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ABSTRACT

A new method for pumping a single passage high gain FEL is presented, based on the
exploitation of a sub-harmonic input signal which drives the start up of the exponential gain on the
fundamental harmonic of the wiggler. Significant gain enhancements can be obtained: furthemore,
the advantage of the SHOK scheme is very pronounced in the VUV soft X-ray domain, where no
coherent input signal is available at such short radiation wavelengths, since it allows to employ the
comon available UV laser beams as input signal for a XUV FEL.

1 - INTRODUCTION

One of the main open problem in the operation of FEL-s and Optical Klystrons within the short
wavelength domain is the difficulty to find a suitable coherent signal (i.e. a laser beam) to be used
as the input radiation field for the FEL amplifier(1). Being straightforward that a VUV X-ray FEL
must be a single passage amplifier(?) (due to the lacking of efficient mirrors in this frequency
range), an input signal is needed to be injected into the wiggler and amplified via the high gain FEL
mechanism, based on a strong coupling between the wiggle electron beam motion and the radiation
field. The best results, in term of coherence and output power of the radiation field, are obtained
with a coherent input signal with same radiation wavelength as the fundamental resonating
wavelength of the selected wiggler-beam system (3).



In the SASE (Self Amplified Spontaneous Emission) mode of operation the input signal is
directly the incoherent spontaneous emission produced by the beam because of its transverse
motion in the wiggler. The field power of the spontaneous emission radiation scales with the beam
current I and with the square of the beam energy Y2 it can easily reach some tens of kW per meter
of wiggler(?), for wiggler-beam systems tuned to radiate in the X-VUV range. Whenever the hi gh
gain conditions are satisfied by the beam-wiggler system, the exponential growth of the self-
amplified radiation sets up and the field power (at saturation) comes out to scale() like I4/3
(whenever the superradian effects(5) are negligible). The advantage of the SASE mode is that no
input signal is required: however the coherence of the output signal is lower. The coherence length
of the output signal produced in the SASE regime is indeed given roughly by the slippage length:
since the electrons interact with one another via the common radiation field, the interaction length is
equal to the slippage length, hence the photons separated by more than the slippage length are of
course decoupled. Therefore, the start up of the field amplification process from photon and
electron populations which are both randomly distributed in phase cannot assure a narrow
bandwidth and a coherent output signal.

Some frequency multiplication scheme have been recently proposed to avoid this difficulty ©.7):
they essentially consist of a double (planar) wiggler cascade in which the fundamental harmonic of
the second wiggler is tuned at the same frequency as one of the higher (odd) harmonics of the first
wiggler. At the passage between the two wigglers a jump in frequency is obtained by a factor 3 or
5: the advantage is clearly that the coherent input signal injected at the entrance of the first wiggler
is lower in frequency than the radiated field at the output of the whole system. Hence, laser beams
available in the UV range can be converted in the X-VUYV range and amplified up to high peak
powers level(?) (some hundrets of MW). However, such schemes have the disadvantage to require
two different (and in some cases separate) wigglers, fact that strongly increases the un-reliability of
the whole system and all the problems related to beam-radiation phase mis-matching, beam
transport, wiggler tolerances, etc. Moreover, high frequency multiplication factors cause a relevant
gain decrease in the second wiggler because of the induced energy spread by the first wiggler on
its fundamental harmonic, which is seen as an incoherent energy spread by the fundamental
harmonic of the second wiggler(8): theefore the frequency multiplication cannot be higher than a
factor 3 or 5 if the FEL performances need to be saved.

In this paper we present a scheme of frequency multiplication operating with only one wiggler,
requiring no input signal nor on the fundamental neither on higher hamonics and an unbunched
beam at the wiggler entrance, i.e. a device capable to start up the exponential gain process on the
fundamental harmonic just from the equilibrium condition of zero field and zero bunching. This
device is based simply on a sub-harmonic signal injection: under proper conditions, the
subharmonic coherent input signal is capable to induce a modulation in the beam energy (i.e. a
coherent energy spread) which is converted into a bunching by the wiggler dispersive action.

The first section is devoted to illustrate the extension of the FEL Compton equations to the
presence of a sub-harmonic field wave and to present some general results obtained by the
numerical integration.



The second section presents a first possible application of the SHOK scheme to drive a FEL in

the VUV range, to obtain coherent radiation at a wavelength of 40 nm with a peak power of some
hundrets of MW.

The last section presents the possibility to reach the so-called "water window" at 5 nm of
radiation wavelength via the exploitation of an extended SHOK scheme.

Both the experiments should be feasible within the context of the ARES(17) project - as
presented in the "ARES Design Study" -, which anticipates the design and construction of a SC
LINAC able to produce high brightness electron beams in the 400-800 MeV range.

2 - The SHOK scheme

The break up of the equilibrium condition of zero field and unbunched beam, which is a stable
fixed point for the FEL equations, is achieved via the injection of a sub-harmonic input signal,
matched to the electron beam, into the wiggler. This signal can be a laser beam at a suitable
frequency being a sub-multiple of the fundamental resonant wavelength of the wiggler-beam
system. We called such a device, which is simply a sub-harmonic assisted wiggler, Sub-Harmonic
Optical Klystron, because, as in the standard optical klystron configuration(9), an input laser beam
is employed to stimulate a bunching of the injected beam on the scale of the resonant radiation
wavelength. Once a small but finite bunching is achieved, if the proper conditions are met to
operate the FEL in the high gain regime, the exponential growth of the radiated field naturally sets
up according to the standard steady state behaviour of the FEL amplification process.

The driving effect of the sub-harmonic input signal, which has a wavelength Ag = s-A; (s is the
sub-harmonic index and A; is the fundamental resonant wavelength of the wiggler), consists
essentially in inducing a coherent energy modulation onto the electron beam: such an energy spread
is transformed by the wiggler, which can be viewed as a dispersive medium, into a phase
modulation, i.e. a density modulation. Therefore the beam comes out to be bunched on the scale of
the sub-harmonic wavelength Asand on all the higher harmonics: in particular the harmonic of
wavelength A; is just the bunching component of interest to start up the FEL amplification proccss
on the resonant wavelength A;.

