ISTITUTO NAZIONALE DI FISICA NUCLEARE

Sezione di Trieste

INFN/TC-88/25

29 Luglio 1988
M.Conte, A. Penzo, A. Pisent and M. Pusterla:

ANALYTICAL TREATMENT OF THE SPIN-SPLITTER

ANALYTICAL TREATMENT OF THE SPIN-SPLITTER

M. Conte ${ }^{\text {a) }}$, A. Penzo ${ }^{\text {b) }}$, A. Pisent ${ }^{\text {c) }}$, M. Pusterla ${ }^{\text {d) }}$

Abstract: the spin-orbit coupling associated with the interaction of the magnetic moment of $p(\bar{p})$, circulating in a low energy storage ring, with appropriate field gradients of quadrupole elements in the machine, is studied analytically. The conditions for a separation of opposite spin states are discussed and methods are proposed for working at very low energies.

1. - INTRODUCTION

To obtain polarized antiprotons in LEAR ${ }^{1)}$ a device called Spin-Splitter has been proposed ${ }^{2)}$ on the basis of a method for separating opposite spin states in a storage ring by using the Stern-Gerlach effect of the inhomogeneous field of quadrupoles on the circulating particles ${ }^{3)}$.

Although the effect of the field gradient on the magnetic moment is extremely small compared with the effect of the field on the charge of the circulating particles, the choice of specific conditions on the orbit and spin motion can produce a constructive build-up separation between opposite spin states in phase-space over many revolutions.

The Spin-Splitter in its basic configuration in a storage ring is a straight section equipped with two quadrupoles of opposite polarity interspaced with a solenoid that rotates the $\operatorname{spin} 180^{\circ}$ around the beam axis (Fig. 1).

[^0]For a realistic project to be implemented in LEAR, simulation calculations taking into account the specific characteristics of the machine are necessary ${ }^{4)}$.

The basic properties of a storage ring equipped with a Spin-Splitter can be however more trasparently illustrated through an analytical treatment characterized also by a broader generality of application ${ }^{5)}$.

The main approximations for this treatment are essentially a thinlens description of the quadrupoles of the Spin-Splitter and the assumption of a fully compensated solenoid (for what concerns the coupling be= tween horizontal and vertical oscillations).

Some of the results will take a very simple form in a smooth-machine approximation for the storage ring, although this simplification is not essential for the method to work.

2. - TRANSVERSE MOTION

Particles with opposite spin states are distinguished by a term $\vec{B} \cdot \vec{\mu}$ in the Hamiltonian.

In any magnetic structure with transverse fields $\vec{B} \equiv\left(B_{x} 0, B_{z}\right)$, neglecting the fringe fields, the Hamiltonian referring to both horizontal and vertical motions can be written as

$$
\begin{equation*}
H_{\perp}=\frac{1}{2 \gamma m_{p}}\left(P_{x}^{2}+P_{z}^{2}\right)-e \beta c A_{y}+U_{\text {scalar }} \tag{2.1a}
\end{equation*}
$$

with

$$
\begin{equation*}
U_{\text {scalar }}=-\vec{\mu} \cdot \vec{B}=\mp \mu\left(S_{x} B_{x}+S_{z} B_{z}\right) \tag{2.1b}
\end{equation*}
$$

where S_{x}, S_{y}, S_{z} are the components of the unit vector corresponding to the classical magnetic moment $\vec{\mu}=\mu \hat{s}$.

In particular, for a single sheer quadrupole:

$$
\begin{equation*}
A_{y}=1 / 2 G\left(x^{2}-z^{2}\right), \quad \vec{B} \equiv(G z, 0, G x) \tag{2.2a}
\end{equation*}
$$

while, for a single skew quadrupole:

$$
\begin{equation*}
A_{y}=G x z, \quad \vec{B} \equiv(-G x, 0, G z) \tag{2.2b}
\end{equation*}
$$

Bearing in mind that $p_{x}=p x^{\prime}=\left(\beta \gamma m_{p} c x^{\prime}\right.$ and $p_{z}=\left(\beta \gamma m_{p} c\right) z^{\prime}$, eq. (2.12) is divided by $\beta^{2} \gamma m_{p} c^{2}$ giving rise to the reduced Hamiltonian

$$
H=1 / 2\left(x^{\prime 2}+z^{\prime 2}\right)-\frac{k^{2}}{2 L_{Q}}\left|\begin{array}{c}
x^{2}-z^{2} \tag{2.3}\\
2 x z
\end{array}\right| \pm \frac{\eta^{\prime}}{L_{Q}}\left|\begin{array}{ll}
z S_{x}+x S_{z} \\
x S_{x}-z S_{z}
\end{array}\right|
$$

where $k^{2}=\left(e G L_{Q}\right) / p=1 / f_{Q}$ and η^{\prime} is the kick given by the quadrupole.
A kick, given by any transverse localized force \vec{F} to the trajectory of a particle, results in a sudden variation of the trajectory slope. This change of direction, can be expressed as the ratio of the acquired transverse momentum-component p_{\perp} to the total momentum p of the particle, i.e.

