until <esc> at cursor pos

16 REPLACE AND CHANGE TEXT 8

S delete current line and replace text until <esc>
cc ncc change current or n lines beginning at current line

cG c1G change all lines starting at current line to EOF or BOF
cnG change all lines starting at current line to line n

(forward or backward depending on pos of line n relative
to current line)

c- nc- change current and preceding or n lines

c+ nc+ change current and following or n lines

c c$ change all chars from current cursor pos to EOL

co cl change all chars from column 1 to char preceding cursor pos

cw ncw change from cursor pos to end of current or n words

cb nchb change from nearest or n preceding BOW to char before
current cursor pos

c) change from cursor pos to next EOSentence

c(change from preceding SOSentence to char before cursor

c} change from cursor pos to next EOParagrapf

c{ change from preceding SOParagrapf to char before cursor

cll change from cursor pos to next EOSentence

cll change from preceding SOSection to char before cursor

Changing text such as words, sentences or paragraphs are not restricted to current line.
If the number of specified objects exceeds current line contents, the object is extended
until the text specification is completely satisfied.

cfc cnfc change from cursor pos to first or nth occurrence of ¢ on
current line forward to EOL until <esc>

cFc cnFc change from cursor pos to first or nth occurrence of ¢ on
current line backward to BOL until <esc>

ctc cntc change from before cursor pos to first or nth occurrence of
c on current line forward to EOL until <esc>

cTc cnTc change from before cursor pos to first or nth occurrence of

¢ on current line backward to BOL until <esc>

c/pattern<ret> change from cursor pos to first occurrence of pattern
forward to EOF (not including pattern).
If search wraps to BOF before pattern is matched, change
begins with pattern and all text is removed up to, but not
including, current cursor pos.

c?pattern<ret> change from cursor pos to first occurrence of pattern backward
to BOF. If pattern is matched before BOF is reached, change
starts with pattern up to, but not including, current cursor
pos. If search wraps to EOF before pattern is matched, change
begins with cursor pos up to, but not including, pattern.

17 REPEATING A TEXT CHANGE OPERATION 9

Rewiew of change, delete or copy command:

Object Change | Delete | Copy
1 word cw dw yw
more words, ignoring punctuation | 2cW 2dW 2yW
more words back 3cb 3db 3yb
1 line cc dd yy
...to EOL Clc$ |DIdS|y$
...to BOL c0 do y0
single char T x yl
From Cursor to... | Change | Delete | Copy

bottom of screen | cL dL yL

next line c+ d+ y+

next sentence c) d) y)

next paragraph c} d} v}

pattern c/text | d/text | y/text

EOF cG dG yG

line number... cl13G d13G | y13G

17 Repeating a Text Change Operation

repeat the last operation of text change

It can be used after delete, replace, change, yank/put or any other command that changes
or deletes text.

18 Shifting Lines Horizontally Left or Right

>> n>> moves 8 columns right one or n lines

<< n<< moves 8 columns left one or n lines
:init,end> shift 8 columns right from init to end

112< shift 8 columns left 12 lines from current pos

The default value for ’shiftwidth’ is 8, but it can be altered using:
:set shiftwidth=n
where n is the number of columns to shift.

It is also possible to shift a text block using markers (named by one lowercase char from
a to z), first move cursor in desired pos and type:

ma mark cursor pos with name a

19 AUTOMATIC INDENTING 10

second move to a new line pos and type:

>a right shift of block text named a
<’a left shift of block text named a

19 Automatic Indenting

vi provides an autoindent option by setting:

:set ai<ret> set autoindent on
:set noai<ret> set autoindent off

vi default is noautoindent, a user configuration file .exrc in user’s home directory may
contain the ’set’ command (explained later) to make automatic indenting. The current
indent can be changed during insert mode:

spaces tabs increase indent to right on new line

<ctrl>D decrease indent to left on new line by shiftwidth
chars or to column 1 whichever occurs first

~ followed by <ctrl>D to type a single line at column 1 without changing
current indent value

If, for some need, it is necessary to transorm tabs in true whitespaces, we must use the
expand program to do the job (refer to expand(1) manual entry):

expand old_file > new_file

N.B. expand IS NOT a vi command.

