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Abstract

The precision of I measurement of straight superconducting ca-
bles in solenoids can be limited by the magnetic field inhomogeneity.
A solution in order to improve the field homogeneity based on iron
shims is presented here. A conceptual design for the experimental
lay-out of a test station to be used in connection with the SOLEMI-I
solenoid at the Milan INFN Section (LASA Laboratory) is given.



1 Introduction

The new accelerator for high-energy physics foreseen at CERN, the LHC
(Large Hadron Collider), requires the construction of some 1,600 super-
conducting two-in-one dipoles 10-m long with a nominal field of 10 Tesla,
along with many other focusing quadrupoles, sextupoles, correcting dipoles,
etc. This large scale production of SC magnets will require approximately
4,000 km of SC cable with high performances (J¢ ~ 1,300 A/mm? at 4.2
K, 8 T; dtilaments = 5u), which is under development by several European
industries.

In order to test the performances of these cables and to investigate their
physical properties a new test station is at present under construction in
Milan [1},[2]. The work on the Iz measurements has produced in the last
years a large effort both for the definition of critical currents [3],[4],[5] and
for the experimental arrangement [6]. Purpose of this work is to present a
new experimental solution devised for Milan’s test station.

2 Current measurement systems

Superconductivity can only exist when temperature, magnetic field and
transport currents are below some values, characteristic of each material.
If we plot these values on a J,T, B graph, we obtain the so—called critical
surface.

In order to perform correctly the measurements, all the relevant physical
quantities must be well-defined. While no problem arises with transport
current flowing in the sample, that can be known with an accuracy of
1072+ 107*, and with temperature, that can be measured within ~ =+ 0.01
K in equilibrium conditions, the magnetic field has often an ill-defined
value due to its inhomogeneity in the measuring zone, and this reflects on
the accuracy by which the Io can be measured. Other factors can worsen
the accuracy of I measurements, like the pressure on cable that arises
because of the interaction between current flowing in the cable with the
total magnetic field, and the lack of cable cooling that may cause premature
quenching. In cables with high I, like those of LHC dipoles, the situation
is even worse, since in this case we have to face a large self-field effect;



the current distribution among the different strands is not known a prior:
and this introduces a further source of uncertainty. In any case in defining
the field inhomogeneity we explicitly do not take into account the self-field
coming from the current flowing in the sample itself, being our analysis
concerned on the applied field.

In the so—called hairpin geometry a wire is simply bent in a U-shape,
with the voltage taps put across the short horizontal zone. Usually the
sample holder is inserted into a small solenoid in such a way that the
horizontal measuring zone is perpendicular to the solenoid field. In this
case the sample is very short and usually experiences a field inhomogeneity
of the order of 5 — 10 %. In order to increase the useful length, and thus
the sensitivity, the wire can be wound onto a small cylinder. Moreover in
such a system the applied field on the sample is uniform. This last system
is the most diffuse for I measurements of wires and small cables.

More problems appear when cables. with several thousands Amps of I
are considered, like those for accelerator dipoles. They have a trapezoidal
section, with an high aspect ratio (the ratio between the width and the
thickness of) and a small keystone angle (the angle between the two broad
faces). Ic must be measured with the applied field perpendicular to the
broad face. Use of a solenoid to provide the background field suggests to
bend the cable in a loop in order to take advantage of the magnet sym-
metry both for the field homogeneity and for the forces exerted onto the
sample. Unfortunately bending of the cable on a relatively small diame-
ter (200-400 mm) with respect to the cable width (~ 20 mm) results in
a severe influence on the I¢, mainly because of stresses and current redis-
tribution among the strands. For such a cable the most straightforward
system for I; measurements is to use the free bore of a dipole, where the
cable can be arranged in straight lengths, like the BNL facility, at present
the world leader for such a measurement [7]. Another solution in order to
have a better external field is based on a split—coils geometry [8]. These
two solutions have the disadvantage that both require an ad-hoc device,
often more expensive than a general-purpose solenoid.