$$
\begin{equation*}
\eta^{\prime}=p_{\perp} / p \simeq F \tau / p \tag{2.4}
\end{equation*}
$$

(L is the length of the region where the force acts and βc is the velocity of the particle), $p=\beta_{\gamma} m_{p} c, \gamma=\left(1-\beta^{2}\right)^{-1} /^{2}$ and m_{p} is the (anti) proton mass; then:

$$
\begin{equation*}
\eta^{\prime}=\frac{F L}{\beta^{2} \gamma m_{p} c^{2}} \tag{2.5}
\end{equation*}
$$

In our case $\vec{F}=\vec{\nabla}(\vec{\mu} \cdot \vec{B})=\mu G$ and therefore

$$
\begin{equation*}
\eta^{\prime}=\frac{G \mu L_{Q}}{\beta^{2} \gamma m_{p} c^{2}} \tag{2.6}
\end{equation*}
$$

with $\mu=1.41 \times 10^{-26} \mathrm{JT}^{-1}, \mathrm{~m}_{\mathrm{p}} \mathrm{c}^{2}=938 \mathrm{MeV}=1.503 \times 10^{-10} \mathrm{~J}$.
Therefore $\beta^{2} \gamma \eta^{\prime}=9.38 \times 10^{-17} G L_{Q}$, which demonstrates that the lower the energy, the bigger the kick, for a fixed quadrupole.

For example, with $G=20 \mathrm{~T} \mathrm{~m}^{-1}$ and $\mathrm{L}_{\mathrm{Q}}=0.5 \mathrm{~m}$, eq. (2.6) yields $\beta^{2} \gamma \eta^{\prime}=9.38 \times 10^{-16} \mathrm{rad}$; at low energy $(\gamma \simeq 1, \beta \simeq 0.1)$ the kick is $\eta^{\prime} \simeq 8.48 \times 10^{-14} \mathrm{rad}$.

For a sheer focussing quadrupole eq. (2.3) yields:

Taking into account the full action of the doublet formed by (F quadrupole) - Solenoid - (D quadrupole), eq. (2.7a) becomes
assuming the thin-lens $\left(K_{L} \ll 1\right)$ approximation and neglecting the coupling effects of the solenoid; η is an enhanced kick factor coming from the combined effect of a suitably chosen configuration for the splitter (see Appendix I).

Both eqs. (2.7a) and (2.7b) represent the affine transfer map, referring respectively to a single kick and to a double (enhanced) kick.

For one turn in the machine, the transfer map of the lattice is the affine transformation

$$
\left|\begin{array}{l}
x \tag{2.7c}\\
x^{\prime} \\
z \\
z^{\prime}
\end{array}\right|=\left|\begin{array}{lllll}
& M_{H} & 0 & 0 \\
0 & & 0 & & 0
\end{array}\right| \begin{aligned}
& x_{0} \\
& x_{0}^{\prime} \\
& 0
\end{aligned}
$$

where
$M_{H}=\left|\begin{array}{rl}\cos \mu_{H}+\alpha_{H} & \sin \mu_{H} \\ -\beta_{H} \sin \mu_{H} \\ -\gamma_{H} \sin \mu_{H} & \cos \mu_{H}-\alpha_{H} \sin \mu_{H}\end{array}\right|=I \cos \mu_{H}+J \sin \mu_{H}=e^{J \mu_{H}}$
$M_{V}=\left|\begin{array}{rl}\cos \mu_{v}+\alpha_{V} \sin \mu_{v} & \beta_{v} \sin \mu_{v} \\ -\gamma_{V} \sin \mu_{v} & \cos \mu_{v}-\alpha_{v} \sin \mu_{v}\end{array}\right|=I \cos \mu_{v}+J \sin \mu_{v}=e^{J \mu_{v}}$
N.B. $\left\{J=\left[\begin{array}{cc}\alpha & \beta \\ -\gamma & -\alpha\end{array}\right]\right.$, with $\left.J \times J=-I\right\}$
$\mu_{H-V}=2 \pi Q_{H-V}$, with $Q_{H-V}=$ Horizontal-Vertical Betatron Tune
Besides eq. (2.7c) can be written as $\vec{W}=M \vec{W}_{0}+\vec{W}_{\eta}$ which, iterated n-times, yields:

$$
\begin{equation*}
\vec{W}_{n}=M^{n} \vec{W}_{0}+M_{k=0}^{n-1} M^{k} \vec{W}_{n} \tag{2.9}
\end{equation*}
$$

where \vec{W}_{η} is a four-dimensional vector of modulus η, with the sign of the spin-state.
3. - SPIN-PRECESSION IN \vec{E} aND \vec{B} FIELDS