20 Using Buffers

vi can use 36 buffers for copying or moving text:

unnamed buffer as default buffer
35 named buffers form a to z (lowercase) and from 1 to 9

When a delete or yank is performed, text is copied into the default buffer (unless a named
buffer is specified). The buffer can be placed elsewhere with p or P command. The named
buffer is unchanged until a new entry modifies the buffer contents, the default buffer is
destroyed even if the change is not a delete or yank but also insert or append. Named
buffer maintains its contents during multiple editing, default buffer contents is lost at
the end of a file edit. Buffer names are lowercase but must be specified in uppercase for
append action.

21 EXECUTE A BUFFER 11

"a<yank|delete> yank or delete line(s) in buffer a
"A<yank|delete> yank or delete line(s) appended in buffer a

only name from a to Z (uppercase) can be used.
"ap place a buffer contents after current char or line
"aP place a buffer contents before current char or line

21 Execute a Buffer

When we yank or delete a line containing a vi or ex command, we can execute the
command as:

0a execute buffer @ as vi or ex command (with or whithout
: in col 1)

:Qa execute buffer a as ex command only (with : in col 1)

Qe :00 execute again buffer a content

22 Using Markers

vi can use 26 markers, from a to z (lowercase), to locate any position in file:

ma mark cursor pos as marker a

‘a move to location marked a (N.B. ¢ = backquote)

‘a move to BOL (first non-blank char) containing marker a

‘¢ move to last operated marker or toggles with last cursor pos, if no
marker is set, cursor moves to BOF

) move to BOL operated marker or toggles with BOL of last cursor pos,

if no marker is set, cursor moves to BOF

If a line or char associated with a marker is deleted, also the marker is canceled.

23 Global/Limited Search/Replace

To perform search or replace we must use ex commands by typing:

:<command><ret>

The command appears at bottom of screen.

To perform more ex commands, it is usefull to switch from vi to ex mode, to obtain the

: prompt:

Q from vi to ex mode
vi from ex to vi mode

23 GLOBAL/LIMITED SEARCH/REPLACE

12

When in ex mode with Q command, it is possible to perform commands on more lines:

:%s/[space tab] [space tabl*/\<ret>/g split whole file in one word lines

:%s/$/\<ret>/g

:g/pattern/p
:g/pattern/p!

:init,end g/pattern/p
:/patternl/,/pattern2/p

double spacing text

search and print pattern in whole file

print all lines NOT including pattern in whole file
search and print from init to end line in file
search and print from patterni to pattern2

g means global, p means print. All found lines are printed on screen and a message

appears at the bottom line:
[Hit return to continue]

Cursor moves to last pattern founded.

:s/old/new
:8/0ld/”

&
:8/0ld/\unew
:8/01d/\1NEW
:s/0l1ld/\Unew

:s/01d/\LNEW

:s/0ld/new/g
:50,100 s/old/new/g

:% s/old/new/g
:% s/old/new/gc

:s
:g/pattern/s/old/new/g

:%s/[space tabl*$//

change only first occurrence of old to new on
current line

repeat previous change on another line
repeat previous substitute command

change only first occurrence of old to New on
current line

change only first occurrence of old to nEW on
current line

change only first occurrence of old to NEW on
current line

change only first occurrence of old to new on
current line

change every occurrence of old to new on current line

change every occurrence of old to new from line

50 to line 100

change every occurrence of 0ld to new in whole file
as previous command but with confirm. It displays
entire line where string has been located, string will
be marked by a series of “~~~. answer y to make
replacement, <ret> for no replacement

repeats last substitution

search pattern in whole file and change old to new
globally on that line

remove blanks and/or tabs at EOL in whole file

Recognized colon command for init end/or end :

:$ last line in file
current line

% abbreviation for 1,$ (whole file)

24 EDITING MULTIPLE FILES 13

g whole file

:n nth line in file

:.-n nth line before current line

:.+n nth line after current line

:n,m from line n to linem

:.-n,.+m nth preceding line to mth following line

To visualize non-printing control chars hidden in a file:
:1 $ indicates EOL, ~I indicates tab.

To visualize tabs and EOL for whole file:

:set list
:set nolist toggle back to normal mode

24 Editing Multiple Files

vi can manipulate more than one file at once:

\vi one two three editing three files in succession

We can know which file is editing by typing:

:ar obtaining at bottom screen (if two is in use):

one [two] three
ar means args.

