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ABSTRACT

The effects of internal targets on the beam accumulated in electron storage rings are
studied with a linear stochastic model which describes the beam emittance and the beam phase
space growth and provides simple formulae for the longitudinal and transverse beam emittance.
The description of facilities with and without beam damping is carried out in a consistent way.
The obtained results are comparable to those obtained with other models and numerical
simulations.

1. INTRODUCTION

The interest to storage rings, and to recirculating facilities, has recently grown due to the
use of very thin targets (<107 g/cm?) placed inside the ring: a technique that, in the case of
electron beam, requires a detailed study of the beam-target interaction. In fact, while internal
targets installed in anti-proton storage rings!] and low energy electron storage rings!? have
shown to work with negligible perturbations, in the case of thick targets interacting with
electron beams the radiative emissions could result in appreciable perturbations. So far, these
interactions (Single Scattering, Mgller Scattering and Bremsstrahlung Radiation) have been



studied by means of Monte Carlo codes(®>-7) or analytical models.[3-8] Both techniques give
however an approximate description of the interaction. Numerical simulations are not able of
giving exact predictions when the beam damping is present due to computers limitations.[7]
Analytical formulations generally make use of the multiple scattering theory with the crude
assumption that n crossings through a target of a given thickness px are equivalent to one
crossing through a target of thickness npx.

In this paper we describe by a linear stochastic model the static properties of an electron
beam in presence of an internal target (mean lifetime, spreading, divergence), and the transients
occurring after the injection. The theory of stochastic processes is well established and its
foundations can be found in almost any text book of probability theory.l!

In our approach we first describe (section 2) a stored beam without internal targets. Then
we review (section 3) the Single Scattering, the Mgller Scattering and the Bremsstrahlung
Radiation as a background for the description of the beam in presence of internal targets. The
beam cooling is introduced and the effects of the electron interaction with very thin internal
targets are obtained as the solution of the stochastic betatron and synchrotron oscillations
(section 4). The full results are summarized in section 5 where the expressions for the
transverse and longitudinal beam emittance, together with their time dependence, are given. In
particular, in the limit of no beam cooling, the transport matrix and the stochastic equation give
the same results. Finally, in section 6 we compare our results with those from other
calculations.

2. THE BEAM DESCRIPTION

The motion of a stored electron is described by means of the variables x, y (radial and
vertical displacement from the equilibrium orbit s) and £ (deviation from the nominal
energy).1% Both the radial betatron oscillation x and the deviation x, due to electron energy
losses affect the radial deviation x, while the radial betatron oscillation y ) only contributes to y.

In the absence of damping, the change in one revolution of the variable x4 (and, in the
same way, y p)' due to the betatron oscillation can be described by means of the transport
matrices:[3]

cos(2nv) B, sin(2nv)

X X
O 1 ) e
X' )n+l - ﬁ—sm(Zn:v) cos(2nv) X'Jn X' )n

X

, _dx
where S, is the betatron function, v is the fractional part of the betatron number v, and x' = 7=
is the slope of the actual orbit relative to the standard one. The effect of n revolutions is
described by the matrix:
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The damping effect can be taken into account by the equations:[1]
dz;g( D, 2a, dngt) + g 20 =0, 2.3)
%t—)+2ae$+w§ &n=0, (2.4)

where a, (c,) and a)px (w,) are the damping coefficients for the betatron (synchrotron)
oscillations and the betatron (synchrotron) frequency, respectively. In equation (2.3) the
average value ﬁx= c wﬂxl of the betatron function is used and results obtained from egs. (2.2)
and (2.3) have to be corrected before comparisons. The energy deviation € contributes to the
spreading in the radial direction x as follows:{19]

X%=Ng - (2.5)

being 7] the dispersion of the machine.