The precession equation of a charged particle with polarization \vec{P} is

$$
\begin{equation*}
\mathrm{d} \overrightarrow{\mathrm{P}} / \mathrm{dt}=\vec{\Omega}_{\mathrm{s}} \times \overrightarrow{\mathrm{P}} \tag{3.1}
\end{equation*}
$$

where the three-component vector \vec{P} can be expressed as

$$
\begin{equation*}
\vec{P}=\psi^{+} \vec{\sigma} \psi \tag{3.2}
\end{equation*}
$$

in the quantum mechanics case of spin one-half particles; having in eq. (3.2)

$$
\psi=\left|\begin{array}{l}
\psi_{1} \tag{3.3a}\\
\psi_{2}
\end{array}\right|
$$

a two-component column vector, or spinor and $\vec{\sigma} \equiv\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ where

$$
\sigma_{x}=\left|\begin{array}{ll}
0 & 1 \tag{3.3b}\\
1 & 0
\end{array}\right|, \quad \sigma_{y}=\left|\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right|, \quad \sigma_{z}=\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|
$$

are the usual Pauli matrices.
Besides the vector $\vec{\Omega}_{s}$ in eq. (3.1) is given by ${ }^{6)}$

$$
\begin{equation*}
\vec{\Omega}_{s}=-\left[\frac{e}{\gamma m}(1+\gamma a) \vec{B}-(\gamma-1) a \frac{(\vec{B} \cdot \vec{v}) \vec{v}}{v^{2}}+\gamma\left(a+\frac{1}{\gamma+1}\right) \frac{\vec{E} \times \vec{v}}{c^{2}}\right] \tag{3.4}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathrm{a}=\frac{\mathrm{g}-2}{2}=1.7928(\mathrm{~g}=5.5856) \tag{3.5}
\end{equation*}
$$

for (anti) protons.
For $\vec{E}=0$ and $\vec{B}=\vec{B}_{n}$ (i.e. $(\vec{B} \cdot \vec{v}) \vec{v}=v^{2} \vec{B}$), eq. (3.4) reduces to:

$$
\begin{equation*}
\vec{\Omega}_{\mathrm{s}}=-\mathrm{e} / \mathrm{\gamma m}(1+\mathrm{a}) \overrightarrow{\mathrm{B}}_{\prime \prime}=-\mathrm{e} / \mathrm{\gamma m} \mathrm{~g} / 2 \overrightarrow{\mathrm{~B}}_{\prime \prime} \tag{3.6}
\end{equation*}
$$

Eq. (3.6) is useful to evaluate the amount \emptyset of precession after crossing a solenoid of length L_{S} :

$$
\begin{equation*}
\emptyset=\left|\vec{\Omega}_{s}\right| t_{\text {crossing }}=|\vec{\Omega}| \frac{L_{s}}{\beta c}=g / 2 \frac{e B_{1 \prime} L_{s}}{\beta \gamma m c}=g / 2 \frac{e B_{\prime \prime} L_{s}}{p} \tag{3.7}
\end{equation*}
$$

On the other hand, if $\vec{B} \perp_{\mathrm{V}}(\vec{B} \cdot \overrightarrow{\mathrm{~V}}=0)$ and $\overrightarrow{\mathrm{E}} \neq 0$, eq. (3.5) becomes:

$$
\begin{equation*}
\vec{\Omega}_{S}=-e / \gamma m\left[(1+a \gamma) \vec{B}+\left(a+\frac{1}{\gamma+1}\right) \frac{\vec{E} \times \vec{v}}{c^{2}}\right] \tag{3.8}
\end{equation*}
$$

which deserves some comments.
In order to proceed it is convenient to write down the motion equation of a charged particle in \vec{E} and \vec{B} fields:

$$
\begin{equation*}
\frac{d}{d t}(\gamma m \vec{v})=e(\vec{E}+\vec{v} \times \vec{B}) \tag{3.9a}
\end{equation*}
$$

$$
\begin{equation*}
\gamma m \frac{d \vec{v}}{d t}=e(\vec{E}+\vec{v} \times \vec{B})-\frac{d \gamma}{d t} m \vec{v} \tag{3.9b}
\end{equation*}
$$

but $\frac{d y}{d t}=\frac{1}{m c^{2}} \frac{d}{d t} E_{\text {tot }}=\frac{1}{m^{2}} \frac{d E_{k i n}}{d t}=\frac{e \vec{E} \cdot \vec{v} d t}{m c^{2}}$, then eq. (3.9b) becomes

$$
\gamma m \frac{d \vec{v}}{d t}=e(\vec{E}+\vec{v} \times \vec{B})-\frac{e}{c^{2}}(\vec{v} \cdot \vec{E}) \vec{v}
$$

or

$$
\begin{equation*}
\frac{d \vec{v}}{d t}=\frac{e}{\gamma m}(\vec{E}+\vec{v} \times \vec{B})-\frac{e}{\gamma m} \frac{(\vec{v} \cdot \vec{E}) \vec{v}}{c^{2}} \tag{3.10}
\end{equation*}
$$