We can close editing by using:

‘W with a message on bottom screen:
"yi_ex.doc" 670 lines, 27747 chars
A4 with a message on bottom screen:

2 more files to edit

To proceed to next file:

n next file
<shift><ctrl>” toggle between files, eventually with rewind
1o# reopen previous file

It is possible to preserve files already edited, first type:

:set autowrite

next, rewind file pointer to first file typing:

:rew close current file and reopen first file for editing (using :n)
:rew! immediatly reopen first file (without :n)

25 MERGING FILES 14

Named buffers are preserved between files, thus we can copy (using p or P) named buffers
contents into a later file in the series.

25 Merging files

We can merge another file or command result after the line including cursor:

:r filename insert filename after cursor

:10r filename insert filename after line 10

:g/pattern/r filename search pattern and insert filename after cursor
:r !'UNIX-command insert the result of UNIX-command after cursor

Cursor moves at beg of inserted file or command.

26 Write Command

W save current file during editing

:w \new save current file with name new , only if it does not exist
:w! \verb!file save current file overwriting file, N.B. no space before !
:10,20 v \new save from line 10 to 20 with name new , only if not existing
:10,20 w! save from line 10 to 20 overwriting current file

110,20 w! \new save from line 10 to 20 overwriting new

:’a,’b w \new save from marker a to b with name new ,only if not existing
:.,/pattern/w save from current pos to pattern overwriting current file
110,20 w >> \new save from line 10 to 20 appending to file new

:w Ynnn save current file with name filenamennn

:w /a/b/c/\new save current file in path /a/b/c with name new

27 Escaping to UNIX Shell

: {command execute command and prompts: Hit return to continue

:w !command as previous, N.B. a space before !

2! repeath most recent shell escape

' spawn a new Bourne shell from vi , to retrive editor: <ctrl>D

:lcsh spawn a new C shell, to retrive editor: <ctrl>D
Prompts: Hit return to continue
:'ksh spawn a new Korn shell, to retrive editor: <ctrl>D

Prompts: Hit return to continue

:init,end!sort provide sorting from init to end lines

:init,end!fmt provide a simple formatting, from init to end line format
to 72 chars per line

28 TAG FILES FOR MULTIPLE PROGRAMS 15

N.B. the following chars are significant for vi and csh:

L g | %Y+-%2/""<>()ex |l <> #;$

Which of these chars is interpreted as special char depends on context in which it is used.
In any case, preceding the char with \ cancels its interpretation as special char.

28 Tag Files for Multiple Programs

vi includes tag file capability that, when used with the ctags (see man ctags for more),
simplifies random editing of code segments in large programs. Functionality is provided
only for Fortran, Pascal and C code.

ctags prog* creates the file tags for all prog* source code

Example: we have 4 files: main.f one.f two.f three.f
in file three.f we have also a subroutine: four.f
running: ctags *.f

we obtain the file: tags

containing the following lines:

Mmain main.f /°© program main$/
four three.f /~ subroutine four$/
one one.f /° subroutine one$/
three three.f /- subroutine three$/
two two.f /" subroutine two$/

If we want to edit subroutine four, there are some options:

\vi -t four vi edits directly file three.f positioning cursor on line
containing subroutine four

:ta Mmain\ from vi to recall main

:ta two from vi to recall subroutine two

<ctrl>] from vi , positioning cursor on init of subroutine name

It is possible to edit files in mixed programming language, creating a tags file as follows:

ctags *.[cfp] create a single tags file fron code written in C, Fortran and Pascal
N.B. it is safer to use always autowrite

29 Abbreviations as Typing Aids

It is usefull to use abbreviations instead of long or difficult text:

30 APPEND OR CHANGE LINE OF TEXT

:ab word text adds word to current list of abbreviations, word is the
abbreviated form for text. When vi is in append/insert mode,
if word is typed (as a complete word with blanks before and
after), editor expands the abbreviation. Defined abbreviations
are discarded at session end. Permanent abbreviations can be
entered in file . exrc (see later)

:una word delete word from list of abbreviations

ab means abbreviate, una means unabbreviate.
For example: :ab crt cathode ray tube
when in insert we type crt, editor expand to cathode ray tube

30 Append or Change Line of Text

Append/change operates only in ex mode, from vi type Q to change mode.

:al \> adds text after current line until . in col 1 is typed

tal as previous but toggles autoindent (upon append termination
autoindent reverts its normal state)

:.+12a adds text after 12th line following current pos

:init,end ¢ first and last line to change until . in col 1 is typed

:init ¢ n chang n lines from inait

:cn change from current to nth line

:.+2¢13 13 lines are replaced starting at second line after current

! change current line but toggles autoindent

a means append, ¢ means change.

