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ABSTRACT:

The Double Balanced Mixer (DBM) is a 3-ports device producing an output signal as result
of the interaction between two input waveforms. A theoretical analysis of this interaction
and its dependence from the levels of the input signals is the topic of this paper, to demon-
strate the linearity improvement which can be achieved for phase detection, using the DBM
with comparable input amplitudes.

1. Introduction

The circuit model of a DBM is reported in Fig. 1, where the 3 ports are shortly indicated as
LO (Local Oscillator), RF (Radio Frequency) and IF (Intermediate Frequency).



Because of the high symmetry of the circuit, it exhibits a very good insulation between the
3 ports. This means that a signal applied to a single port produces, at the first order, no
voltage at the other two. Practically the isolation falls with frequency down to a typical
value of 30 dB at the highest operative frequency of the device.

Fig. 1: DBM circuit

The network of Fig. 1 is a non-linear one, therefore the device behavior can not be de-
scribed using the superposition theorem; the simultaneous application of voltages at two
different gates produces a degradation of the electrical symmetry inside the circuit and then
a voltage appears at the remaining gate. So that, the output signal is determined by the
levels and frequencies of the input waveforms and depends on the choice of the input gates.
Particularly, when the device is used in homodyne systems, the gates LO and RF are cho-
sen as input ports; the processing waveform is usually connected to the port RF, the LO one
being driven by a reference signal.

2. Driving RF port with a low-level signal (compared with the LO signal)
2.1 General Equation

Let us consider an RF signal much smaller than that applied at LO port, the latter being
high enough to fully forward drive the diodes of the ring. Hence the conduction status of
the diodes is just controlled by the instantaneous voltage Vio(t): when its value is greater
than the diodes threshold V., the D, — D, pair is switched on, while, for negative values,
when Vio(t) < —V,, the pair Dy — Dy is forward biased. As a consequence, in the former



case the B node is a virtual ground and the output voltage V;r(t) is given by the equation
Vir(t) = —Vrr(t); in the latter case the C node is a virtual ground and the output voltage
becomes Vig(t) = Vrr(t).

Conversely, when the module of Vo(¢) is lower than V., no voltage appears at the IF output
port, the 4 nodes of the ring becoming "floating points". The overall behavior of the device
is therefore described by the following equation:

Virt) = —s(t) - Vrr(®) (D
where:

0 if [Vio@®)| <V,
s(t) = (2)

sgn[Vio(t)] if |Vio®)| >V,
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Fig. 2: DBM equivalent circuit for small RF signals
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Fig. 3: "switching function" s(t)



Equations 1) and 2) point out that the DBM, driven with a small RF signal, performs an
analog multiplication between the RF waveform and a three-levels square wave, whose
shape depends on the LO voltage istantaneous sign and amplitude (see Fig. 3). For this
reason the DBM is employed for frequency translation, phase detection and coherent de-
modulation.

Let us consider a sinusoidal source, with frequency wy, feeding the LO port. Representing
this source as a voltage generator having an amplitude 2Ay, twice the nominal value, with
a series resistance Z,, equal to the transmission line characteristic impedance (usually 50
Ohm), the load voltage equals the nominal value, if the source is properly matched. Since
the central tap LO transformer is equivalent to an ideal 2:1 transformer, the primary voltage
and current have to be respectively one half and twice, with respect to those at the sec-
ondary. The resulting equivalent circuit for the primary is presented in Fig. 2.

The function s(t), given by Eq. 2, has the plot reported in Fig. 3, i.e. a square wave having
unit amplitude, wy, frequency and a cutoff angle 2a;,, corresponding to the time interval in
which the LO signal is included in between the two threshold values +V,.

As it’s easy to demonstrate that:

sina, =V, /2AL ?3)

calculating the Fourier series expansion of s(t), we obtain:

= el sin(nw/2)
— .WLt - inwgt
s(t) = ";” Spel ™t = ”;” n2 cos(na,)e’ ™~ (4)
where:
+T/2 ) .
8, =1/T- / s(t)e It = sin(n/2) cos(nay,) (5)
-T/2 nw /2

Let us consider a periodical input signal at RF port, with frequency wg:

Ver(t) = Vrr(wrt + D) (6)
whose Fourier series expansion is given by:

+00
Ver(t)= ), vRme ™ 7

m=—00



Then Eq. 1 may be rewritten in the following form:

+00 .
2 ;
Vir@t) = — E %ﬁ—) COS(Na, )W Rye st mwit+®)] ®)

This last expression, sometime reported in equivalent form, is called "the general mixer
equation”.

The resulting signal is a superposition of spectral lines, containing all the frequencies ob-
tained by a linear combination (with integer coefficients) of the two fundamental frequen-
cies wg and wy, except the even coefficients of wy, which correspond to null values of s,
(see Eq. 5).