Let us examine now how a sub-harmonic signal of wavelength A, injected into a wiggler of
period Ay, at the same time of an electron beam of energy ¥, can induce a modulation in energy of
the beam on the scale of its wavelength As. The resonant wavelength A, is given by the usual FEL
resonance relationship:

2
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where n is an odd integer number (n=1 gives the fundamental first harmonic radiated by the beam
while n>1 gives the higher resonating harmonics) and a,, is the dimensionless vector potential of

the wiggler. In a planar wiggler ay, is related to the peak magnetic field, By, by the formula: ay, =
.66 A.w [Cm] Bw [T].

We define an electromagnetic field for the sub-harmonic laser beam in a similar way as for the

higher harmonics:
2 ~

E’s(Z,t) = %_% ( ES(Z,I) ei(kZ-(.!)t)/s +e.

c.) 1)
where €5 is a slowly varying complex amplitude that, using the SVEA approximation, can be
derived from a vector potential &5 = ag eids, such that I€gl = k-ag, using E=-(1/c)9/dt(mc2a g/e).

The normalized transverse velocity of an electron injected in a planar wiggler is given,
neglecting the effects due to the electromagnetic wave and to the betatron motion, by(10):

B, = V22 cos (ky2) X 2)
Y

where ky = 21/Ay, and & gives the transverse horizontal direction of a planar wiggler extending
longitudinally along z.

The work done by the sub-harmonic field on the wiggling electron, on the basis of the Lorentz
energy equation, comes out to be(™):

dyl , kayag kz-@t
(E)s—-Z y cos ( S + 60 cos (k,z) 3)

The complete energy equation, including the radiative harmonics contribution, becomes:

dy _ "kaay (dY) 3-b
a.z__-z 2 — cos[h(kz-wt) +,] cos (k,2) + az/s )

where aj, is the vector potential amplitude of the h-th harmonic.

In order to satisfy the SVEA approximation(11) it is usual to average over a wiggler period the
fast oscillations induced in the energy equation by the planar magnetostatic field structure. In
presence of a sub-harmonic field the averaging must be performed over s-Ay, i.e. over a number
of wiggler periods equal to the sub-harmonic order s. Defining 6 = (kw+k)z - @t as the average
electron phase over a wiggler period (or, equivalently, over s wiggler periods), where t =
(z/c)-(1+(1+ ai/Zyz)) is the averaged arrival time, the actual electron phase, which takes into
account the fast oscillations, comes out to be given by 6¢ = 6 - Esin(2ky,z), where the parameter &

(*) The contribution due to the betatron motion can be neglected whenever the betatron wavelength A} is much
larger than the wiggler period Ay. Since Ay/Ay = \/E-y-H/aw. for the case of X-VUYV FEL's this ratio is >>1.



is defined as € = ka&/(4kw72) and, if the electron v is close to the resonant %, it depends only on
the wiggler potential ay,, i.e. § = a3/2(1+ a?v).

The averaged energy equation can then be written as

A
ka k2’
dy) __, kaw 6 kyz' & 4)

a; cos [?_T-E sin Zk,z") + ¢.] cos (kyz') dz'

Assuming that the electron phase 6 remains constant over the averaging period s-Ay, it is easy
to see that the integral in 4) is vanishing whenever the amplitude ag of the sub-harmonic field is
constant over s-Aw: no energy spread can be induced with a sub-harmonic field whose intensity
stays constant along the wiggler. In fact, the energy spread contributions produced at each half of a
wiggler period are summed along s wiggler periods to give exactly zero. Taking as an example the
sub-harmonic of order two (s=2), it is easy to figure out that the electron beam sweeps away one
sub-harmonic wavelength, with respect to the sub-harmonic optical field wave, every two wiggler
periods: therefore, each electron of the beam, independently of its phase, experiences, at each
wiggler period, two opposite, but equal in amplitude, momentum transfers (corresponding to the
two halves wiggler period). The total momentum transfer on the electron will be therefore exactly
zZero.

There is, however, a possibility to avoid such an exact compensation and get a not-vanishing
total momentum transfer, as sketched in Fig.1: if the sub-harmonic field is given by a single mode
laser beam of wavelength Ag injected into the wiggler from an external source, the optical field

amplitude on axis will be given by

. E
|El-—== 5)
1+z—2
Zy

where wo is the spot at the beam waist and Zg is the Rayleigh range Zg = nw(z)/ks. Since the
transverse distribution of the optical field amplitude is gaussian ( IE(r)l = [E(r=0)l-e-(/W)2), the
overlap between the electron beam (with transverse gaussian distribution of width ¢) and the laser
beam requires wo = Y20 (**), fixing the Rayleigh range at Zg = 21162/As. The integral on the r.h.s.
in 4) is not vanishing if the variation of the sub-harmonic field is significant over one wiggler
period Ay: the Rayleigh range Zg must be therefore not too large with respect to Ay,

(**) The wiggle motion of the electron beam can perturb the overlap with the sub-harmonic laser beam: the ratio
between the amplitude of the wiggle motion and the rms beam radius can be extimated to be given by
(Xmax/C =.01.va/ 2['I‘]/(\/ g,H.Y). In our case this ratio is always « 1, indicating that the overlap can be considered
complete.
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Taking the usual scaling low for the beam radius in a wiggler with appropriate shaping of the
pole face(12) one can compute that the ratio Zg/Ay is given by:

A 2xs

w

Zo __ ¥ H 6)
aw

where H is the fractional reduction of the betatron wavelength due to the amount of ion focussing
applied(13) (H=1 no ion focussing). For electron beams of some hundrets of MeV and a sub-
harmonic index s in the range 3-5 a ratio Zg/Ayw in the order of some tens can be achieved: that

implies a not-vanishing integral on the r.h.s. of eq. 4), i.e. the possibility to induce an energy
spread in the electron beam using a sub-harmonic input signal.

We will examine later on the efficiency of such a process, after the insertion of the sub-
harmonic field action in the FEL Compton equations(14), as described in the following.

The complex vector potential &5 of the sub-harmonic field can be redefined and set in a
dimensionless form introducing the new variables(11:15);

py=——r 7
PY:

z=2k,pz

where p is the Pierce parameter p=(1/y)(awwp/4dckw)?/3, wp is the beam plasma frequency p =
\j 4me2n/my, (n is the electron beam density), vj is the gamma of the j-th electron and 7, the resonant
gamma. We recall that the complex dimensionless field amplitude Ag is expressed as Ag = |Agleids,
where plAgl2 gives the ratio between the energy density of the sub-harmonic laser beam and the
electron beam energy density. Assuming, at the wiggler entrance, a perfect overlap between the
electron beam and the sub-harmonic laser beam, the initial value of |1Agl2 at z=0 will be gchn by
IA;)I2 = Pg/(pPp), where Pg is the sub-harmonic laser beam power and Py, the electron beam power.