By considering that $(\vec{v} \cdot \vec{E}) \vec{v}-v^{2} \vec{E}=(\vec{E} \times \vec{v}) \times \vec{v}$ and that $c^{-2}-v^{-2}=-1 /\left(\gamma^{2}-1\right) c^{2}$, eq. (3.10) can be re-written as:

$$
\begin{equation*}
\frac{d \vec{v}}{d t}=-\frac{e}{\gamma m}\left(\vec{B}+\frac{\vec{E} \times \vec{v}}{v^{2}}\right) \times \vec{v}+\frac{e}{\gamma m} \frac{(\vec{v} \cdot \vec{E}) \vec{v}}{c^{2}\left(\gamma^{2}-1\right)} \tag{3.11}
\end{equation*}
$$

The first term on the right side of eq. (3.11) represents the modified (by \vec{E}) cyclotron frequency

$$
\begin{equation*}
\vec{\Omega}_{c}=-\frac{e}{\gamma m}\left(\vec{B}+\frac{\vec{E} \times \vec{v}}{c^{2}}\right) \tag{3.12}
\end{equation*}
$$

while the second term

$$
\begin{equation*}
\delta \vec{v}=\frac{(\vec{v} \cdot \vec{E}) \vec{v}}{\gamma\left(\gamma^{2}-1\right) V_{p}}=\frac{c^{2} E}{\gamma^{3} V_{p}} \cos \hat{v} E \frac{\vec{v}}{v} \quad\left(V_{p}=\frac{m_{p} c^{2}}{e}=938 \mathrm{MV}\right) \tag{3.13}
\end{equation*}
$$

vanishes only when the field \vec{E} is "exactly" perpendicular to the velocity \vec{v} of the particle: the validity and the limitations of this statement will be discussed later.

In the hypothesis of $\vec{E} \perp \overrightarrow{\mathrm{v}}$ eq. (3.11) reduces to

$$
\begin{equation*}
\mathrm{d} \overrightarrow{\mathrm{v}} / \mathrm{dt}=-\vec{\Omega}_{\mathrm{c}} \times \overrightarrow{\mathrm{v}} \tag{3.14}
\end{equation*}
$$

meaning that the motion of the particle is just a rotation, that is the typical motion inside a storage ring or circular accelerator.

The precession rate of the polarization \vec{P}, measured in a system which follows the particle, is

$$
\begin{equation*}
\vec{\Omega}_{a}=\vec{\Omega}_{s}-\vec{\Omega}_{c}=-\frac{e}{\gamma m}\left[a \gamma \vec{B}+\gamma\left(a-\frac{1}{\gamma^{2}-1}\right) \frac{\vec{E} \times \vec{v}}{c^{2}}\right] \tag{3.15}
\end{equation*}
$$

which is also known as shifted-frequency.
The effect of the electric field can be minimized by setting

$$
a-1 /\left(\gamma^{2}-1\right)=0
$$

or

$$
\begin{equation*}
\gamma=\sqrt{\frac{1+a}{a}}=1.248 \quad(p=0,701 \mathrm{GeV} / \mathrm{c}) \tag{3.16}
\end{equation*}
$$

("magic energy").

Anyway, either for the "magic energy" or for just $\vec{E}=0$, eq. (3.15) gives:

$$
\begin{equation*}
\vec{\Omega}_{a}=-(e \vec{B} / \gamma m)(a \gamma) \tag{3.17}
\end{equation*}
$$

which allows to evaluate the spin precession, in the rotating system, as

$$
\begin{equation*}
\emptyset=\left|\vec{\Omega}_{a}\right| t=a \gamma \frac{e B}{\gamma m} t=a \gamma \Theta \tag{3.18}
\end{equation*}
$$

where Θ is just the azimuth-variation during the time t.