2.2 Coherent input signals

Let us consider coherent input signals in the same hypotesis introduced above, i.e. wi =

WR = w,. Then Eq. 8 becomes:

Vir(t) = — Z wcos(nao)vaef[("m)‘"n*W‘I’] ©)

nw/2

and the dc level V,, of this waveform, which can be obtained by the use of a low-pass filter
(LPF), is given by:

m,n=—00

Vo= Vi@ = - Y P costharune® =
= o
=— E 2%1;2/2—) cos(ka,)|vri| - cos[k®D + Arg(vr)]

which gives, for a general RF waveform, the dependence of the dc output level V, from the
phase offset @ between the two input signals. Particularly, if the RF signal is a monochro-
matic one, i.e. :

VR+1 =AR/2 ka=0 Vk 7!:1:1 (11)

Equation 10 becomes:

Vo= —-;2; cos(a,) A g cos(P) (12)



This simple result points out that, in the above specified conditions, the dc output level of
a DBM depends on the RF signal amplitude and phase (referred to the LO signal); thus the
device is suitable for homodyne systems and phase detection.

Looking at Eq. 12, we can note that the term cos(a,) is produced by the diode threshold
V,. In fact from Eq. 3 we have:

cos(ar) = /1~ (V,/241)? (13)
which, if V,/AL << 1, becomes:

cos(a,) ~ 1 — 1/8(V,/AL) (14)

Equation 14 shows that the term cos(a,) gives a second order contribution to Eq. 12; this
is because, if V,/A, << 1, the LO signal crosses the cutoff region when its derivative
has a maximum and the cross time is very short, compared to the signal period. Thus s(t)
approaches a square wave, given by the istantaneous sign of the LO signal, i.e. :

s(t) ~ sgn[cos(wrt)] (15)

This result is very important and it will be used in the following, in which the DBM will be
supposed to perform like with ideal diodes (V, = 0).

3. Driving RF port with a high-level signal (of the order of the LO signal)
3.1 General approach

Up to this point we have considered a LO signal high enough to forward drive the diodes,
together with a RF signal substantially smaller. When this last condition fails, the theoret-
ical approach to the device behavior has to be reconsidered and, because of the previous
results, we do that neglecting the diode threshold voltage.

If LO and RF signals are of the same order of magnitude, the diode conduction is determined
by an istantaneous comparison between the two inputs. Moreover, it’s easy to demonstrate
that the diodes conduction status is controlled by the input having the istantaneous higher
module.

When the RF signal prevails, the Dy — D, and D3 — D pairs are alternatively switched on,



grounding nodes A and D for, respectively, negative and positive voltage values.
Conversely, when the LO signal prevails the Dy — Dj and D, — D pairs are alternatively
switched on, grounding nodes C and B for, respectively, negative and positive voltage val-

ues.
As a synthesis, the device behavior can be now shortly described by the following equation:
. Vio(t
— sgniVio®] - Var® if |22 51
Vrr(?)

Vir(t) = (16)

_ sgnlVar®] - Vio® if |28

<1
Vrr(t)

3.2 Coherent input signals

Let us now consider two coherent sinusoidal input signals, having a phase offset ® and
comparable levels. i.e. :

Vio(®) = AL cos(w,t) 17
Vrr(t) = Ar cos(wot + ) = kAL cos(w,t + D) (18)

where the dimensionless parameter k express the amplitude ratio between the RF on LO
signals. While for k — 0 the low-level approach is quite adequate, whenever the value of
k increases, Eq. 16) becomes:

— sgnfcos(wot)]kAL cos(wet + D) i f E‘;’:(‘:__%t)&)_) > k
Vir(wot, @) = 19)
. cos(w,t)
- sgnlcostunt + @Az costet) ¢ cos(wot + D) <k

and the dc level V,, (®) of this waveform is given, as it is reported in the Appendix, by:

- +T/2 2
V. (@) = Visr@h,® = 1/T - [ , , Virtest 0t = 20, 20)

where:

1+ k2 + 2k cos(®@) — /1 + k% — 2k cos(®)

% (21)

gr(P) = —



A typical IF waveform is presented in Fig. 4.
The g (P) function express the normalized response with respect to the RF level and there-
fore it gives the dependence of the shape of detection characteristic from the value of the k

parameter.
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Fig. 4: IF output waveform for large RF signals

The function plot is presented in Fig. 5, for two different values of k (0 and 1 respec-
tively); since the function gx(®) is an even one, i.e. V,, (—®P) =V, (P), the plot is reported
only for the [0, w] P range.