3. THE BEAM-TARGET INTERACTION: generality

3.1 The Single Scattering

The electrons in a storage ring cross many times the internal target, and their scattering by
the nuclear screened Coulomb field increases the beam divergence. The interaction of the
electrons with a target is described for a mean value of scatterings higher than 10 by the
multiple scattering theory!!!] and for a mean value lower than 1 by a theory that considers the
probabilities of no scattering, and single and double scattering.[1?] So far there are no theories
for the scattering process if the mean value of scatterings is between 1 and 10.

The Single Scattering process is described by the Born screening angle X and by the
angle ¥, beyond which the screening is negligible.!*!!] For relativistic electrons, ¥, and , are
given by:B]

u Z13

%, = 4215°107 frad] , (3.1)
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[

where p is the electron momentum in mass units, i a constant whose empirical value is 1.8 [11]
and px the target thickness in gr/cm?. The value of the mean number of scatterings Ag is given

by:0!

2 3
Ag=2 - 8837 —%N, (3.3)
xa H NO

where y_ is the modified screening angle x_, = x,, { 1+0.04902y,, ) and N, is the Avogadro
o o {7 u 0

number. N, is the target thickness in atoms/cm?.

The nature of scattering depends on the number of atoms and on the atomic number Z of the
target. In the limit of an interaction probability A « 1 this process, and the others studied in this
paper, can be considered Poisson-like and included in (2.2) (see Appendix A) and (2.3) (see
section 4). In Fig.1 the target thickness, at which the contribution of two or more scatterings is
lower than 10%, is reported as a function of Z. Below this limit, the effect of the scattering can
be, however, better described by means of the projection of the scattering angle 8 on the planes
Zx and 7y, the former containing the standard orbit and the latter being perpendicular to it. The
projected scattering angle y is described by the distribution:!3!

1 Ag
£ (VpAs) dy, = m[ﬁ(wa) + dy, , (3.4)

2(1""[’(12)3/2

having defined y, = y/%,. In this paper the mean value <y> and the rms <> of the Single
Scattering angle y were used. The first was obtained from the Single Scattering distribution
function:

+oo

<y> [2(1 )3/2 dy,=0 . (3.5)

To obtain the second we used a Monte Carlo simulation to evaluate the total effects of k
scatterings that add linearly and incoherent

ly. The Monte Carlo results show a continuous widening as a function of k (Fig. 2) with a
standard deviation logarithmically divergent. The best fit is provided by the following
expression

<y?>, =k [0.754 + 0.551+In(k)] 22 . (3.6)
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3.2 The Bremsstrahlung Radiation

The electron crossing the internal target loses energy mainly by bremsstrahlung radiation. The
effect of the bremsstrahlung radiation is twofold: electrons that radiate photons with energy E ”
higher than the energy acceptance Kof the ring are definitely lost and produce a reduction of the
beam mean lifetime,!”) while electrons that radiate photons with energy lower than K oscillate in
the momentum phase space. The average number Ag £ of emitted photons with energy k< E yS
K in a single revolution is a function of the target thickness px: [13]

K
4E, EZ2)\dE
AB.:=§—X %_ 3Tr+ L —r_Px. (3.7)
0 0 E;
K
where the radiation length X, is related to the target parameters by:[14]

1 40ergNOZ2
X, =7 & XD (3.8)

where « is the fine structure constant and o the classical electron radius.



This probability density, however, shows an infrared divergence: this is the reason why it
is necessary to cut the distribution down to a fixed cut-off x> 0 and define the average emitted
photon number as a function of x. However, we will show in section 4.2 that the results
weakly depend on the cut-off value. The mean and rms values of the energy distribution are

2
<E}>'§=%|:;—1 (1-¢) - 2§ —EI%(IEZ) + 1§ (Eﬁo) (1-5’)] : (3.9)

<E? [ (1-&) - %%(1-53) + IZ(EISO)Z (1-.54)] : (3.10)

having defined £ = K/K.