31 Insert text

Insert operates only in ex mode, from vi type Q to change mode.

insert text after current line until . in col 1 is typed

1i! as previous but toggles autoindent (upon append termination
autoindent reverts its normal state)
110 i insert text after line 10

i means insert.

32 Join Lines on Single Line

:J current and next line are combined

16

33 YANK TEXT FOR COPY OPERATION 17

:J4 combine 4 lines from current

:init,end J combine from init to end line as single line

:10J3 combine 3 lines from line 10

:J! current and next line are combined with no change in whitespace

J means join.

33 Yank Text for Copy Operation

Yank command copies specified lines into buffer for farther use:

yy copy current line into unnamed buffer

nyy copy n lines into unnamed buffer

:init,end y copy, into unnamed buffer, lines fron init to end
:init y n copy n lines, into unnamed buffer, from init

:y n copy n lines from current line, into unnamed buffer
:yan copy n lines from current line into buffer a

34 Map a Macro to a Key

We can define macros and associate them with a keybord key:

:map key macro defines macro and associates with key in command mode only
:unm key undefines key

:map! key macro defines macro and associates with key also in insert/append
:unm! key undefines key

:map shows defined keys in command mode only

:map! shows defined keys also in insert/append

For example:
:map “A dw defines <ctrl>A as delete word

:map “A /pattern/“Mdw defines <ctrl>A as search pattern and delete word
(note <ctrl>M obtained with <ctrl>V and <ret> to
complete command search)

N.B. be carefull: map key a redefines append command.

35 Move or Copy Lines to a New Location

:init,end m dest delete lines from nit to end and copy after dest
:n m dest delete nth line and copy after dest’
:init,end co dest copy lines from init to end after dest

36 DELETE LINES 18
:n co dest copy nth line after dest

:Y%co$ copy entire file after last line

Copy command accepts the following flags, only using ex:

print current line with line number after copy

p print current line without line number after copy (default)

m means move, Co means copy.

For example:

:.,+5m10 delete 5 lines from current pos and put them after line 10
:.+2¢10 copy second line after current after line 10

36 Delete Lines
:init,end d

:init d n

:d n

For example:
:d u 10
:/text/+2,dR3

:’a+5,$-4d

d means delete.

delete lines from init to end
delete lines from init for n lines
delete n lines from current pos

delete 10 lines from current and put them in buffer u
delete three lines starting at second line after line
containing text and append to buffer r

delete from 5th line after the line that contains marker a

through the 4th line before EOF

37 Edit Different File

e filename

:e! filename

ro!
:e+n filename
:e+/pattern

terminates current editing and start new session for f£ilename
If autowrite is not set and current file has been modified but
not written, command aborts with a message; if autowrite is
set and current file has been modified, current file is written
before new file is loaded.

terminates current editing, modified or not, and filename is
loaded.

editor reload current file

same as first command, but editor begins at line n

same as previous, but starting from line containing pattern
N.B. pattern must contains no spaces or tabs

38 PRINT LINES NUMBERS

e means edit.

38 Print Lines Numbers

:init,end nu print lines with numeration from init to end line
:init nu n print lines with numeration from #nit to nth line
:#n print lines with numeration from current pos to nth line

1= print only line number of current pos
= print only last line number in file

nu means number.

39 Restore Yanked/Deleted Line Back in File

:pu restores last deleted/yanked lines after current pos
‘pu a restores buffer a after current pos
:50 pu a restores buffer a after line 50

pu means put.

40 Set/List Editor Option

Set command sets or lists current editor configuration parameters:

:se param sets param to a specified value

:se param? lists current setting of param

:se all lists all editor options

:se lists only options changed from default

41 Input ex Command from File

To execute source command from vi but in ex mode, type Q from vi:

:so filename editor reads and executes ex commands from filename
commands in filename can be nested

SO means source

19

42 UNDO CHANGES 20

42 Undo Changes

Undo command restores all changes made by most recent editing command to their orig-
inal form:

1u restores all changes

43 Editor Version Number

:ve prints editor current version, for example:
Version 3.7, 18-0ct-85

44 Configuring vi/ex Editor

We have three ways to configure editor automatically:
o define non-default values using the environment variable EXINIT
e create configuration in file .exrc
o embed ex commands in first and/or last five lines of current file edited

When vi/ex starts, the editor searches for environment variable $EXINIT and uses
its contents as configuration command if it exists,if not the editor searchs for file .exrc
in home and/or in current directory, if neither EXINIT nor .exrc exist, default values
are used. After completing the above tasks, the editor opens the file to edit, and then, if
modelines option is set, it scans the first and last five lines in file to determine whether
any ex commands have been placed there,if so, the commands are executed before editing
control is passed to user. Warning: the edit commands must be deleted to use file outside
editor.