4. - SPINOR TRANSFORMATIONS AND CHOICE OF THE ENERGY

The spinor (3.3a) characterizing a particle, whose polarization \vec{P} undergoes the precession (3.18), fulfill the transformation ${ }^{7}$)

$$
\begin{equation*}
\psi(\Theta)=\left[I \cos \Phi / 2-i \sigma_{z} \sin \Phi / 2\right] \psi(0) \tag{4.1}
\end{equation*}
$$

with $\Phi=$ aү@, of course.
If the perturbation is inserted at a generic azimuth Θ, the trivial solution of the full revolution $(\Theta=2 \pi$ in eq. (4.1)) has to be split into two parts, described by the following matrices:

$$
\begin{align*}
& M_{1}=I \cos \lambda x / 2-i \sigma_{z} \sin \lambda x / 2 \tag{4.2a}\\
& M_{2}=I \cos (1-\lambda) x / 2 i \sigma_{z} \sin (1-\lambda) x / 2 \tag{4.2b}
\end{align*}
$$

with

$$
\begin{equation*}
\lambda=\Theta / 2 \pi \quad \text { and } \quad X=2 \pi a \gamma \tag{4.2c}
\end{equation*}
$$

(Notice that $M_{1} M_{2}=M_{2} M_{1}=I \cos \pi a \gamma-i \sigma_{z} \sin \pi a \gamma$); then the matrix $M_{\text {pert }}$ is inserted between M_{1} and M_{2}, giving rise to

$$
\begin{equation*}
M=M_{1} M_{\text {pert }} M_{2} \tag{4.3}
\end{equation*}
$$

In the case of our spin-splitter

$$
\begin{equation*}
M_{\text {pert }}=I \cos \varphi / 2-i \sigma_{y} \sin \varphi / 2 \tag{4.4}
\end{equation*}
$$

being φ the angle of precession around the direction of motion.
Thus eq. (4.3) will yield:

$$
\begin{equation*}
M=I C_{0}-i \sigma C_{x}-i \sigma_{y} C_{y}-i \sigma_{x} C_{z} \tag{4.5a}
\end{equation*}
$$

with

$$
\begin{align*}
& C_{0}=\cos \varphi / 2 \cos a \gamma \pi=\cos \xi \tag{4.5b}\\
& C_{x}=\sin \varphi / 2 \sin a \gamma(\Theta-\pi) \tag{4.5c}\\
& C_{y}=\sin \varphi / 2 \sin a \gamma(\Theta-\pi) \tag{4.5d}\\
& C_{z}=\cos \varphi / 2 \sin a \gamma \pi \tag{4.5e}
\end{align*}
$$

The periodic solution \vec{n}, which is the spin equivalent to the betatron closed-orbit, has components

$$
\begin{equation*}
n_{x, y, z}= \pm \frac{C_{x, y, z}}{\sqrt{1-C_{0}^{2}}}= \pm \frac{C_{x, y, z}}{\sin \xi} \tag{4.6a}
\end{equation*}
$$

or

$$
\begin{align*}
& n_{x}= \pm \frac{\operatorname{sinar}(\Theta-\pi)}{\sin \xi} \sin \varphi / 2 \\
& n_{y}= \pm \frac{\operatorname{cosar}(\Theta-\pi)}{\sin \xi} \sin \varphi / 2 \tag{4.6c}
\end{align*}
$$

$$
\begin{equation*}
n_{z}= \pm \frac{\sin a \gamma \pi}{\sin \xi} \cos \varphi / 2 \tag{4.6d}
\end{equation*}
$$

The main effect of the solenoid installed in the ring is that it acts as a Siberian Snake: it modifies the topology of spin motion in such a way that the spin transfer matrix, calculated at the azimuth opposite to the spin-splitter, is $-i \sigma_{y}$ (a rotation of π around the propagation axis).

It can be shown that in this direction the polarization is stable, if the closest depolarization resonances are weak enough; the other two spin components instead will be mixed in a time inversely proportional to the strength of the resonance.

Since the spin-splitter arrangement implies that $n_{y}=0$ at $\Theta=\Theta_{\text {spin-splitter }}=0$, eq. (4.6c) gives

$$
\begin{equation*}
a \gamma=v_{S}=K+1 / 2=\text { half-integer } \tag{4.7}
\end{equation*}
$$

Then $C_{0}=0, \sin \xi=1, \sin \operatorname{a\gamma }(\Theta-\pi)=\sin a \gamma \pi= \pm 1$. besides, after setting

$$
\varphi=\pi-2 \delta \varphi
$$

eqs. (5, 6b, c, d) become:
$\left.\begin{array}{l}n_{x}= \pm \cos \delta \varphi \\ n_{y}=0 \\ n_{z}= \pm \sin \delta \varphi\end{array}\right] \quad$ (at the spin-splitter)
or, for $\delta \varphi=0(\varphi=\pi)$:

$$
\begin{align*}
& n_{x}= \pm 1 \tag{4.9a}\\
& n_{y}=0 \tag{4.9b}\\
& n_{z}=0
\end{aligned} \quad \quad \quad \begin{aligned}
& \text { at the spin-splitter }) \tag{4.9c}
\end{align*}
$$