3.3 The Mgller Scattering

The electron-electron scattering contributes both to the betatron and synchrotron
oscillations. The cross section of the process,!1?] the average number A, of scatterings in one
revolution with an energy transfer E lower than the machine energy acceptance K, the mean and
rms values for the angular distribution for ultra-relativistic electrons at forward angles are given
by the following equations (see appendix B for the distribution function and detailed

evaluations):
do (’"o" )’ (3.11)
d‘QM;bller 04
C2
AM-4r0 (—Jz ZN, J‘f (wdy = 4r0 ( JZZN IMW , (3.12)
E,
<y>=0, (3.13)

)
1 T
_ 1 - F _K) 14
<y*> : W—é';w:zfp(w)dw 5 wln(l . (3.14)

From (3.11) the expression for the energy dependence of the Mgller cross section can
also be derived:

do

1
= 2nrd myc? = (3.15)
dw Mpgller E

this provides a different expression for A,,, the average emitted energy <E> and the rms <E%>:



K
Ay = 2mr myc? ZN, de—fszmg myc2 ZN, iygp (3.16)
1 -
K
1 (dE_ 1 n(K)
<E>=— [F=1F), 3.17
IMEI E iy \I ( )
K
g% = g~ X | (3.18)
ME ME

4. THE BEAM-TARGET INTERACTION: Stochastic Treatment
4.1 The Transverse Beam Emittance

The Single Scattering, the Mgller Scattering and the Bremsstrahlung Radiation act as
external forces that induce on the electron beam forced harmonic oscillations whose strength
and frequencies are functions of the relevant process probabilities Ag, Ay and Ap,. The
betatron equation (2.3) can be modified in the following way:

dzxp(t)
ds?

2 60 | w2 F4t, Ag, A 4.1

+20, —5—+ @5 x5(0) =Fylt, Ag, Ayy) 4.1)

Since the interaction time is negligible compared to the revolution time, the interaction can

be treated as instantaneous and the function F B becomes an incoherent sum of k different single
scatterings and h Mgller scatterings:

k h

Fp(t,As,AM) = Z S, 8(t-1,) + Mj 8(t-t'j) 1 <.<f <t

i=1 =1

i
U <.<tp<t, 4.2)
where the unitary processes are weighted with the coefficient S; and M i that have the dimension

[LT‘I] and are related to the variation of the direction of the electron velocity. In the hypothesis
of small angles, S; and M ; are simply related to the scattering angle through the light speed c:

X h
Fgt, Ag, Ay) = C[zl v, 6(t-t,) + 21 7 S(t-t'j)] 5 <.<f <t
1= J=

t)<.<ty<t. 4.3)



As shown in Appendix C, the properties of the process Fp(t, Ag, Ayy) can be derived
from those of the stochastic staircase process x(¢,A) after the following substitutions in (C.12)
and (C.13): -

A —oc? [<‘l’2>s'1s + <w2>M1M] , (4.4)
2252 [<|//>sz AZ + <y} A2 ] ) (4.5)

obtaining the following expressions for the mean, the autocorrelation and the power spectrum:

<Fﬂ(t)> =c [<V’>s Ag + <y>y AM]= 0, (4.6)
RFﬁFﬁ(r) =2 [<V’2>s'ls + <y/2>MlM] 3D , 4.7)
SFpFﬂ(w) =2 [<V’2>s'1s + <w2>MlM] . 4.8)

In this way the betatron equation (2.3) has become a differential stochastic equation and the
statistical properties of Xgcan be obtained from those of Fp(t, Ag, Ayp) by means of the system
function:[]

1

4.9
(iw)? + 2a, (io) + wﬂi (4-9)

H@lw) =

Usually the damping time 1/c, is orders of magnitude larger than the betatron oscillation
period w, 1% and, as a consequence, the solution of the stochastic equation (4.1) is a damped
oscillation®! and the process xg is stationary with the following overall values for mean, power
spectrum and autocorrelation:

1
<xp(t)> =——<F(1)>=0 , 4.10
[0 wi 0 (4.10)
c? (<‘l’2>s'1s + <w2>M/1M)
S, (@) = Hio)? Sg g (@) = : (4.11)
BB FﬁFﬂ ((02 _ wﬂi )2 + (Zax)Z w2
c? (<‘V2>s'1s + <u/2>MlM) a
Ry grg(D) = 20a) wpi [cos(wlr) + ;1 sm(wlr)} e%*, (4.12)

where

2
®, =\’wﬂzx ol =ap . (4.13)
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xp(t) is then described By a normal distribution with zero mean value and standard deviation:

32 2\2 2
2 B, (myc% o N,
=R 0)=——|—]| f -, 4.14
O'xﬁ xﬁxﬂ( ) 2ax ( EO ] B(Z) TO ( )
where we have defined:
[ Ag V7] Ag
fB(Z) =Z(Z+1) 1.26+0.48 +nZ ln(i—() <4 , (4.15a)
a a
L x/y A x/y
[ Ag ] A
fB(Z) =2Z(Z+1) 1.26+0.92*In| —— ||+nZ ln(%) ——24 . (4.15b)
L ax/y 2 x/y
The time dependence of the variance is given by:[°]
o5 O =0 (1-e2a) . (4.16)

Equation (4.16) describes the spread of the electron beam at the time the internal target is
inserted. The variance of the distribution xg reaches exponentially the equilibrium value with a
time constant equal to half the damping time of the betatron oscillation.

From the distribution of the process x\s\do4(g) the distribution for the process x\s\do4()
was obtained:(% it is a normal distribution with mean value zero and variance:

2 _ 1
Oy =Rypes(0) = ~ L OR (4.17)

X
and the same time dependence as (4.16).

It is to be noted that in equation (4.14) the average value Exof the betatron function is
present. Then the stochastic model provides results averaged along the ring, and local effects
can be computed rescaling the results by the factor 8/B,.

4.2 The Longitudinal Beam Emittance

The synchrotron equation (2.4) is modified due to the presence of the Mgller Scattering
and the Bremsstrahlung Radiation processes as follows:
de(r)

d2e(t
ng—) + 20—+ 0F &0 =Ft, Agp Ayy) - (4.18)
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Since the interaction time is negligible compared to the revolution time, the interaction can
be treated as instantaneous and the function F, becomes an incoherent sum of k different
Bremsstrahlung radiations and h Mgller scatterings:

k h
F (1, Aag’ Ay = Z B, d(t-1) + Z Mj 8(t-t'j) L<..<g <t
i=1 j=1

V) <.<t,st, (4.19)
where B, and M i similarly to the betatron equation, are the rate at which the electron loses
energy:

k h
F (1, ABé’ Ay) = Z EYi 8(t-ti) + Z Ej 8(t-t'j) L <.<p <t
i=1 j=1

) <.<tyst. (4.20)

If k is chosen large enough to make Ay £ < 1, the contribution of the Bremsstrahlung
Radiation to Fe(t, Ap g A ), becomes a Poisson process with '13 £= Ap €/T0 and the properties
of the process Fa(t, Ap g A,p) can be derived from those of the stochastic staircase process
x(t,A) after the following substitutions in (C.12) and (C.13):

Ao wg [<E},2>§),B§ + <E2>),M] , (4.21)
22— o} [<E7>§2 Z,Bzg + <E>2%2 ] ) (4.22)
The expressions for the mean, the autocorrelation and the power spectrum result to be:
<F 0> =@y [<Epgdge + <E>Ay] (4.23)
R p (7) = w? [<E}>§2 Ape +<E>24 ] + w? [<E72, >edge + <E2>,1M] 8(7) ,
(4.24)

Sp (@) = 2nw? [<E17§2 Apt + <E>?A ] 8(w) + wf [<Ef, >edpe + <E2>2,M]. :
(4.25)