:set all show all default and changed options
:set option enable option

:set nooption disable option

:set option=value assign a value to option

Typical default options are:

noautoindent nonumber noslowopen

autoprint open nosourceany

noautowrite nooptimize tabstop=8

nobeautify paragraphs=IPLPPPQPP LIpplpipbp taglength=0
directory=/tmp prompt tags=tags /usr/lib/tags

noedcompatible noreadonly term=vt300

45 OPTION DESCRIPTIONS 21
noerrorbells redraw noterse

hardtabs=8 remap timeout

noignorecase report=5 ttytype=vt300

nolisp scroll=11 warn

nolist sections=NHSHH HUnhsh window=23

magic shell=/bin/sh wrapscan

mesg shiftwidth=8 wrapmargin=0
nomodeline noshowmatch nowriteany

Example of EXINIT variable in .login file:
setenv EXINIT ’set redraw wm=8’

45 Option Descriptions

Each option is recognized by vi or ex (or both) as indicated and some can be abbreviated.

1) autoindent \verb!(vi/ex)!
abbr: ai default: noai

To change autoindent on new line, space over to desired column to increase indent.
To decrease indent to previous shiftwidth column, use <ctrl>D as first char in the line.
To input a single line with no indent and return to previous indent, use ~ followed by
<ctrl>D at beg of unindented line. If a new line starts with one or more tabs or spaces,
next following line is started at the new indent.

2) autoprint \verb! (ex)!
abbr: ap default: ap

Option prints current line after the commands:
copy, delete, join, 1, move, shift, substitute, undo
essentially it is the same as adding p at the end of each of above commands.

3) autowrite \verb!(vi/ex)!
abbr: aw default: noaw

Buffer contents is written to current file if vi or ex encounters:

rewind, tag, ! (shell escape)

In vi = (switch files) or ~| (tag goto) trigger autowrite. If we want to bypass autowrite,
we can use ! (forced command). To prevent autowrite:

quit! instead of quit

edit instead of next

rewind! instead of rewind

stop! followed by the tag! command instead of tag

shell instead of !

45 OPTION DESCRIPTIONS 22

from vi:
:e# (switching between two files)
:ta! (using tag files to find text segments)

4) beautify \verb!(vi/ex)!
abbr: bf default: nobf

Allows to eliminate all control chars except tab, newline and formfeed when we enter text
in insert or append mode.

5) directory \verb!(vi/ex)!
abbr: dir default: dir=/tmp

Specifies which directory is to be used by the editor when we are creating the buffer
file following an edit file command from within the editor. Option does not affect the
buffer location if the option is set during the session. This command is expecially needed
when reaching disk limit (file system full).

6) edcompatible \verb! (vi/ex)!
abbr: ed default: noed

With option enabled, if g (global) or ¢ (check) flags are present in a substitute com-
mand, the flags are toggled and the command is processed accordingly.

7) errorbells \verb! (vi/ex)!
abbr: eb default: noeb

Used only on terminals that do not support inverse video to print messages.

8) hardtabs \verb!(vi/ex)!
abbr: ht default: ht=8

Defines spacing between hardware tab setting and number of spaces used by system
when expanding tab chars.

9) ignorecase \verb!(vi/ex)!
abbr: ic default: noic

Matching regular expressions, command maps all uppercase chars in text to lowercase.

10) lisp \verb!(vi/ex)!
abbr: none default: nolisp

45 OPTION DESCRIPTIONS 23

Special autoindent for Lisp source.

11) list \verb!(vi/ex)!
abbr: none default: nolist

Shows tabs and newline.

12) magic \verb!(vi/ex)!
abbr: none default: magic

Setting nomagic reduces the number of regular expression metachars to only ~ and §.
To reenable metachars while in nomagic, precede them with \.

13) mesg \verb! (vi/ex)!
abbr: none default: mesg

Enables other users to send messages to terminal.