Despite the above—mentioned difficulties Ic measurements can be done
in a solenoid with the sample arranged in a loop. At Genoa University such
a facility has worked with a 6 T solenoid (@o0p ~ 400 mm) and it is being
upgraded to 8 T (¢iop = 250 mim) using an inductive method to supply a
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transport current up to 60 kA [6].

We propose an experimental layout with the cable is simply bent in a
U-shape, with the short horizontal segment perpendicular to the field, and
in which the applied field in the measuring zone is made homogeneous by
means of fully saturated iron shims. We prove in the next part that this
solution is practically feasible, and that it allows to have a field homogene-
ity, defined as (Bmaz — Bmmin)/Bo in the relevant region of about 0.5%, for
a solenoid field from 6 to 8 Tesla.

3 Iron shim design

3.1 The physical statement of the problem

The iron shim design can be mathematically described as follows: the flux
density B produced by a current J is given by the Ampere law:

VxB = pot (1)

whose most general solution is:
= po [ J(E)
Ba = vxto [ TEL pn
@) = Vx| 772" @)

In the case of an air coil solenoid made out of round current loops
eq. 2 may be solved in terms of elliptical integrals. Since the field is not
homogeneous inside the solenoid, we want to introduce some ferromagnetic
material in order to correct the field in a given space region. Eq. 1 can
be generalized to the case in which we have both magnetic materials and

currents:

V x (—]'Ei —M) =7 (3)
Ho
where M is the magnetization. This is quite a complicated equation for
ferromagnetic material since M is a non-linear function of H. In our case,
with a solenoid field of 6 T or greater, we can assume that the iron is fully
saturated, M then reduces to a constant with | M | ~ 2.1 T. Because of
the finite length of the solenoid the field lines are not parallel to the z—
axis, furthermore the iron shims have not a null demagnetization factor;



as a consequence the magnetization can not be uniform. In any case we
point out that in the region of interest, about 20 mm far from the median
plane, the field is almost parallel to z, within 0.5 degree, and it is so large
that the contribution of the demagnetization effect is completely negligible,
so that it can safely be assumed M || B || z, where Bc is the magnetic
field provided by the air core solenoid. The total field inside solenoid is

B = Bc + B, where B is the contribution from the shims. ﬁc is provided
by equation eq. 2, (where J is now the transport current flowing inside the

solenoid), and B is

2 M
B=vxke [ YXY (4)

ar ) | T -3 |

Since the value of M is uniform in the iron, the above integral reduces
to an integral over the volume surface, where the term V x M is equivalent
to surface magnetization current J SM-

From an intuitive point of view we assume that in order to have a
uniform field on the median plane we need two iron shims, placed symmet-
rically respect to the median plane. It is expected that these shims will be
thicker in the central region (where the solenoid field is weaker) and thin-
ner in the outer region, the shape being described by two curved surfaces.
From a mechanical point a view, a stepwise surface is much more easily
machined than a arbitrary curved surface (see fig.1).

For such a shape the iron shims are equivalent to a set of solenoids
placed on the cylindric surfaces of the shim, with a surface current density
given by the saturated value of magnetization, Jsyr = M,q; in this case
the total field (field from solenoid plus field from iron) can be expressed in
terms of elliptical integrals. Once the shim geometry is known, the field
can be easily calculated. In sec. 3.3 we solve the inverse problem, that is
to find the dimensions of the shim from the desired shape of the field. This
process will be called shim optimization.

It is apparent from the above considerations that an ideal optimization,
i.e. one for which the field on the median plane is exactly constant, may be
obtained at most for one given value of the solenoid central field. If the same
shims are operated with a different solenoid central field, the total field in
the median plane is no longer constant. Before calculating explicitly the
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shape of the iron shim now we want to answer to the following question:
if we want to operate between two values of solenoid central field, say B,
and B,, at which value should be performed the optimization, and what
is the worst homogeneity obtained when the solenoid central field is swept
between B, and B; ?