The products <EY> £ Ap £ and <E f, > Ag & that appear in these equations, depend weakly
on the cut-off value and, in the limit & « 1, are equal to:

_4_px
<E>ky =37 %K, (4.26)
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257 ~2_PX
<E, >Ap=3 T, X, K? . (4.27)

From the stochastic differential equation all the properties of the process € can be
deduced: the mean value

<E>A, + <E>A
<e()> =wL2<Fe(:)> =7 ”w M- (4.28)
0 0

and the autocorrelation function

<EpA5 +<E>23

R (1) = +
EE wo2
2 2
1 (<E7 >Ap + <E >,1M)[ o, :|
+ cos( @,7) + —sin{ w,T) {e %", (4.29)
where
2

According to the upper limit for the target thickness N, , reported in Fig. 1, the mean
value <g()> is less than 10 E, and then negligible with respect to the ring energy resolution.

The &(¢) distribution is then normal with zero mean value and standard deviation

1 r ()2 N,
O =RzO) = —f QK T~ (4.31)
[
with a time dependence
2 )=2 (1 - e2ae) | @32

where we have defined

f(Z) = éozz2f @) +7 szcz (4.33)
£ - 3 XO K . .

At the equilibrium the energy resolution is given by
2

2 _ 2 . 1 ro N,
oy =0, +2%fs(Z)K2 T, ° (4.34)

being 0, the intrinsic spread due to the Synchrotron Light effect.'”)
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5. THE BEAM EMITTANCE GROWTH

Trough equation (2.5) the Bremsstrahlung and Mgller Scattering make the spread in the
radial direction a gaussian distribution with zero mean value and standard deviation:(*!

a2 =(E"_EJZ o2 (1-e2ae) . (5.1)

This effect adds incoherently to the previous Single Scattering and Mgller Scattering

effects: the electron stored beam, in presence of an internal target, increases its emittance to a
new equilibrium values 0,0y, 0, and oy, resulting from the quadratic sums

2 _ 2 B.5 (myc m* (K ry N,
O, =0, % . (—E ) f3(2) +_2a (Eo) f.(2) T, ° (5.2)
x 0 (4
2\2 2
2 _ 2 1 (M€ ro N,
Oy, = Gx'sz +2a ( ) J fB(Z) T, ° (5.3)
X
32 2\2 2 N
2 _ 2 y_ (™€ Fo IV
o, =0, +2ay[ E, J fB(Z) T, ° (5.4)
232 2
2 2 1 (mgc ry N,
Oy =0y +———ay E, } f3(2) T, (5.5)
where 0,2, 0.2, 0.% and 0,2 are the intrinsic spreads due to the Synchrotron Light
X Xsl” T ¥sl sl

Ry
effect.[10]

The radiofrequency plays in this model a central role being the damping constants &, and
Oy directly related to the field gradient inside the radiofrequency cavity itself. The beam time
evolution, in absence of any damping effects, has been derived from eqs. (4.16) and (4.32) in
the limit &,—0 and ¢,,—0:

2

N
o2 () = o0k H2) K2r°T0‘: : (5.6)
2 2 2
20— o2 ol g2 (M _, (K e N,
o; () =0 +|:ﬁx2 [ 5 ) fp(2) + 7 (EOJ fe(Z):| T, - (5.7)

myc? Y réN
ol ® =02+ (—l—g——J £3(2) °T—0‘ t, (5.8)
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2
O ) =0.
It @ Ysl o

2\2 2
2 =, (M€ ro N,

2\2 2

2 0 _ <2 ™€ ro N,

Gy': (0 = GY'sz +[—-—E ) fB(Z) _To t.
0

5.9

(5.10)

Equations (4.15) and (4.33) offer the possibility of evaluating the relative weight of the
three studied interaction channels; the Mgller contribution can be considered as a Y fraction
adding to the Bremsstrahlung and Single Scattering contributions as follows:

0,=0p (1+xe) ,

Og= Og (1+xp) .