14) modelines \verb! (vi/ex)!
abbr: modeline default: nomodeline

With modeline editor scans first and last five lines in file looking for ex commands.
Modelines must appear in a single line as:
ex: set <option>:
To separate multiple command on a single line, use |.

15) number \verb!(vi/ex)!
abbr: nu default: nonu

Displays lines with line number.

16) open \verb! (ex)!
abbr: op default: open

Allows entry to vi mode from ex

17) optimize \verb!(vi/ex)!
abbr: opt default: noopt

Suppresses automatic CR by the terminal when direct cursor addressing is not sup-
ported.

18) paragraphs \verb!(vi/ex)!
abbr: para default: paragraphs=IPLPPPQPP LIpplpipbp

45 OPTION DESCRIPTIONS 24

Specifies the one/two-char macro name to be used by nroff.

19) prompt \verb! (ex)!
abbr: none default: prompt

Editor prompts for new command when in command mode by printing :.

20) readonly \verb!(vi/ex)!
abbr: ro default: noreadonly

Set readonly attribute to editing file.

21) redraw \verb! (vi/ex)!
abbr: none default: redraw

Option simulates intelligent on dumb terminal. Editor prints new chars on current
line to the right of cursor and reprints lines as needed when inserting, deleting or changing
visible chars on display.

22) remap \verb!(vi/ex)!
abbr: none default: remap

Links a macro directly to last macro found in series. For examples if a is mapped to
b and b to ¢, remap will map ato c.

23) report \verb!(vi/ex)!
abbr: none default: report=5

Sets a threshold of change (number of lines). Editor will notify when this threshold is
exceeded.

24) scroll \verb! (vi/ex)!
abbr: none default: scroll=1il

Sets number of lines scrolled when editor receives a <ctrl>D.

25) sections \verb!(vi/ex)!
abbr: sect default: sect=NHSHH HUnhsh

Specifies the one/two-char macro name to be used by nroff.

26) shell \verb!(vi/ex)!
abbr: sh default: sh=/bin/sh

45 OPTION DESCRIPTIONS 25

Defines path and filename of user Shell environment variable.

27) shiftwidth \verb! (vi/ex)!
abbr: sw default: sw=8

Sets spacing between tab stops. Use shiftwidth to reverse tabbing with <ctr1l>D, when
using autoindent while appending text, and when using << and >> commands.

28) showmatch \verb! (vi/ex)!
abbr: sm default: nosm

In editor open mode, cursor moves to matching (or { for one second when closing)
or } is typed and then returns to closing char.

29) slowopen \verb!(vi/ex)!
abbr: slow default: noslow

Only for slow terminal.

30) tabstop \verb!(vi/ex)!
abbr: ts default: tabstop=8

Defines tab spacing used when editor expands tabs.

31) taglength \verb!(vi/ex)!
abbr: tl default: t1=0

Defines max number of chars considered significant in a tag. Setting to 0 makes all
chars significant.

32) tags \verb!(vi/ex)!
abbr: none default: tags=tags /usr/lib/tags

Defines path and filename to be used as tag files for tag command or -t option when
editor starts.

33) term \verb!(vi/ex)!
abbr: none default: term=vt300

Defines terminal type.

34) terse \verb!(vi/ex)!
abbr: none default: noterse

45 OPTION DESCRIPTIONS 26

Types shorter error diagnostics.

35) timeout \verb!(vi/ex)!
abbr: none default: timeout

If set, the timeout function is enabled, meaning that if an escape char is not followed
within the time limit by another char, the escape is treated as a separate char rather than
as part of a two-char sequence.

36) ttytype \verb!(vi/ex)!
abbr: none default: ttytype=vt300

Defines ttytype for terminal in use with editor.

37) warn \verb! (vi/ex)!
abbr: none default: warn

Editor send a message if no no write since last change’ message appears before
a ! or shell command.

38) window \verb!(vi/ex)!
abbr: none default: window=23

Specifies number of lines displayed in a text window.

39) wrapscan \verb!(vi)!
abbr: ws default: wrapscan

Pattern searches resulting from a /?nN command automatically wrap around to op-
posite EOF and continue whenever BOF or EOF is reached.

40) wrapmargin \verb!(vi/ex)!
abbr: wm default: wrapmargin=0

Num of chars for automatic wrapping.