3.2 On the maximum attainable correction

Let’s assume that for a value By of the solenoid central field we have a
perfect optimization, that is the total field on all the points of median
plane is equal to B¢(0, r)+B(0,r) = cost, where B(0,r) is the contribution
coming from the iron shims.

The solenoid field on the median plane may be expressed in terms [9]
of a power expansion of the form:

Be(0,7) = By - (1 +_ Aer®), k=2,4,... (5)
k

a perfect correction for a given value of By may then be reached if the
contribution from the iron shims looks like

B(0,r) = Bo— Bo Y_ 47", k=2,4,... (6)
k

where By is the contribution of the iron to the central field.

It is clear that for any other value of the solenoid central field the opti-
mization is no longer perfect, since the solenoid field at any point r scales
linearly with the central field, whilst the correction field remains constant,
at least as long as the iron contribution may be regarded as constant. It is
interesting to find out what is the best homogeneity achievable on a given
range of solenoid central field B;—B;, as a function of By, the field at which
the optimization has been performed.

The maximum absolute inhomogeneity for an arbitrary solenoid central

field B’ is defined as
AB = Bpoz — Bpin = IBedge - Bccnterl (7)
=m3+yzmm+m—mzmmﬂqy+&n
k k

=S AwR*|B'- Bo|,
k



where R is the maximum value of » at which optimization is performed.
The relative inhomogeneity is then:

AB

B center

|Bo — B’
B+ Bo .

= AuR"- (8)

e

The inhomogeneity is therefore 0 for B’ = By, for B’ # By increases
linearly; it reaches its highest value when B’ = B; or B’ = B,. Now let’s
consider By as a running parameter, in fig. 2 it is reported the relative
inhomogeneity at the two values B, and B, as a function of By. The full
line represents the worst value over the range B,-B,. It is apparent that
best homogeneity is reached at that value of Bo where the two straight lines
cross; and from simple algebra this value is found to be

_ Bo(B1 + B;) + 2B, B,

B = — 9
° 2By + B, + B> ®)

In our case B;= 6T, B,= 8T and By ~ 0.25 T. The best value at which
optimization should be performed is then found from eq. 9 to be 6.86 T. This
value is almost independent of Bo, since Bo <« B, B, and therefore terms
in which B, appears are small; in practice the result does not change for
any value of By from 0.15 to 0.5 T. The maximum homogeneity achievable
is calculated from eq. 8 to be 0.52 %. To solve this, we need not know the
detailed value of {4}, but only the sum 3, A, R* that in our case turns
out to be 3.8% for R=21 cm.

3.3 The mathematical description

In order to solve practically the above problem, the optimization on the
median plane will be performed on a given mesh, described by a set of m
radial points {ry,7s,...,7n}. The optimization is made starting from a first
feasible design and then changing the geometrical dimensions until a better
solution is obtained. A dedicated computer code for this task is explained
in this section. At present only the height of each iron disk can be varied,
while the radii are kept fixed. This has been done for seek of simplicity; a
improved version of the program that allows to change all the geometrical
parameters is foreseen.



From a mathematical point of view, the optimization process described
above amounts to minimize the function

m

Z(-B"i - B)z’ (10)

i=1

where B, is the field at the point r;, and B is the optimized field value

pursued.
The two iron shims are identical and can be described by means of 2n+1
parameters $;,%;,¢ ¢ =1,...,n where nis the number of iron disks, s; and

¢; are the height and the radius of the lower edge of each disk (see fig. 1),
and c is the upper plate height.

The geometrical parameters being varied are bound to some constraints
(the height of each disk can not be less than zero):

8; < Sjp 3 =1,2,...,n Spp1 = C (11)

In principle other constraints could be added, e.g. imposing that the
total height of the shim be equal to a given value, as well as other values
now being kept fixed (like the final field value B in eq. 10) could come into
play. This requires only minor modifications to our program, and it will
likely be done in the future.