(5.11)

(5.12)

In Figs. 3-4 the contribution x5 of Mgller Scattering is reported; in both cases the Mpller
Scattering becomes sizeable only for low Z targets and dominates the spatial resolution only at

small = values.

ax/ y
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FIG. 4 - Mgller contribution y g to betatron
oscillation compared with Single Scattering
for different values of the average number of
Singl;f Scatterings in one damping time:

S
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6. COMPARISON WITH OTHER SIMULATIONS

The emittance calculations performed so far, take into account only the Single Scattering
effects. In particular we have focused onto those of B.Craft and C.F.Williamson(3! and
Muccifora et al.[7] which appear to be the most complete in several aspects.

B.Craft and C.F.Williamson!3! report Monte Carlo and analytical evaluations for the
phase space growth P defined as the area of the ellipse in the x-6, plane containing 90% of the
stored beam. From our model P is computed as the area of the integration path for the phase
space distribution

2 2 .2 2
()= — o HB 20y o F 20 drg dx'y (6.1)

f
B 2o, 505

that corresponds to the integral value 0.9 and is given by:
a2 (1)

. -
P(®) =4.6x
B

X

(6.2)

In Fig. 5 the time dependence of the phase space growth computed for a 2 GeV electron
beam, an electron machine with =7 m and no damping and assuming a 43.5 pg/cm?
Hydrogen internal target(® is in good agreement with our P(z) value derived from (6.2).

0.8 MM MM I IR R FIG. 5§ - Comparison of the phase space
i T growth for a 2 GeV stored electron beam
0.6 | ] with a 43.5 ;,lg/cm2 Hydrogen internal
g [ ; target. Dotted points and dashed line,
E - o 1 obtained in ref. 3, respectively, with a
E 0.4 - -t Monte Carlo simulation and an analytical
a [ o f T ] evaluation that takes into account the
0.2 | < 2 - multiple scattering effect, represent the
i ol phase space area containing 90% of the
0 - .Ll.’...l....1....:....1““' stored beam. Continuous line corresponds
0 0.5 1 L8 3 3.8 3 to P(¢) obtained with (6.2).
t [msec]
10° ——
g
T FIG. 6 - Comparison of the radial beam
° growth with (dashed line) and without
(continuous line) damping with results
obtained with the code of ref. 7 in the
hypothesis of a 0 emittance beam.
1073 1 sl £ 1 aaul AT
102 10! 100 10

t [sec]
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We have also compared the present analytical results* with those obtained with our
simulation code!”) including or not the damping mechanism. In Fig. 6 the results are reported
for a S00 MeV electron beam interacting in the ADONE Storage Ring with a 10 ng/cm?2 Argon
internal target with the hypothesis of initial phase space equal to zero. Triangles and dotted
points correspond to the Monte Carlo simulation with and without damping. The dashed line is
the result of equation (4.16) and the continuous line is the results of the same equation
evaluated in the limit & —0. As it is seen there is a complete agreement between the two
calculation techniques.

7. CONCLUSIONS

We have proposed a linear stochastic model that, through the modification of the betatron
and synchrotron equation, is able to describe the emittance and resolution growth due to an
internal target in electron storage rings with or without energy cooling. We have evaluated in a
consistent way the contribution to the beam resolution and emittance of intrinsically diverging
processes, like the Single Scattering.

In particular, this model shows that the Single Scattering, the Mgller Scattering and the
Bremsstrahlung Energy Loss result in the continuous growth of the electron energy resolution
and beam emittance up to values which are related to the target thickness and machine
parameters by simple equations. These values, being related to the betatron and synchrotron
damping times, depend on Eds while the growth rate depends on E(;z . The beam energy
resolution increases linearly with the target thickness while the beam emittance increases more
than linearly due to the presence of diverging tails in the Single Scattering. A similar behavior is
expected when the damping is not taken into account. The energy resolution is a function of £12
while the emittance increases more than linearly with the elapsed time.