Notice that, for $\varphi=\pi, C_{0}=C_{z}=0$ however: then eqs. (4.6) become for $\Theta_{\text {spin-splitter }}=\Theta \neq 0$:

$$
\begin{align*}
& n_{x}= \pm \sin a_{\gamma}(\Theta-\pi) \tag{4.10a}\\
& n_{y}= \pm \cos a_{\gamma}(\Theta-\pi) \tag{4.10b}\\
& n_{z}=0 \tag{4.10c}
\end{align*}
$$

The half-integer condition (4.7), and the trivial statement that γ cannot be smaller than 1 , force the choice of the energy: in fact $v_{s}=0.5$ would imply $\gamma=0.28, \nu_{S}=1.5$ would give $\gamma=0.84$ (both unphysical) and at last $\nu_{S}=2.5$ yields $\gamma=1.394$ or $p=0.912 \mathrm{Gev} / \mathrm{c}$. This would obviously affect the Stern-Gerlach beam separation (see 2.6) : being now $\beta_{\gamma}=0.971$, versus $\beta_{\gamma}=0.107$ at $p=0.100 \mathrm{GeV} / \mathrm{c}, \mathrm{v}_{\text {sep }}$ would decrease by a factor of 9.

5. - BUILD-UP OF SEPARATION

Considering the spin-separation in the vertical plane, the first term in the right-hand side of eq. (2.9) becomes $M_{V}^{n}=I \cos n \mu_{v}+J \cos n \mu_{v}$ and represents the stability of the vertical oscillations. Instead the second term, which represents the closed-orbit distortion due to the Stern-Gerlach kicks, reduces to

or

$$
\begin{equation*}
\left(z_{c o}\right)_{S S}=\beta_{v} \eta \sum_{k=0}^{n-1} \sin 2 \pi k Q_{v} \tag{5.2a}
\end{equation*}
$$

$\left(z^{\prime}{ }_{c o}\right)_{s s}=\eta\left[\sum_{k=0}^{n-1} \cos 2 \pi k Q_{v}-\alpha_{v} \sum_{k=0}^{n-1} \sin 2 \pi k Q_{v}\right]$
After a quarter of betatron wave-length $\left(\alpha_{v}=0, \mu_{\text {advance }}=\pi / 2\right)$, the closed-orbit vector is given by eqs. (5.2) times the matrix

$$
\left[\begin{array}{cc}
0 & \beta_{v} \\
-\frac{1}{\beta_{v}} & 0
\end{array}\right]
$$

or

$$
\begin{align*}
& \left(z_{c o}\right)_{M a x}=\beta_{V} \eta \sum_{k=0}^{n-1} \cos 2 \pi Q_{V}=\beta_{V} \eta \frac{\sin n Q_{V} \pi \cos (n-1) Q_{v} \pi}{\sin Q_{V} \pi} \tag{5.3a}\\
& \left(z_{c o}^{\prime}\right)_{\text {corr }}=-\eta \sum_{k=0}^{n-1} \sin 2 \pi k_{V}=-\eta \frac{\sin n Q_{v} \pi \sin (n-1) Q_{v} \pi}{\sin Q_{V} \pi} \tag{5.3b}
\end{align*}
$$

when $\sin Q_{v} \pi \neq 0$.
For $Q_{v}=$ integer eqs. (5.3a) and (5.3b) become respectively $n \beta_{v} n$ and 0 .

Then, after n turns the maximal separation between the two closed-orbits, referring to the opposite spin states, is

$$
\begin{equation*}
\Delta z_{M}=2 n \beta_{v} n \tag{5.4}
\end{equation*}
$$

In practice it is impossible to work exactly over an integer resonance with the extreme accuracy required. In fact, after several revolutions, ($\mathrm{n}-1$) is undistinguishable from n ; thus eq. (3.9a) becomes

$$
\frac{z_{c o}}{\beta_{v} \eta} \simeq \frac{\sin n Q_{v} \pi \cos Q_{v} \pi}{\sin Q_{v} \pi}=\frac{\sin 2 Q_{v} n \pi}{2 \sin Q_{v} \pi}
$$

which, for $Q_{V}=k \pm \delta Q$ ($k=$ integer), reduces to

$$
\begin{equation*}
\frac{z_{c o}}{\beta_{v} \eta} \simeq \frac{\sin (2 k n \pi \pm \pi n \delta Q)}{2 \sin (k \pi \pm \pi \delta Q)}=(-1)^{k} \frac{\sin (2 \pi n \delta Q)}{2 \sin (\pi \delta Q)} \tag{5.5}
\end{equation*}
$$