Now let’s write down explicitly eq. 10. First suppose we have a first
feasible solution, described by a set of values

OO =12, (12)

The total field at point 7;, B,,, is the sum of the solenoid field, B,
plus the field produced by the iron shims. From what has been discussed
in sec. 3.1 it is clear that the iron shims may be approximated as a set of
solenoid with radius ¢; and height s;1 — s;, and with surface current density
Jsm = M,qe; then B, looks like:

Br.‘ = B::ﬂ + Z f(sj’ sj+l7tj’7'i)7 (13)
=1
where f(s;,8;41,tj,7:) is the contribution to field at point r; coming

from the j — th disk. Now we can express this factor form f as a power
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expansion in terms of h; = s; — sg_o)- Taking terms up to the first order and
substituting in eq. 10 we obtain

o~ [ peat N0 (0) (O n 9f(s5, 541,15 57i)
Z(Br.- —B+Y_ f(s5 s 85415t i)+ 2 5.
j

i=1 i=1 i=1

—,4(0)

Jj—lj

1]
3j+1=a§_21 2
'hj 3

(14)

that can be rewritten, with obvious notation, as:
Z(ai+zbijhj)2 = Za12+2za‘b‘.7h1+z (Zh’b’j) (Zb-"h‘) (15)
1 J 1 17 J s 3

Eq. 15 can be rewritten in matrix notation, with 4 = {a;}, H = {h:} and
B = {b;;}. The first term, 3_; a?, can be neglected since it is constant and
therefore has no influence in the minimization process.

1
(4" + 3B (B"B)H. (16)

Constraints (11) are now rewritten as
hy > (s = 5”) (a7)

The problem expressed by eq. 15 or 16, along with constraints (17) is
well-known in the optimization theory with the name of quadratic program-
ming, and the function to be minimized is referred as objective function.
In the next section this problem will be explicitly solved. Now we want to
emphasize that eq. 15 or 16 are only a first—order approximation of eq. 10,
and it is therefore of great importance to start from a first feasible solution
(12), already known to be a good approximation, in order to have a fast
convergence of the solution.

3.4 The implementation of the alghoritm and the re-
sults

The computer code exploits the routine E04NAF taken from NAG library,
which is devoted to the solution of quadratic programming problems. Start-
ing from a given first feasible solution, the program gives the suggested
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changes of the iron disk heights. The effect of these changes is then eval-
uated explicitly by means of another computer code which can calculate
with (in principle) an arbitrary precision the magnetic field produced by
the system solenoid plus iron shims. The new solution along with its field
map on the median plane can be reintroduced in the optimization program
in order to have an improved accuracy.

No cross—check of optimization program is needed, since the exact effect
of the new design is explicitly verified. In fig. 3 the result of two iterations
is shown. The full line is the total field on the median plane with an *hand-
made’ design of the iron shim; stars and dots represent, respectively, two
subsequent iterations. It is seen that a good result is rapidly achieved.

In fig. 4 median plane field is shown for an iron shim optimized for a
6.86 T solenoid central field. Squares refer to the field with a solenoid field
of 6.86 T (the optimization value), dots to the case with a s~lenoid field of
6 T and stars to the case with 8 T. Field values on the y-axis are expressed
as differences from the central field value for each case, in order to compare
them. In the three cases following homogeneity is achieved:

B, .. B i AB | Beenter | inhomogeneity
8.2914 | 8.2461 | 0.0453 8.29 0.55 %
7.1016 | 7.0965 | 0.0051 7.10 0.07 %
6.2389 | 6.2073 | 0.0316 6.24 0.51 %

As can be seen, results are in good agreement with the estimate of
eq. 8. We regard this value of inhomogeneity as acceptable, since the field
homogeneity is spoiled also by the cable self-field, which can be as high as
0.5 T It must be emphasized, however, that those two inhomogeneities (i.e.
self-field and solenoid field inhomogeneity) do not compare, since the former
is experienced only by a part of the cable, while the latter is homogeneous
on a full section. Nonetheless this points out that a great effort in order to
get an applied field homogeneity better than 0.5% is not worth.
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4 The general lay—out of the measuring sta-
tion

The iron shims are the new feature of our apparatus. Now we pass to
describe briefly the other details. A preliminary design is shown in fig. 5.
The sample is composed by two sections of cable, soldered at one end,
while at the other end they are connected to the current leads. In order to
accommodate the cable and to keep tight the whole system, stainless steel
plates are put between the sample and the iron shims, as well as outside
the iron shims. The whole system of sample, iron shims and stainless steel
plates is kept fixed by means of screws.