The model agrees with other theories and Monte Carlo calculations but provides relatively
simple analytical formulae that allow a fast and valuable description of many experimental
situations.

APPENDIX A - The transport matrices and the Single Scattering

At the interaction point the Single Scattering acts only on the direction x' of the electron
velocity, leaving the deviation € from the nominal energy and deviation x from the standard

0
orbit unaffected. Using the matrix description, its effect is described by means of the vector[ J
v

where yis the projected scattering angle. After n turns the Single Scattering effect becomes

# In a previous paper [16] we gave a wrong result because the Bremsstrahlung contribution to energy
resolution and phase space growth was overestimated due to an erroneous evaluation of equations (3.10) and
(3.13).
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Since the scattering angle y is very small, two or more scatterings that occurs before the
n-th turn add themselves linearly and the overall effect can be described as

C): 2 T (OJ i<n, (A.2)

number of Vi
scatterings

or

. =B, Z visin(2mi)tv) i<n, : (A.3)

number of
scatterings

x| = Z yicos(2@-imv) i<n , (A.4)

number of
scatterings

where i indicates the turn at which the electron scatters on the target. The effect of the betatron
oscillation, when the damping is switched off, is a phase contribution that reduces the variance
of the x and x' distribution. The mean value and the standard deviation, after k scatterings and n
turns, are given by:

k

<> =B, Z <yi> <sin(2(n-dnv )>=0 , (A.5)
i=1
k
Z <y> <cos(2(n-)mv )>=0 , (A.6)
i=1
< 1
o2 (nk) = <x2> = B2 Y <y? > <sin?(2m-iynv )>= 5 B2 <v*>, , (A7)
i=1
k
o (nk) = <x'?> = Z <y? > <cos?(2(n-i)nv )>= % N (A.8)

i=1

Generally, considering N, electrons crossing n times the internal target, the fraction f; of
electrons that interacts k times is given by the Poisson formula:

kK .-Acn

]
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and, describing the interaction as a function of the revolution time Ty, the elapsed time ¢ =nT,
and the mean rate of scattering Ag = A/T, the total of (¢) is given by the quadratic sum of the
of (1,k) weighted by f,: -

of ®= Z O‘xz (k) f, = % Bi<y?> Ay (A.10)
k=0

62(M=, 02 (LI f = 5 <V>hgt . (A.11)
k=0

The value of <|;/2>S/‘Lst was derived from (3.7) considering that At is the average value k
of scattering occurring in the time ¢. The value of <|//2>s has been numerically evaluated and
fitted with the following expressions (see Fig. 7):

<yP>g = [0.754 +0.289(15)*7] 2,2 A <4, (A.122)
<yP>s = [0.754 + 0.551+In((Agt) | 242 A4, (A.12b)

logarithmically increasing with the elapsed time.

3 :—r—v-rrmq-—r-rrrmq—r-rmnq—!-rrrmq'—l-ﬁ'ﬂrq
2.5 F 3
2 + 3
~
&
N;m 1.5 F 3 FIG. 7 - <V’2>S/xaz2 obtained from
v 1 B 3 a numerical evaluation of the gaussian
- v distribution. The line represents the
0.5 | 3 best fit reported as equation (A.12).
o E | L | . ]

APPENDIX B - Mgller Scattering: Distribution function of the projected
scattering angle.