Expressed in the dimensionless units the momentum equation 3), which accounts for the energy
spread induced by the sub-harmonic field, becomes:
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where we recall that 9j is the electron phase averaged over a wiggler period. The function (z) is
needed to take into account a semi-infinite wiggler starting from z=0: the sub-harmonic field action
given in eq.3) starts indeed at the wiggler entrance, z=0.

Since the coupling between the electron beam and the sub-harmonic field is very low, as will be
shown later on, we will assume the sub-harmonic field as an external driving force whose
variation in time and space is specified by the optical behaviour of the sub-harmonic laser beam, as
given in eq.1), with an optical field amplitude as specified in eq.5).

Inserting the contribution to the energy spread coming from the sub-harmonic field into the FEL
Compton equations we get:

dp: ih@: .

Bi - _F F®Ae™ircc) + p;

dz h odd

d—e_j = Pj j=1LN %
dz

dAy

-ih@; 1 i
— = F <ec I> where < >=—
dz o N j=1

where the term by, = <e-ih®j> is usually called the bunching parameter on the h-th harmonic. The
coupling coefficients Fp(€) are given by(14) Fy(€) = Jm-1)2(h) - Jms1)2(hE).

Averaging the first of the egs. 9) over the N electrons, using also the third one, we get:

d h%ddA 2 .8
—=|<p> + = <p >
ot I S N T P 10)

which states that the total momentum associated to the electron beam and to the odd radiative
harmonics (on the r.h.s. of eq.10), which, in absence of the sub-harmonic field, is a well known
constant of the motion, varies along the wiggler until the sub-harmonic field is able to exchange

momentum to the electron beam, i.e. until <pS>#0.



Looking at eq.8), it comes out that the work done by the sub-armonic field onto the beam
electrons becomes vanishing for z»Z(, implying that the momentum exchange <pS> from the sub-
armonic field to the electron beam reaches, after an initial transient regime, a constant value, given

by
hodd , . (%5 _
<p>+ % IAh| =<p>5f<p>dz' 11)
o

The new constant of the motion becomes <p> + ZplApl2 - <p$> = 0, in the case of zero
detuning and zero field amplitude at the wiggler entrance. It will be shown later that the final
momentum exchange between the electron beam and the sub-harmonic field, i.e. the quantity <ps>
evaluated at z»Zg, is negligible with respect to the final value of <p> at saturation, which is of the
order of 1.

Therefore, we can explain the effect of the sub-harmonic field on the system formed by the
beam and the radiative harmonics in terms of a driven shift of the system away from the
equilibrium condition bp=0 and Ay=0, applied during a transient regime which lasts a few units of
Zo. It can be seen at a glance that the codition by=0 and Ap=0 is no more a fixed stable point for
the system of eq. 9): if the term pj is modulated over the phase space with a non-zero first
harmonic component, i.e. if <pj-ei9j> # 0, a uniform beam (by=0) in absence of any starting signal
(Ap=0) will get a phase modulation, i.e. a bunching, as given by: b =i <pjeij>, which can be
deduced by the 2" of eq. 9). It comes out that the action of the sub-harmonic field is the breaking
of the stable equilibrium condition of zero field and zero bunching. The new stable equilibrium
condition becomes, for the eq. 9), by=0, Ap=0 and A0=0 (or Z( --> o, i.c. a parallel laser beam).

In order to study the excitation of the exponential regime on the first and the higher harmonics
of the wiggler, starting with a uniform beam and zero first harmonic signal (A; = 0), we integrated
numerically the system of equations 9) using some hundrets (tipically 720) of macroparticles to
simulate the electron beam. The macroparticles are initially distributed with pj=0 and with phases
0j uniformly distributed over 27s radians in the phase space: the bucket of the sub-harmonic field
is indeed extending over s buckets of the first harmonic, hence the phase space will have a
periodicity of order 2rxs. '

As a first test we pointed out our attention to the lowest sub-harmonic index, s=2, the second
order sub-harmonic. The free parameters are in our case the amplitude of the sub-harmonic field at
the wiggler entrance, IAgI, the Rayleigh range of the sub-harmonic laser beam Z and the wiggler
potential ay,. We chose a typical value for ay = 1.5, corresponding to a wiggler period Ay =2 cm
and B = 1.1 T, a ratio Zg/Aw = 10 and an initial sub-harmonic field amplitude IAgl = 0.15. The
quantity Zg is defined as Zy = 4np-(Zo/Aw ). Taking for p a typical value p=.002, we have Zy
=.25.
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The phase variation for a particle started at (6=.035 rad, p=0 ) is plotted in Fig.2 versus z from
z=0. to z=1., which corresponds to 40 wiggler periods. The small oscillations (of the order of
1-10-3 rad) of the electron phase 8 confirm that this is slowly varying along the wiggler and
represents just the average electron phase over one wiggler period. Note that the fast electron phase
Of exhibits fast oscillations over one wiggler period with amplitude & (which is of the order of 1).
The phase space trajectory is shown, for the same particle, by the solid line plotted in Fig.3: the
scalloped shape of the trajectory clearly shows that the electron undergoes relevant oscillations in
momentum accompanied by small oscillations in phase (note the enlarged scale in abscissa). The
dashed line in the same figure connects the points of the trajectory corresponding to the end of each
wiggler period: the fast oscillations induced by the sub-harmonic field are washed out and only a
slowly varying phase shift is left. It must be noted that in the numerical integration the step has
been taken small with respect to the wiggler period (i.e. 8z « 4mp ) in order to take into account
the fast oscillations in p.

 P— S

0

0.05%¢ 0.0525 0.0520 0.052
—rr-r T Ty

llllllllll

Qo2
b

X 5 : ; P :
Fig.2 - Behaviour of the average electron phase 6 Fig.3 - Phase space trajectory of the same particle of
plotted as a function of z, for a test particle. Fig.2, starting at Z=0 from 6=.05236 rad, p=0.