(NB. $(-1)^{\mathrm{k}}$ is fixed once for ever, depending on the machine setting).
Since $|\sin 2 \pi n \delta Q|=1$, or $\delta Q=1 / 4 n$, and $\sin \pi \delta \simeq \pi \delta$, for δ small enough eq. (5.5) gives

$$
\left|\frac{z_{o}}{\beta_{v} \eta}\right| \simeq \frac{1}{2 \pi \delta Q}=(2 / \pi) n
$$

but with $\delta Q=1 / 4 \mathrm{n}$, which is too a strict requirement.
Thus some tricks have to be conceived.

6. - SPIN-SPLITTER UPGRADES.

At this point we are in the condition to identify the major problems associated with the basic spin-splitter configuration:

- The choice of the energy is not completely free
- The machine should operate close to $Q_{V}=$ integer
- The resonance condition is unsuitably strict.

In order to cope with these difficulties an additional device is introduced 6) which can have both functions of decoupling the energy of the machine from the half-integer condition (4.7) and the Stern-Gerlach separation build-up from any betatron resonance of the ring.

7. - ENERGY COMPENSATION SCHEME

In order to be able to work at any energy: in particular at $p=100 \mathrm{MeV} / \mathrm{c}$ which is the minimum attainable in LEAR, special energy-compensators have to be implemented. In fact, if the half-integer condition (4.7) is not fulfilled, a precession angle Φ results; i.e.

$$
\begin{equation*}
|\Phi|=\pi|f|=2 \pi\left|a \gamma-\frac{2 k+1}{2}\right| \tag{7.1a}
\end{equation*}
$$

or

$$
\begin{equation*}
|\mathrm{f}|=|2 \mathrm{a} \gamma-(2 \mathrm{k}+1)| \tag{7.1b}
\end{equation*}
$$

This precession angle can be compensated by a crossed $\vec{E}-\vec{B}$-fields "undeflecting" spinor rotator. The "undeflecting" condition is realized by setting the transverse electrostatic force opposite to the Lorentz force, (Fig. 2a):
e $\vec{E}=-e v \times B$
or
$\vec{E} \times \vec{v}=-v^{2} \vec{B}$
(Notice that the (7.2a) - related directions of \vec{E} and \vec{B} provide the sign of f).

If the magnetic and the electrostatic deflectors are just overlapped, it is convenient to use eq.(3.8) with the (7.2b) - condition, obtaining:

$$
\begin{equation*}
\vec{\Omega}_{s}=-\frac{e \vec{B}}{\gamma m} \frac{1+a}{\gamma} \tag{7.3}
\end{equation*}
$$

Since no bending takes place (notice that by inserting eq. (7.2a) into eq. (3.12) we otain the trivial result $\vec{\Omega}_{c}=0$), eq. (7.3) is slightly elaborated as follows:

$$
\begin{equation*}
\left|\vec{\Omega}_{\mathrm{s}}\right|=\frac{\mathrm{d} \Phi}{\mathrm{dt}}=\frac{1+\mathrm{a}}{\gamma} \frac{\mathrm{e} B}{\gamma \mathrm{~m}}=\frac{\mathrm{Bc}}{\mathrm{~V}_{\mathrm{p}}} \frac{1+\mathrm{a}}{\beta \gamma^{2}} \frac{\mathrm{ds}}{\mathrm{dt}} \tag{7.4}
\end{equation*}
$$

having taken into account that

$$
\frac{1}{\rho}=\frac{e B}{p}=\frac{e B c}{\beta \gamma \mathrm{~m} \mathrm{c}^{2}} \text { and } v=\beta c=\frac{d s}{d t}
$$

From eq. (7.4) and eq. (7.2a) one obtains

$$
\begin{equation*}
\Phi=\frac{B c L}{V_{p}} \frac{1+a}{\beta \gamma^{2}}=\frac{E L}{V_{p}} \frac{1+a}{(\beta \gamma)^{2}} \tag{7.5}
\end{equation*}
$$

where L is the length of the crossed-fields "undeflector".
If the two magnetic and electrostatic regions are separated, like in Fig. 2b, one has to proceed in two steps:
i) magnetic deflectors ($\vec{E}=0$: use eq. (3.18)):

$$
\begin{equation*}
\Phi_{M}=a \gamma \frac{\theta}{2}+a \gamma \frac{\theta}{2}=a y \Theta \tag{7.6a}
\end{equation*}
$$

ii) electrostatic deflector ($\vec{B}=0$ in eq. (4.15)):