41) writeany
abbr: wa default: nowriteany

Option inhibits checks before write command, so we can write to any file that system’s
protection will allow.

42) nosourceany (not documented)

46 REGULAR EXPRESSIONS 27

46 Regular Expressions

Regular expressions are a simple pattern matching language used for locating text in a file.
All regular expressions are constructed from series of one or more single char expressions.
Single char expressions can take several forms:

Typing chars A-Z a-z 0-9 ! @ # Y Any alphanumeric or symbol char that
<>(()4{}, " I|: can be typed except chars used in
;7 + = - _ <tab> substitution. These chars match only
<blk> <ctrl chars> identical chars in text. We must precede

? with \ if ? is used as first
char in a backward search.

Substitution o8/ 01\ =*- These chars represent another char or
or search beg or end of line or serve as
control chars delimiters, range identifiers, or ascape

chars in regular expressions. However,
under certain conditions, - and]
are interpreted directly as explained

below.
Sets or ranges [set_of_chars] or A group of single chars or range of
of chars [range_of_chars] or chars enclosed within a pair of []

[combination_of_both] (such as [actz58&] or [3-7]) where a
match is accepted if any of the chars
between the [] or in the specified
range appears in the position defined by
the position of the single char
expression in a larger expression. The
second form example accepts a match if
3,4, 5, 6 or 7 appears in the position
indicated.

The - is interpreted as a range specifier when defining sets of chars, as in the single
char expression [a-z], unless it is the first char in a set of chars, as in the expression
[-abdfgh12], which match any one of the chars -,a,b, d, £, h, 1, or 2. Likewise,
the] terminates the expression unless it is the first char in the set, as in the group
[J=+rt12], which matches any one of the chars], =, +, r, t, 1 or 2.

47 BOL and EOL in Regular Expression

~expression searches for expression at BOL
expression$ searches for expressionat EOL

48 ARBITRARY CHARS 28

48 Arbitrary Chars

When we search words that differ for one char only (i.e. these and those), we can use .
instead of char that differs:

/th.se

unfortunally we find also: th se or thxse

another way is:

/thloelse

To find a word regardless of its position in a line:

/\<word\>

this matches “word, word$ and word elsewhere in the line.

/- .*[0-9] represents an arbitrary number (zero or more) of arbitrary
chars lying between BOL and last occurrence in line of any
numbers lying in the range 0 to 9.

Brackets define ranges of chars and char sets to match a given char pos.
Examples:

/\[0-9\] find [0-9]

/\[[a-z] [a-z] [a-Z]\] find a word made of only 3 chars, alphabetic and
lowercase, enclosed between []

/thlaeo] [tyuel find words as: that, they, thou, thee but not them

We can exclude from search some chars:
/[~aslm] match accepts any char axcept aslm

49 Metachars Summary

matches any single char except NL (spaces are also chars)

* matches any number (including 0) of the single char that
immediately precedes it (.* means match any number of any char)

[1] matches any one of the chars enclosed between brackets

=1 matches any one char not in list

\{n,m\} matches a range of occurrences of the single char that

immediately precedes it, n and m are integers from 0 to 256
that specify how many occurrences to match:

\{n\} matchs exactly n occurrences

\{n,\} matchs at least n occurrences

\{n,m\} matchs any number of occurrences from n tom
for examples: A\{2,3\} matchs either AA or AAA but not A

- requires that the following regular expression be found at BOL
$ requires that the preceding regular expression be found at EOL
\ the following special char is an ordinary char, for examples:

\. stands for a dot, * for an asterisk

A APPENDIX: QUICK REFERENCE.

\C\)

\¢

saves pattern enclosed between \(and \) into special
holding space, up to 9 patterns can be saved on single line.
They can be replayed in substitutions by the sequences \1 to
\9, for examples:

:%s/01d\([,.;:!1?1\)/new\1/g

replaces in whole file o1d followed by either ,.;:!?
additionally, the char that is matched is saved using \ (and
\) and restored on the right side with \1

the same task is performed by:

:%s/\<old\>/new/g

\<o01d\> will find all instances of the word o1d , whether
followed by punctuation or space

matches chars at beg (\<) or at end (\>) of a word, for

examples: \<ac matches only words which begin with ac, such as

action but not react

matches whatever regular expression was used in last search,
for examples: if we search for The, we could search for Then
with /*n. We can use this pattern only in a regular search

(with /)

A APPENDIX: Quick reference.