The maximum value of p over the phase space pmax (i.e. the amplitude of the beam energy
modulation over a sub-harmonic wavelength, recalling that p is the normalized energy spread) is
plotted in Fig.4 (solid line) as a function of Ng = z/(4nps). Since at each wiggler period Ay, the
electrons shift by one first harmonic wavelength A; with respect to the first harmonic field wave, a
number s of wiggler periods are needed to produce a slippage of one sub-harmonic wavelength
As=sA; with respect to the sub-harmonic field wave. Then, the quantity Ny gives the number of
sub-harmonic wavelengths seen by the beam, or, equivalently, the slippage in units of As. The
position of Zg on this scale is also shown in abscissa at Ng(Zg) = Zo/sAw = 5. The phase space is
shown in Fig.5 after one half of the first wiggler period (dotted line) and after two wiggler periods
(bolded line), i.e. at Ng=1. The phase space range is 2s® = 12.57 rad.

In Fig.4 the action of the sub-harmonic field is clearly visible: recalling that the number of
wiggler periods are, for this case of s=2, just doubled with respect to N, it can be seen that the
maxima in the energy modulation amplitude are reached at half of each wiggler period, with an
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envelope following just the laser beam intensity behaviour. The minima are initially positioned at
the end of each wiggler period: for a constant average electron phase 0 the integral in 4) gives
always a minimum at z=nAy, and the minimum value is exactly zero if the sub-harmonic laser
beam envelope is parallel, i.e. the optical field on axis is constant. The value of the minima is
instead growing along the wiggler and their position shifts slowly just after the end of each wiggler
period, due to the slow variation of the average electron phase 6, as shown by the dashed line
plotted in Fig.4, which connects the values of the energy modulation amplitude at the end of each
wiggler period: the asympthotic value of this curve, which is quickly reached at some Zg units,
gives just the final amplitude of the energy modulation induced by the sub-harmonic laser beam. At
that point the sub-harmonic intensity can be considered really negligible and no more active on the

electron beam.
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Fig.4 - Maximum p over the phase space (i.e. Fig.5 - Phase spaces of the 720 simulating particles
amplitude of the energy modulation) plotted (solid traced at the end of the first wiggler period (dotted line)
line) along 40 wiggler periods, i.e. Ng=20. The and at the end of the second wiggler period (bolded
dashed line connects the values assumed at the endof ~ line), where Ng=1. See text for details.

each wiggler period. See text for details.

It is not so surprising that the asymptotic value of the final amplitude of the energy modulation
does not depend (to the first order) on the value of Zg/Ay,. Indeed, neglecting the slow variation of
0 over a few units of Zp, the total momentum transfer can be derived by an integral similar to that
in eq.4) extended from z=0 up to z=nZg (n small): the maximum over the phase space (0=0-27x)
scales linearly with IAgI (i.e. with the initial amplitude of the sub-harmonic optical field ) and scales
invariant with Zg. That is confirmed by the curves plotted in Fig.6: the solid line shows the
maximum value of p over the phase space at the end of each wiggler period, from Ng=0 up to
N¢=160 (i.e. along 320 wiggler periods), obtained with a value of Zg/Aw = 10, while the dashed
line is given by a value of Zg/Ay = 20 and the dotted line by Zg/Ay = 80. The asympthotic value
reached by the two curves is substantially the same.

The total momentum transfer <ps> between the sub-harmonic field and the electron beam is
plotted (for the case Zo/Ay=20) in Fig.7 as a function of z from the wiggler entrance up to 2=6.,

which corresponds to 240 wiggler periods. The momentum transfer is negative, implying that the
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electron beam looses energy, but its value is very small (=-2-109), hence the coupling between the
sub-harmonic field and the electron beam is very weak. The momentum transfer from the electron
beam to the sub-harmonic field (which should gain energy) is therefore negligible when compared
to the sub-harmonic field intensity variation caused by the optical laser beam behaviour.
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Fig.6 - Maximum p over the phase space plotted at Fig.7 - Momentum transfer <pg> between the sub-
the end of each wiggler period, over 320 wiggler harmonic field wave and the electron beam, plotted as
periods (i.e. Ng=160), for three different values of a function of z. See text for details.

Zo/Aw, as indicated. See text for details.

To summarize, we list the following main results:

- the sub-harmonic field can induce a coherent energy spread whenever the intensity of the sub-
harmonic signal is varying monotonically along the wiggler: the final energy spread scales
linearly with the difference between the initial amplitude of the sub-harmonic signal (at the
wiggler entrance) and its final amplitude (which is nearly zero for a defocussing optical laser
beam matched with the electron beam at the wiggler entrance). Other type of sub-harmonic
signals can be considered, within different spectral region: for instance, guided microwave
pulses within linearly tapered wave-guides could be used as sub-harmonic signals for FEL's in
the microwave region.

- the evolution of the sub-harmonic field along the wiggler is mainly determined by the optical
properties of the laser beam, since the coupling with the electron beam is very weak: the sub-
harmonic field produces essentially an energy modulation with a very low energy absorption
from the electron beam ( <ps> negative and very small, like in a very low gain regime).

- the quantity <p> + ZylApl2, which is the usual constant of the motion in absence of the external
driving force due the sub-harmonic field, is still constant just after an initial transient regime: the
energy exchange between the electron beam and the radiative harmonics is not perturbed by the
prcsenée of the sub-harmonic field inducing the energy modulation since the total momentum
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transfer between the electron beam and the sub-harmonic field is negligible with respect to the
coupling between the electron beam and the radiative harmonics.

- the average electron phase 0 is still a slbwly varying quantity, with very low residual
oscillations over a wiggler period

- the final amplitude of the coherent energy spread induced by the sub-harmonic field does not
depend (to a good approximation) from the Rayleigh range Zy, i.e. from the actual shape of the
laser beam envelope ( this seems to be valid for Zg not so much high with respect to the wiggler
period).

The perfomances of the SHOK scheme can be deduced from the evolution of the first harmonic
field intensity along the wiggler starting from a condition of zero field (IA1/2=0). Fixing the input
parameters at the values indicated above we continued the integration of eq. 9) versus z varying the
initial amplitude of the sub-harmonic field, namely with the three different values IA;)I2 = .2, .02,

.002.

We used an integration step equal to one hundreth of a wiggler period, i.e. 8z = 4np/100, and a
double precision calculation, i.e. a machine epsilon € around 1-10-15; that implies a noise level on

the initial bunching of the same order, since the "uniform" distribution of the particles in the initial
phase space (at z = 0) suffers for a straggling in the 0 position of each particle which is equal to the
machine epsilon. Therefore, the start up of the exponential regime in the first harmonic is
unavoidable, as can be seen in Fig.8, where the bolded line mark the growth of the first harmonic
normalized field intensity (the logarithm loglA 12 is plotted) versus z.