For any value of k, inside the O to 1 range, the gx(®) function intercepts the points (0, —1),
(x/2,0) and (=, 1), the k parameter being just the controller of the fitting plot shape.
When RF signal amplitude is substantially smaller than the LO one, we are inthe k — 0
case and then Eq. 21) becomes:

gk—o0 = — cos(P) (22)

which is equal to Eq. 12 when a, >~ 0.
Conversely, increasing the value of the k parameter, the device characteristic curve becomes



more linear, progressively approaching a triangle waveform. This behavior is quite agree-
able because it performs a linear region broadening.

As a matter of fact, computing the characteristic derivative, we obtain:

dge _ sin(®) ( 1 N 1 )
do 2 V1+k2+2kcos® +/1+k?—2kcosd

(23)

which, independently from k, and has a maximum for ® = x /2 given by:

dgx 1

@ D=7 (24)
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Finally, if we fix for phase detection a maximum allowable linearity error ¢ (defined as
the ratio between the derivative deviation from maximum and the maximum value itself),
the instantaneous working point of the DBM has to be hold inside an interval (centered on
the @ = x/2) having a width Ady(e;), which depends on ¢;.

It‘s easy to demonstrate that the linear region width depends on k. Particularly for k=0 and
k=1 is given respectively by:

Ad, = 2\/_2?1 [rad] (25)
AD, =4v/2¢;  [rad] (26)

PHASE DETECTOR CHARACTERISTICS
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Fig. 6: DBM experimental characteristic for k ~ 1
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We can conclude that from k=0 to k=1 the linearity range is increased by a factor of two;
hence, using equal amplitudes for LO and RF signals, the device linearity for phase detec-
tion is considerably improved.

The experimental characteristic reported in Fig. 6) shows this linearization effect when the
two input signals have the same amplitude (k=1).

Appendix

In this appendix we want to show how to get Eqs. 20 and 21 from Eq. 19, that express
the DBM output voltage Vrr(w,t, ®), when comparable input levels are employed.

Let us consider the dc output level, i.e. the mean value of the IF voltage over a whole period
of the output signal itself.

Looking at the Eq. 19) it’s easy to demonstrate that the IF waveform has a frequency twice
the value of the input frequency w,, i.c. :

VirWwot + 7, @) = Vip(wot, @) (27)

Then the IF dc level is given by:

wol+w
V@)= - / Vie(et, B)dwat) 28)

wet

Still looking at Eq. 19 it is also evident that:

ViFr(Wot, @ % x) = —Vir(wot, D) (29)

Then it is possible to limit the calculation inside the [0, x] range of the & variable and
subsequently to extend the result at the remaining & values.

The Vir(wot, ) plot changes abruptly around the 4 points called a;, a2, a3 and ay, as can
be see in Fig. 4.

The 4 values are solutions of the following trigonometrical equations:

k cos(a + D) 1+kcosd
—— " =-1= tana= ——— =
cosa ksin® (30)
1+kcos®d
= ay = arctan ————— az=a1+%

ksin®
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k cos(a + D) 1—kcosd
—— <=1 = tnmag=—————— =>
cosa ksin® 31)

1—-kcos®

= a9 = ¥ — arctan -
2 ksin®

Qg =ar+7m

Now calculating the integral in the Eq. 28, using the interval [a;, a3] as integration range,
we obtain:

)+

Vo(®) = (4/7) - Um cosada+k / cos(a + <D)da] =

= —(A/‘R')[k sin(az + D) + ksin(a; + @) +sina; — sinay] = —(A/ﬂ‘)[k sin az-(32)
-cos®+ kcosaysin® + ksinaj cos® + kcosay sin®d + sina; — sinas] =

= —(A/m)[—sin az(1 — k cos @) + sin &y (1 + k cos D) + k sin D(cos e + cos a3)]

Directly from Eqgs. 27 and 28 with simple trigonometrical manipulations, we obtain:

sin oy = 1+kcosd cosan = k sin®
Y Vit k2 +2kcos @ ' Vi+k +2kcos @ 3
Sin oy = 1—kcos® oS = — ksin®
2 V1+ k% —2kcos® 2 V1+k?—2kcos®
Then, taking into account Eq. 30, Eq. 32 becomes:
(1 + k cos ®)? (1 — kcos ®)? s
Vo(@)=—-(A/n - + (k sin ®)*-
(®) = —(4/ )[\/1+k2+2kcos<b V1+k?—2kcosd ¢ )
(Freiamms v ms) |-
V1+k?+2kcos® +/1+k?—2kcosd
(34)
1+k%+2kcos® 1+ k2 — 2kcos®
=—(A/1r) — = =
V1+k?+2kcos® /1+k?—2kcosd
2. V1+k*+2kcos®— /1+k2—2kcos® 2
=——kA v =—-Ap - gi(®P)
T 2k T
with:
V1+k2+2kcos® — /1+k2— 2kcosd
gr(®) = —

2k

that is Eq. 21, which we had to demonstrate in this appendix.
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