4.1 Forces on the cable

A major problem in our scheme are the electromagnetic forces exerted on
the sample cable. A straight cable, carrying 30 kA in a 8-l applied field
experiences a net force of 240 kN-m™', i.e. some 100 kN in our case. A
widely used solution is to have two cables, electrically insulated but tightly
clamped together, carrying the same current flowing in opposite directions.
In this way no net external force remains, but for the unbalanced section
of cable between current leads. This leads, depending on the exact path of
cables, either to a residual lateral net force of 20 kN, or to a torque of ~
1kN.m; in both case forces or torques should be supported by the helium
vessel.

We are investigating a solution where forces are discharged directly onto
the cryostat bottom plate to avoid excessive stress on the weldings. This
bottom plate is kept in position by means of a set of pretensioned titanium
rods so that forces are eventually discharged on the bottom plate of the
vacuum chamber, at 300 K.

In our design the internal repulsive force should be borne by twelve
screws. In order to accommodate the screws, twelve holes should be done
in each iron shim. The effect of these holes, with a diameter of 10 mm, is
about 0.03 % of the field at 6 T, and as such it can be neglected.
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4.2 Current leads

Special design current leads from Fuji (J) have been adopted. They are
optimized for a steady current of 12,000 A and they can withstand 30,000
A for a period up to 3 minutes with only boil-off helium cooling. Better
performance can be obtained with helium extra-cooling. Consumptions for
each current lead are reported in the following table.

I(kA) Q (Watt)

0-8 ~ 10
12 ~ 14
22 ~ 26
30 ~ 42

A description of a possible measurement cycle is given in the next ta-
ble, along with the estimated consumption for each lead. The total helium
consumption is expected to be ~ 40 litres.

time | current (kA) | power (W) consumption
(liters of helium)
30’ fill-up 10 7
10’ <8 10 2.5
10° < 12 14 3.5
5’ < 22 26 3
5’ < 30 42 5

The measurement time lenghts quoted are estimated in order to allow
the current to distribute uniformly among strands.

4.3 Cryostat design

In this section we make an estimate of the cryostat consurption. Since
we found that this is largely smaller than the consumption for a measuring
cycle, no special effort has been done in order to optimize the cryostat from

this point of view.
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4.3.1 Liquid helium consumption estimate

The losses for thermal conduction in the helium cryostat, radiation from
the nitrogen shield and funneling are estimated as follows:

e Thermal conduction between helium temperature a.i 1 liquid nitrogen
temperature for a 5-mm thick 50-cm wide helium can, where the
helium level is 40 cm far from the liquid nitrogen point, is:

A [TK 79(cm?)
P(Watts) = - [ " MT = 577 - 3(Watt - em™) = 5.
(W atts) T )& 20(cm) 3(Watt-cm™') =5.9 (18)
If no LN, (or gas cooled ) shield were present, heat flowing directly
from room temperature to helium bath would be at least twice as

high for any reasonable geometry of cryostat.

e Radiation losses from the LN, shield to helium cryostat.
Covering the LN, shield with commercial isolating aluminum tape
can be reduce the emittance down to 30 mW/m? without special
care for surface conditions. In this case the total heat flux from
nitrogen to helium turns out to be ~ 100 mW, that would rise up
to ~ 280 mW for a nitrogen shield temperature of ~ 100 K. This
contribution is therefore negligible if compared to the heat conduction
in the cryostat wall. Also in this case, should no thermal radiation
shield be present, the radiation flux from room temperature to liquid

helium vessel would be ~ 23 Watts.

e Funneling
Radiation flowing from top of cryostat (at room temperature) to lig-
uid helium is expected to be less than 5 Watts, and it can be reduced
of one order of magnitude by means of a few shielding disks.