The numerical noise in the phase space drives initially the field intensity which grows very fast,
until the bunching, caused by the noise, reaches an equilibrium regime with the radiated field
intensity (at z=2): at that point the standard exponential behaviour sets in and the field continues to
grow exponentially till the saturation is reached at z=50, with a field intensity IA112 = 1. The
behaviour of the bunching amplitude Ib;| is plotted in Fig.9, where the dashed line marks the
quantity loglbjl as a function of z. The bunching stays fairly constant at the initial value up to the
point where the radiated field has grown enough to create a potential well in which the particles are
trapped in: at that point also the bunching starts to grow exponentially (its log increases linearly).

The evolution of the logarithm of the field intensity loglA1/2 in presence of an injected sub-
harmonic signal is plotted in Fig.8: the dotted line is given by an initial IA;)I2 = 0.002, the dashed
line corresponds to |AJ12 = 0.02 and the solid line to IAJJ2 = 0.2, while the behavior of the quantity
loglbjl is plotted in Fig.9 (solid line) just for the case IA;)I2 = 0.2.The strong driving effect applied
to the bunching by the sub-harmonic field is clearly evident: the energy spread induced by the sub-
harmonic field is converted by the wiggler into a phase modulation, hence in a bunching, as
specified :by the phase equation for 6; in the system 9). The first harmonic field reaches the
saturation after z=20 starting from a zero initial amplitude. The first plotted value, which specifies
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the lowest level of the scale at -38, is just the value of loglA1I2 after the first integration step: this
value IA1l2 = 3.10-38 is given just by the numerical noise in the phase space, i.e. by the initial
bunching, and is indeed the same for all the lines plotted in Fig.8.

log|A1]2

-0,
log|b1}

A aa A 1 " .
0.0 3 . . . . 0.0 S, 0. . 2.

Fig.8 - Logarithm of the normalized first harmonic Fig.9 - Logarithm of the bunching amplitude Ibjl,
field intensity, plotted as a function of Z, for three plotted as a function of z, for the two cases: with the
different values of the initial sub-harmonic field sub-harmonic field (solid line) and without (dashed
intensity. See text for details. line). See text for details.

The incremental gain g, defined as g = dInlA112/dz (nepers), is plotted in Fig.10 versus z,-
along the first part of the wiggler (40 wiggler periods): the dashed line gives the gain behaviour for
the case of the start up from the numerical noise, i.e. without any sub-harmonic field, while the
solid line corresponds to the three sub-harmonic input signals listed above. While the dashed line
approaches quickly the standard value assumed during the exponential growth, given by
g=\/_3-Ff'3 (€), whose value is, for the present case, g=1.6 nepers, the incremental gain of the sub-
harmonic driven case stays much more at higher values up to z=6, where the driving effect of the
sub-harmonic field on the first harmonic radiated field becomes negligible with respect to the
natural exponential growth of the latter.

In order to check that the SVEA approximation is satisfied, the first harmonic field phase ¢;
(we recall that Aj=IA1lei®1) must comes out to be a slowly varying function of z: that is confirmed
by the behaviour shown in Fig.11, where the solid line gives the phase ¢1(z) (modulus 27) along
the wiggler up to saturation, for the case of IA2I2 = (.2. The dashed line gives the behaviour of
¢1(2) in absence of the sub-harmonic field (IA(S)I2 =0.).
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Fig.11 - First harmonic field phase ¢1, plotted as a
function of z, for the two cases: with the sub-
harmonic field (solid line) and without (dashed line).

The phase space is plotted at z=15 in Fig.12-a and at z=20 (just before saturation, that occurs at
z=23) in Fig.12-b. It is interesting to note that in Fig.12-a the first harmonic field has already
produced an energy modulation on the scale of its wavelength which is comparable to the spread
induced by the sub-harmonic s=2: the atter stays fairly unaltered along the wiggler and superposed
to the two buckets generated by the first harmonic.
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Fig.12-b - Phase space traced at z=20 for the case of

Fig.12-a - Phase space traced at Z=15 for the case
an initial sub-harmonic field intensity 1AJI2 = 0.2,

of an initial sub-harmonic field intensity IAgI2 =0.2.

Such an energy modulation on the scale of A is seen as an incoherent beam spread by the first
harmonic field, but its amplitude comes out to be quite negligible if compared to the coherent
spread produced by the first harmonic field when the saturation is approached: that can be clearly
seen in Fig.12-b (note the rescaling by a factor 300 of the p-scale), where the incoherent sub-
harmonic spread is no more visible over the phase space. The intensity at saturation does not
suffer, therefore, for the action of the sub-harmonic field and its value at saturation is, as usual in
the cold-beam limit of the steady state regime, 1A112 = 1.2 (i.e. P1=pPpeam)-
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As a last test, we analyzed the sensitivity of the FEL performances, within the SHOK scheme,
against the presence of a first harmonic field signal in input and against the variation of the
numerical noise generating the initial bunching (which, to some exent, can be considered as a
physical Schottky noise).

The logarithm of the normalized first harmonic field intensity (loglA112) is plotted versus z in
Fig.13 (solid line), for the case of IAgI2 = .2 and no first harmonic field in input (IA1/2=0): the first
harmonic intensity, starting at 38 orders of magnitude below the saturation level, reaches after 3
units of z the level 10-20, When a signal on the first harmonic is injected in addition to the sub-
harmonic field, at the levels |1A112=1-10-29 and |A112=1-10-25, the behaviour of the first harmonic
intensity is as shown by the dotted and the dashed lines, respectively: it comes out therefore that
the driving action of the sub-harmonic field is unsensitive from a possible noise present on the first
harmonic.

A similar conclusion can be reached about the sensitivity on the numerical noise: changing the
machine espilon from (fairly indicative values) €m=1-10-15 to £=5-10-8 (shifting from a 8 bytes
floating point operation to a 4 bytes one), the initial bunching, present in the phase space because
of the intrinsical straggling of the particle distribution, grows by the same quantity.

logjA1 2

Fig.13 - Logarithm of the normalized first harmonic field intensity.plotted as a function of z
for three different values of the initial first harmonic intensity.See text for details.