Movement commands

Char

hjkl —Tl-

Text

wWbB forward, backward by word

e E EOW

Lines

0$ first, last pos in current line

B first char in current line (ignore space)
+ - first char of next, prev line

n| col n of current line

HL top, last line of screen

Screen

<ctrl>F <ctrl>B scroll forward, backward one screen
<ctrl>D <ctrl>U scroll down, up half screen
<ctrl>L refresh screen

Search

/text search forward for text

/"text saerch text at BOL

/text$ saerch text at EOL

7text

search backward for text

29

A APPENDIX: QUICK REFERENCE.

n N
Line number
<ctrl>G
nG

1G G

)2

:n
Insert
ia
IA

o0
Change
r R

cw

cc C

s S
Delete, Move
x X nx
dw

db

dd D
PP
Yank
Yy nyy
yw ynw
YP

Exit commands

ZZ

W iwWq

:q!

:n,mw file

Input Commands

:r file

:r 'cmd
Marker

ma

‘a

Cut $ Paste
"add "andd
llap "ap

J nJ

xp
Miscellaneous

%

repeat last search same, opposite direction

display current line number and file name
move to line number n

BOF, EOF

return to position before G command
move to line n

insert text before, after cursor
insert text at BOL, EOL

open new line below, above cursor pos

overstrike one char, line
change word
change line, to EOL

substitute char, line

delete next, prev char or next n
delete word
delete word backward

delete line, to EOL
put delete or yanked text after, before cursor

copy current or n lines to internal buffer
copy current or n words to internal buffer
duplicate line

exit and save

write, write and quit
forced quit

write n:m lines to file

read file

insert shell command output

mark line as a
go to line marked a

cut line or 7 lines to buffer a

paste after, before

join current line with next one or n next lines
transpose current and next char

repeat last edit action

show matching ([{ }])

30

B APPENDIX: ABBREVIATIONS USED IN THE REPORT

<esc> stop insert

u undo previous change

- change case of current char

:sh escape to the shell (return to vi with <ctrl>D)
3! execute a shell command

Environment

:set all show environment

:se ic ignore case

:se nu print line number

:se nonu disable line number

B APPENDIX: Abbreviations used in the report

BOL beginning of line
EOL end of line

EOW end of word

BOW beginning of word
BOF beginning of file
EOF end of file

beg beginning

prev previous

pos position
EOSentence end of sentence
EOParagraph end of paragraph
EOSection end of section
SOSentence start of sentence
SOParagraph start of paragraph
SO0Section start of section
Contents

1 Introduction

2 Starting and Ending a Session

3 Cursor and Display Control

4 Text Scrolling Commands

5 Positioning Cursor Line in Display Window

6 Searching for Text

CONTENTS

7 Searching one char in line

8 Word Commands

9 Sentence - Paragraph - Section

10 Recovering Mistakes or Deleted Text

11 Adding New Text

12 Insert ASCII Control Char in Text

13 Deleting Chars, Lines and Words

14 Deleting Sentence, Paragraph and Section
15 Deleting to a Text Location in Line or File
16 Replace and Change Text

17 Repeating a Text Change Operation

18 Shifting Lines Horizontally Left or Right
19 Automatic Indenting

20 Using Buffers

21 Execute a Buffer

22 Using Markers

23 Global/Limited Search/Replace

24 Editing Multiple Files

25 Merging files

26 Write Command

27 Escaping to UNIX Shell

28 Tag Files for Multiple Programs

29 Abbreviations as Typing Aids

30 Append or Change Line of Text

31 Insert text

32

10

10

11

11

11

13

14

14

14

15

15

16

16

CONTENTS

32 Join Lines on Single Line

33 Yank Text for Copy Operation

34 Map a Macro to a Key

35 Move or Copy Lines to a New Location
36 Delete Lines

37 Edit Different File

38 Print Lines Numbers

39 Restore Yanked/Deleted Line Back in File
40 Set/List Editor Option

41 Input ex Command from File

42 Undo Changes

43 Editor Version Number

44 Configuring vi/ex Editor

45 Option Descriptions

46 Regular Expressions

47 BOL and EOL in Regular Expression
48 Arbitrary Chars

49 Metachars Summary

A APPENDIX: Quick reference.

B APPENDIX: Abbreviations used in the report

33

16

17

17

17

18

18

19

19

19

19

20

20

20

21

27

27

28

28

29

31