Summing up the three above contributions, the total heat flow in helium is
expected to be < 7 Watts, coming chiefly from heat conduction. This value
amounts to 10 liters of liquid helium boil-off per hour. It is worth pointing
out that this is a preliminary and conservative estimate, and that a better
design of the cryostat could reduce significantly liquid helium consumption.
If superfluid helium is to be used a A-plate is foreseen with a cooling power
of 5 Watts at 2.2 K. The bus—bars used to feed the sample through the
A—plate should consume about % liter of liquid helium per hour.
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4.3.2 Liquid nitrogen consumption estimate

Calculations for heat flux on the nitrogen shield are analogous to those for

helium.

e Thermal conduction between nitrogen and room tempe-ature
In this case the integrated conductivity is 27 Watts - cn™?!, and the
total heat flux is ~ 100 Watts for a 5 mm thick wall and a distance
of 20 cm between room temperature point and liquid nitrogen shield.

e Radiation flux form outer vessel to nitrogen shield
Liquid nitrogen shield may be isolated from the outer vessel by means
of either highly reflecting surfaces or multiple aluminized mylar layers
(superinsulation). In both cases the heat flux lies in the range of 10—
20 Watts.

Even in this case the larger contribution of heat flux comes from thermal
conduction. The total heat flux is ~ 120 Watts or ~ 31/h of liquid nitrogen.

Since the radiation shield is kept at liquid nitrogen temperature only
on a loop, the largest part of the shield is cooled via thermal conduction.
In order to have a correct transfer of heat inside the radiation shield, its
thickness must be thoroughly evaluated. This should be large enough not
to have an exceedingly large temperature gradient inside the shield. If the
maximum AT must be less than 10 K, shield thickness should be at least
2.2 mm (for a copper shield) or 3.6 mm (for an aluminium siield).

Another solution is to join the radiation shield to a suitable point of the
helium cryostat neck. In this case the shield is cooled by the helium gas
evaporated from the bath. This solution is mechanically simpler and easier
to operate, on the other hand helium consumption is increased of about
30% compared to the liquid nitrogen cooled radiation shieid. In both cases
vertical cuts should be made on the shield in order not to have too large
eddy currents.

5 Conclusions and Acknowledgments

We have presented a conceptual design for a device to measure I¢ for
straight cables. Whilst the magnetic parts (i.e. the iron shims) are near to a
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final definition, mechanical design is only preliminary and further work is re-
quired before constructing. Following items should be investigated, among
the others; residual forces and torques between dipole and iron shims, due
to their misalignment, or between the current leads and the solenoid.

The authors wish to acknowledge prof. E. Acerbi for the fruitful discus-

sions that led to the idea of a field corrector based on iron shims.
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Figure 1: Iron shim design. The two shims have a cylindrical symmetry
around the solenoid axis, as well as a reflexion symmetry around the median
plane. In the enlarged box are reported the definitions for shim dimensions.
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Figure 2: Maximum field inhomogeneity over the range 6-8 Tesla, as a
function of By, the field at which optimization is perform :d.
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Figure 3: Field distribution on the median plane at different steps of op-
timization process: full line represents an ’hand-made’ shim design, stars
and dots refer to two optimization iterations. It can be seen that a good
result is rapidly achieved.
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Figure 4: Median plane field at 6, 6.86 and 8 T for a shim optimized at
6.86 T, for a radius of 0-21 cm. Field values on the y-axis are expressed as
differences from the central field value for each case, in order to compare
them.
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Figure 5: General lay—out of the measuring apparatus inside the SOLEMI-I
apparatus. Iron shims are dashed.
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