The first harmonic field intensity starts therefore from a higher value, whose order of
magnitude can be easily computed using eq. 9-c) at the first order of approximation by: 1A;1(z=3z)
= FI(E_,)-Ib(l)I-BZ, where Ib(l)l is the initial bunching amplitude. Recalling that in the present case the
integration step 8z=41p/100=2.5-10 and F(§)=.8 we obtain IA112(2=52) = 4-10-38 for the lower
€ and 1A {12(z=8z) = 1-10-22 for the higher one. However, the evolution of the first harmonic field
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intensity is scarcely dependent on the starting bunching amplitude, as can be deduced from the
lines plotted in Fig.14, where the solid line gives the behaviour corresponding to the lower Ib(l)l
value and the dotted one corresponds to the higher Ib(l)l. The difference of 15 orders of magnitude
in the starting field intensity values is strongly reduced, after a few units of z, down to two orders
of magnitude. The corresponding incremental gain behaviours are plotted in Fig.15 for the two
cases.

log|A1}2

0.0 0.s 1.0 15 2.0 2.5 3.0 35 = <0

z

Fig.14 - Logarithm of the normalized first harmonic field intensity.plotted as a function of z
for two different values of the machine epsilon.em, See text for details.

9np

N T

Fig.15 - Incremental gain (in nepers) corresponding to the two curves plotted in Fig.14
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Other sub-harmonic orders have been considered. In principle it can be shown that the index s
can be given by the ratio of any pair of integer numbers, s = n/m: the periodicity will be given
anyway by n wiggler periods. In fact, the electrons slippage m sub-harmonic wavelengths Ag (with
respect to the sub-harmonic field) every n wiggler periods. N first harmonic buckets will still be
needed to simulate one sub-harmonic bucket.

However, we analyzed still only the third sub-harmonic case, i.e. s=3. An experimental
application of the fifth sub-harmonic will be treated later on in the last section.

We used again the same values for the wiggler-beam parameters as the ones listed above for the
case of the second s=2 sub-harmonic.

The trajectory in the phase space of an electron started from the point (8=.05236 rad, p=0) is
plotted in Fig.16, for the case of IA;)I2 = .2: the trajectory still exhibits, as the s=2 case, a slow drift
in the phase 6, with large oscillations in p and small oscillations (1-10-5 rad) in phase. Now the
macro-periodicity of the sub-harmonic action is no more (as in the case s=2) one wiggler period,
but 3 wiggler period, i.e. one unit of Ng, as can be observed by the dotted and the dashed lines
plotted in the figure, which show the particle position in the phase space at the end of each wiggler
period (the dotted one) and every three wiggler periods (the dashed one).

The same effect can be observed looking at the behaviour of ppax, the maximum p value over
the phase space, which is plotted (solid line) in Fig.17 along 30 wiggler periods (Ns=10): here
again the dotted line connects the values assumed by pmay at the end of each wiggler period, while
the dashed line connects the values of ppax at the end of each group of three wiggler periods (i.e.
every unit of Ng).

Pmax

U W i

.l.._l A o T T Bk i
8. 0.

) ) Ns
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o

szx-n" . 23010 smm' s.2ax0? sz«-u'

Fig.16 - Phase space trajectory for a test particle Fig.17 - Maximum value of p over the phase space
starting at Z=0 from the point (8=.05236 rad, p=0.), plotted (solid line) along 30 wiggler periods, i.e.
in the third s=3 sub-harmonic mode of operation. See Ng=10., for the third s=3 sub-harmonic case. See text
text for details. for details.
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The behaviour of the normalized intensity |1A ;12
of the first harmonic field is shown in Fig.18,
where the quantity loglA 112 is plotted for three
different initial values of the sub-harmonic
normalized field intensity: IAgl2 = .2 the solid
; line, IAJ2 = .02 the dashed line and IAJI2 =
.002 the dotted one. The first harmonic field
reaches saturation after z=35 starting from
zero. The corresponding incremental gain g is
o : L - - 4 plotted up to z=2.5 in Fig.19. The crossed line

z shows the incremental gain of the first
Fig.18 - Logarithm of the normalized first
harmonic field intensity, plotted as a function of Z, . . . L.
for three different values of the initial sub-harmonic ~ noise (i.e. without any sub-harmonic input

field intenSity., for the third s=3 sub-harmonic case. Signal): after a first "numerical" Spike it
See text for details. .
reaches quickly the standard steady state value
g=1.6 nepers (as reported above). On the contrary, the lines corresponding to the presence of a
sub-harmonic field show, after the first unavoidable "numerical" spike which is common for all the
lines, a large peak due to the driving effect of the sub-harmonic field: for the case IA;)I2 = .2, the
peak reaches the relevant value of 100 nepers!

0.0
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log|A1]2

harmonic field growing from the numerical
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Fig.19 - Incremental gain (in nepers), plotted as a function of Z, for the two cases: with the
sub-harmonic field (solid line) and without (dashed line). See text for details.

The evolution of the corresponding phase space is shown in Fig.20-a to 20-¢ for the case of
IAgI2 = .02: the phase space are traced at the end of the first wiggler period (Fig.20-a), at the end of
the third wiggler period when Ng=1 (Fig.20-b) and at the points 2= 30, 34 and 38 (Fig.20-c-d-e
respectivley), just before saturation. It is clearly visible the progressive onset of the energy
modulation produced by the first harmonic field which is driven by the energy modulation induced
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by the sub-harmonic field: the single initial sub-harmonic bucket splits up into three first harmonic
buckets, whose energy modulation amplitude continously grows (note the renormalization applied
on the p scale) and finally is transformed into a phase modulation, i.e. into a bunching (Fig.20-¢).

b4
|
P { p
g

0.00%0

0.0008

<.
“w
-3
@
2.0
]
3
a

2.0

0.0
T
o

.............

Fig.20-a to 20-e - Phase spaces for the third s=3 sub-harmonic case, traced at the end of the first wiggler
period (a), at the end of the third wiggler period, where Ng=1 (b) and before saturation at the points z= 30,34
and 38 (c-d-e respectiviey).
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3 - Some possible SHOK experiments

Although the applicability of the SHOK scheme covers the whole e.m. spectrum from the
micro-waves up to the XUV rays, the availability in the near future of intense electron beams
(some hundrets of A peak current) of high quality (rms normalized emittance in the range 1+10-10
6 mrad) make feasible single pass high gain FEL's in the spectral region from 100 down to 5 nm
of radiation wavelength (photon energy between 20 and 200 eV), where no coherent input signals
are at present available. The full exploitation of the SHOK scheme lies therefore, in our opinion,
within that spectral region, where the lacking of input signal can be overcome via the utilization of
sub-harmonic input signals at higher wavelengths, to drive high gain FEL's in the X-VUV
spectrum.