The angular dependence of the Mgller cross section for relativistic electrons and forward
angles is:
déd¢

f(6,¢)6d6d¢ = Ik (B.1)
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and can be written in term of the projected angle y; related to the 6 angle by y= Bcos(¢), as:

2 -
f(w)dw:pﬁ%m . ®.2)

The projected angle y is described by the distribution function fp(u/)dy/ that, in the interval 6, <
0 < 6, corresponding to an energy transfer less then the machine energy acceptance K, can be
extracted from (B.2) with an integration over ¢ as follows:

” acos(y/6,) acos(y/6,)
Wy =7"’( Jeosk@)ds - 0Jcos2(¢>>d¢>]

_ d_v'{m . (1 - ﬁ)‘”l- (1] . (1 - ﬁ)‘”ﬂ}
w6, 62| o, 6, 62| o
=%”{g{é’3- g(e—":H 0<y<6,, (B3
o acos(/6,) ;
£ (wdy =—w;—” Jcos2(¢)d¢ - 'V%, g[e—"g ,<y<6,, (B4
and
(v =1,Cv) . (B.5)

From (B.3-5) we have obtained:

)
T/ 1 1
f(wdy=5|—7 - — |, (B.6)
(J P 2 (912 022)
[2)
2 (6,
J VEdy =702 B.7)
1

0, is related the minimum transfer energy that must be higher than the electron binding
energy [ = 16 Z%9 eV in the target and 6, to the maximum transfer energy that correspond to
the energy acceptance K:

2m0(:21 1/2
o, =[ -, (B.8)
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2myc?K 2 |
6, = £2 . (B.9)
0

These values can be obtained using for the transfer energy E the relationship E = Eosinz(e" /2)
that, for ultra-relativistic electrons, can be written in terms of the Laboratory 6 angle as:
E?

E= ;2 B.10
2moc2 ( )

APPENDIX C - The non-unitary staircase stochastic process

The stochastic process s(z,Ag) that appears in this paper in different expressions, has the

form

k
s(t,Ag) = Zsi d(t-1,) 1 <..<p<t, (C.1)

i=1

that corresponds to the stochastic derivative of the Poisson process

k
pt.Ag) = zsi U(-t) f<.<p<t, (C.2)
i=1

being U(z-1;) the unit step function, with characteristic parameter Ag = AT, and with the

following probability density:

(Aghk ets' k
65, Spkit) =S T [£6)) - (C3)
i=1

In text books only the stochastic process

k

x(5,A) = Y, U(-1) f<.<fst, (C.4)
i=1

with mean value

<x()> =4t , (C.5)

second order momentum
x> =At+ A2, (C.6)

and autocorrelation
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R (t,.1) = <x(t)x(5)> =At,+ A1t >t
=t +A% 1, >t (C.7)

and whose shape is a staircase with steps equal to 1, is studied.®) Then it was necessary to
extend the description to the more general process p(,Ag). From the probability density it was

straightforward to obtain all the statistical properties:
the mean value

400 +oo
<p(d> = k}; fas,... J'dsk p(t,Ag,S,...5) £(Sy...S.k.t)
i (Agt)K et
) S AL N N (C8)

]
P k!

the second order momentum
+oo +oo
<p2(t)> = ; JdSl... J.dSk pz(t,As,Sl...Sk) f(Sl...Sk,k,t)

“+o0

k
ds, ... stk (ZSiJz €S, ... 5, .k.0)
i=1

=Z J ds,... stk (Zs 2, Zs‘s}]f(s1 .Sk, 1)

k=1 1 i%j

(o3
I
—

I
M
U,

= <S> Agr+<5>2 A2 12, (C.9)

and the autocorrelation

R, (11.0y) = <p(t))p(1)> = <pX(1)> + <p(t))><p(t;-1)> n>t,

= <p¥(t))> + <p(t;)><p(ty-t;)> >t , (C.10)
that is
R, (81:1p) = <p(8))p(1)> = <§%> Ag t+ <S>2A2 1yt L>t

= <825 Ag 1, + <S> 1, t,>t, . (C.11)
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The process p(t,A) is equivalent to x(z,A) with the substitutions

A - <S> A, . (C.12)

A2 <$>248% (C.13)

and the s process has the following properties

<s()> = <S> A , (C.14)

R (1,,t;) = <§>? A% + <§%> A 8(1) =R (7) , (C.15)

S, (@) = 21 <§>% A% 8(w) + <5%> A , | (C.16)
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