The recent developments of the frequency multiplication devices, applied to the high peak
power Nd-YLF lasers, indicate that it will be possible to produce high peak power pulses in the
VUV wavelength domain. A new laser system based on a mode locked ND-YLF frequency
doubled laser produces 10 mJ pulses at a repetition rate of 1 kHz with a peak power of 200 MW
over 50 ps, at a wavelength A=532 nm. By means of a cascade of two 2-nd harmonic generator
BBO crystals the green light is converted down to a wavelength of A=133 nm with a total
efficiency around the 10%. Laser puses in the VUV wavelength range at a peak power of 10 MW
are in this way foreseen(16),

The anticipated availability, within the ARES project context, of high brightness electron beams
gives us, as a natural choice, the opportunity to enlist in the following table the parameters of a
typical "base” SHOK experiment, to be performed at the ARES facility: a further example for an
"extended" SHOK experiment will be presented in the next section. The chosen sub-harmonic is
the third one, s=3.

Table 1 - Base SHOK experiment parameters

Electron Beam T=530MeV I1=400A &,=8100%mrad Opeam=190um

Sub-harm. Laser s=3 As=133 nm Zop=17Tm

Wiggler Aw=3cm Bw=.75T p=.0016 Ar=44nm -

The radiated field power P at A;=44 nm is plotted as a function of the wiggler length in Fig.21.
The saturation level is reached after 27 m of wiggler at 400 MW of peak power, starting without
any input signal on the 44 nm wavelength field and with 10 MW of input signal on the 133 nm
laser beam, which corresponds to a normalized sub-harmonic field intensity IA;)I2 = .03. Since the
rms beam radius within the wiggler is (in absence of ion focussing H=1) 190 pm, the radiated
intensity, assuming an active optical guiding(18) of the electron beam on the radiated field, can be
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P (w)

Fig.21 - Exponetial growth of the radiation at A=44 nm, driven by a third sub-harmonic laser
beam of 10 MW peak power. See text for details.

g (dB)

%

Fig.22 - Incremental gain ggy, (in decibels) corresponding to the curve plotted in Fig.21. See text for details.

extimated at about 1-1011 W/cm?2. The normalized beam emittance is in this case just compatible
with the emittance threshold: the parameter f1=2ne,/(Ary) comes out to be f1=1.1. The final result
is a frequency multiplication by a factor three of the ND-YLF laser beam together with an
amplification by a factor 40 of its peak power. The incremental gain g4y, defined as dlog(P)/dz, is
plotted in Fig.22: the plateau at 4 dB of the standard steady state exponential regime is anticipated
by the large peak due to the driving effect of the sub-harmonic field. Since the electron bunches
delivered by the ARES SC LINAC(17) are foreseen to be a few ps in time-length, a further
compression of the 50 ps ND-YLF laser pulses could be envisaged, in order to push up the peak
power of the sub-harmonic field at 133 nm. A 50 MW sub-harmonic signal will allow to reduce
the wiggler length needed to reach saturation down to 23 m.
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4 - Towards the "water window"

One of the main goal of the FEL facility under study at the ARES project is the generation of
brigth coherent radiation at A,=5 nm, i.e. the construction of a device able to produce coherent soft
X-rays at high peak power and within the so called "water window" at 50 A (photon energy 248
eVv).

A direct jump in frequency from the VUV light of the ND-YLF laser cited above up to the 50 A
X-ray radiation seems not feasibe via a simple SHOK scheme as presented in the past sections. At
least one cascade with two or more jumps in frequency must be envisaged: a mixed scheme of
SHOK + frequency multiplier appears to be mandatory.

Moreover, the electron beam must exhibits the best quality envisageable with the ARES SC
LINAC under study: the parameters listed in the following table represent a typical set of values
required to radiate at 5 nm. Note the low energy spread (made feasible by the low-frequency RF
chosen for the SC LINAC), the high repetition rate and the respectable beam peak power
Ppeam=3.28-1011 W.

Table 2 - Beam requirements to radiate at the "water window"

T [MeV] I1[A] €n [mrad] Ayly[keV] | Obunch (ps) | rep.rate (kHz)

820 400 3-106 +250 S 0.1+1.

Since A;=5 nm is fairly the 25-th harmonics of Ar=133 nm, a double jump in frequency by a
factor 5 comes out to be the natural choice: however, as it has been illustrated in the past section,
the efficiency of the SHOK scheme decreases with larger sub-harmonic orders s. Therefore a new
"extended" SHOK scheme is necessary, as presented in the following, to assure the possibility to
reach the water window without the need of extremely long wigglers. Such a new apparatus is
based on two main properties of the SHOK scheme:

- The sub-harmonic laser beam is focussed in such a way to present a beam waist at the wiggler
entrance: the defocussing part of the beam envelope inside the wiggler is the region of
overlapping with the electron beam, where the sub-harmonic field induces a coherent energy
spread to the beam.

- It has been shown that the total momentum transfer between the sub-harmonic optical field and
the electron beam is negligible: the sub-harmonic field amplitude can be therefore assumed to be
determined by the laser beam envelope behaviour, which is regulated by the laser optics in front
of the ‘wiggler.
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In order to improve the efficiency of the sub-harmonic field in generating a coherent energy
spread on the electron beam we can therefore envisage to add in front of the wiggler a few periods
of what we call a "spreader”, which is simply a wiggler whose period is scaled up by a factor s
with respect to the period Ay, of the main subsequent wiggler. The spreader is then a wiggler
whose first harmonic equals the sub-harmonic optical field wave, whose wavelength is s-Ar. It will
be shown that the number of spreader periods can be small, of the order of a few units, in order to
maximize the performances of the whole system.

The main wiggler is tuned to radiate at a first harmonic of A;=25 nm: the simultaneous growth
of the fifth harmonic at A;=5 nm causes the electron beam to be bunched also on this wavelength
scale. The subsequent injection of the bunched beam, after some meters of the main wiggler, into a
radiator tuned on the 5 nm wavelength makes possible to obtain high peak power radiation at the
water window: a lay-out of the whole apparatus is shown in Fig.23. The system wiggler+radiator
is discussed in details elsewhere(7).

A matching condition for the beam trajectory imposes a continuity condition on the transverse
velocity at the interface between the spreader and the wiggler, i.e. the amplitude of the B7's in the

spreader and in the wiggler must be equal: this requires that both have the same vector potential ay,.
It follows that the peak magnetic field of the spreader B:f,) must be 1/s times the peak field of the

wiggler.

The previous considerations suggest a typical set of parameters, for the extended SHOK
device, as reported in the following table.

Table 3 - Extended SHOK experiment parameters

Sub-harm. laser s=5 Plas=10 MW As=125 nm Zp=.43 m
Spreader AP=20cm B¥=.11T aP=1.48 Noeriod = 4 sp=.0034
w wo wo o period pr=.

Wiggler Aw=dcm By=56T ay=148 H=5 Opean=92pm p=.002

Radiator A*=2cm  BR=41T af=53 HR=1 o, =50um pR=.001

The 1-d simulations have been performed integrating the SHOK equations 9) taking as initial
conditions the output particles from the spreader, which is described via a set of standard FEL
Compton equations whose first harmonic field is represented by the sub-harmonic laser beam. At
the end of the main wiggler all the harmonics field intensities |Apl2 are set to zero, to reproduce the
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discarding of the radiation and the injection of only the electron beam into the radiator (as described
elsewhere(7:19) in major details).

In Fig.24 the radiation field power P is plotted along the cumulative length z of the system
spreader+wiggler+radiator: the negative part of the z-axis corresponds to the .8 m of the spreader
length, while the wiggler extends from z=0 up to z=17 m. The power plotted up to the wiggler end
corresponds to the first harmonic field of the wiggler, i.e. to the radiation at 25 nm: the entrance of
the radiator corresponds to z=17 m (although this could not be the real disposition, i.e. the radiator
can be far apart from the wiggler). The power of the radiation at A;=5 nm grows in the radiator and
reaches saturation after still 10 m of radiator length, at a power level of 360 MW, which
corresponds to an intensity of 4.6-1012 W/cm?2. A slight ion focussing effect has been applied both
to the wiggler (with a reduction by a factor H=.5 of the betatron wavelength) and to the radiator
(with H=.1). The input sub-harmonic laser power has been taken Pjas=10 MW, while no input
field has been injected on the wiggler first harmonic at 25 nm. The logarithm of the amplitude of
the bunching parameters on the first wiggler harmonic Ibjl and on the fifth one Ibs| are plotted
(solid and dashed line respectively) in Fig.25 as funtions of the dimensionless z up to the wiggler
end at z =10.5: for larger z the same parameters Ibllzl and Ib?l correspond to the radiator (since the
beam is injected from the wiggler into the radiator, the condition Ibllzl = |bs!| must hold at the
interface). The strong driving effect of the sub-harmonic field is clearly visible in the first part of
the wiggler, where the bunching grows very rapidly from the initial noise level.
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2.000004%0°

1.000004 10°
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0.‘0 * 0. 2. - 3: * 0.0 9. 0. 18, .
2 () :

Fig.24 - Exponential growth of the A;=5 nm Fig.25 - Logarithm of the first harmonic !bj! and
radiation power within the "extended” SHOK scheme fifth harmonic lbsl bunching amglitude slong the
(spreader+wiggler+radiator). See text for details. wiggler (z<10.5) and the radiator (Ib1 I and IbS D).

0.0

The phase spaces are plotted in Fig.26a-f at some positions along the whole system: the energy

spread induced by the 4 spreader periods is evident from the phase space traced at z=0 (wiggler
entrance, Fig.26-a). The phase space extends over 5 buckets of the A;=25 nm radiation, since the
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sub-harmonic order is in this case s=5: the coherent spread is induced on the scale of the sub-
harmonic wavelength. After 14 meters of wiggler length (Fig.26-b) the phase space still holds the
energy modulation on the scale of the sub-harmonic wavelength, but the energy spread of the first
harmonic at 25 nm sets up together with a slight modulation on the third harmonic at 8.3 nm,
which further increases at the end of the wiggler (z=17 m, Fig.26-c, note the renormalization in the
scale of p), until the sub-harmonic energy modulation is no more visible. The weak energy
modulation on the wiggler third harmonic is still present at z=19 m (Fig.26-d), i.e. after 2 meters
of radiator length, but at z=21.5 m (after 4.5 meters of radiator length, Fig.26-e) it has been
overcome by the strong modulation in energy and phase given by the radiator first harmonic at 5
nm (wiggler fifth harmonic): note that the phase scale has been renormalized up to 25 buckets of
the 5 nm wavelength, to take into account the jump in frequency from the wiggler to the radiator.
Finally, at z=24 m after 7 meters of radiator length, the phase space traced in Fig.26-f just before
saturation shows how the energy modulation has been converted completely into a phase
modulation (i.e. a bunching) on the first harmonic of the radiator: 25 bunches can be counted all
over the phase space, with a residual weak energy modulation on the scale of the 25 nm
wavelength and a negligible modulation on the 125 nm wavelength scale.

5 - Conclusions

The results of this preliminary study on the coupling between an electron beam and a sub-
harmonic field in a wiggler show that the energy modulation induced on the beam is adequate to
start up an exponential gain regime in absence of any pre-bunching of the beam neither any
coherent input signal on the wiggler first harmonic: such a scheme can be of great usefulness in all
the single pass high gain FEL's which suffer for the lacking of an appropriate source of coherent
input signals (in particular the X-VUYV FEL's).

Further studies are in course on this subject, in order to explore the full potentiality of the
SHOK scheme and to better understand the driving effect of the sub-harmonic optical field on the
bunching and on the first harmonic field intensity: a collective variable description could clarify the
role plaied by the sub-harmonic signal and its quasi-low-gain coupling with the electron beam.

3D simulations are also needed to investigate how the distributions in the transverse phase
spaces of both the electron beam and the two radiation beams (the sub-harmonic and the first
harmonic one) can affect the performances of the SHOK scheme.
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Fig.26a-f - Phase space plotted at some positions along the "extended" SHOK device
(spreader+wiggler+radiator). See text for details.
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