$$
\begin{equation*}
\vec{\Omega}_{a}=-\vec{\Omega}_{c} \text { a } \gamma\left(1-\frac{a+1}{a \gamma^{2}}\right) \tag{7.6b}
\end{equation*}
$$

with $\Omega_{c}=+\frac{e}{\gamma m} \frac{\vec{E} \times \vec{v}}{c^{2}}$, where the sign + takes into account the change of direction of the curvature. Then:

$$
\begin{equation*}
\Phi_{E}=-a \gamma \Theta\left(1-\frac{a+1}{a \gamma^{2}}\right) \tag{7.6c}
\end{equation*}
$$

adding up eqs. (7.6a) and (7.6c) the result is

$$
\begin{equation*}
\Phi=\Theta \frac{1+a}{\gamma} \tag{7.6d}
\end{equation*}
$$

Of course the magnetic deflection is

$$
\Theta_{M}=2 \frac{e B}{p} \frac{L_{M}}{2}=\frac{e B L_{M}}{\beta \gamma V_{p}}
$$

while the electrostatic one is

$$
\Theta_{E}=\frac{e E L_{E}}{\beta^{2} \gamma \mathrm{mc}^{2}}=\frac{E L_{E}}{\beta^{2} \gamma V_{p}}
$$

Inserting $\left|\Theta_{M}\right|=\left|\Theta_{E}\right|=\Theta$ ("underflecting" condition) into eq. (7.6d) we obtain:

$$
\begin{equation*}
\Phi=\frac{B c L_{M}}{V_{p}} \frac{1+a}{\beta \gamma^{2}}=\frac{E L_{E}}{V_{p}} \frac{1+a}{(\beta \gamma)^{2}} \tag{7.7}
\end{equation*}
$$

which coincide with eq. (7.5) if $\mathrm{L}_{\mathrm{M}}=\mathrm{L}_{\mathrm{E}}=\mathrm{L}$.
The following general relations can be deduced from eq. (7.5):
$\frac{\mathrm{BL}}{\beta \gamma^{2} \Phi}=\frac{\mathrm{V}_{\mathrm{p}}}{(1+\mathrm{a}) \mathrm{c}}=1.12 \mathrm{Tm}$
$\frac{E L}{(\beta \gamma)^{2} \Phi}=\frac{V_{p}}{1+a}=3.36 \times 10^{8} \mathrm{~V}$

For $p=100 \mathrm{MeV} / \mathrm{c}\left(\gamma=1.006, \beta \gamma \simeq \beta \gamma^{2} \simeq 0.107\right)$, eq. (7.1b) gives $f=0.608$ and eqs. (7.8) give $\mathrm{BL} \simeq 0.23 \mathrm{Tm}$ and $\mathrm{EL}=7.11 \mathrm{MV}$.

8. - SPIN PRECESSION KICKS

In order to circumvent the difficulties arising from the requirement of working on an integer resonance (and with that level of accuracy!) alternate kicks of modulus δ are supplied to the particle polarization, by a pulsed crossed $\vec{E}-\vec{B}$ fields device, synchronized with the RF which bunches the antiproton beam and located, for the moment, at an arbitrary azimuth.

If the spin of the antiprotons forms an angle α with the motiondirection (y-axis) at the entrance of the first quadrupole of the spinsplitter, after one turn the precession angle is

$$
(2 \mathrm{k}+1 / 2) 2 \pi-\alpha+\delta=4 \mathrm{k} \pi+\pi-\alpha+\delta
$$

since α is reversed by the solenoid (bear in mind eqs (4.9)) and the crossed fields device has given a positive kick. After another turn the precession is

$$
-4 \mathrm{k} \pi-\pi+\alpha-\delta+4 \mathrm{k} \pi+\pi-\delta=\alpha-2 \delta
$$

having now considered a negative kick, together with the usual 180° reversal. Iterating this procedure it is easy to show that the angles between the spin and the y -axis vary as follows

$$
\begin{aligned}
& \alpha \\
& -\alpha+\pi+\delta+4 \pi \\
& \alpha-2 \delta \\
& -\alpha+\pi+3 \delta+4 \pi
\end{aligned}
$$

Since the Stern-Gerlach kick regards the projection of the spin on the x -axis, one has

$$
\vec{w}_{\eta}=\beta_{v} \sin (\overrightarrow{s y})\left|\begin{array}{l}
0 \tag{8.1}\\
\eta
\end{array}\right|
$$

with $\sin (s y)=\sin \alpha, \sin (\alpha-\delta), \sin (\alpha-2 \delta), \sin (\alpha-3 \delta)$, and so on turn after turn.

In order to simplify our calculations, the matrix (2.8b) must be reduced to

$$
M_{v}=\left|\begin{array}{lr}
\cos \mu_{v} & \beta_{v} \sin \mu_{v} \tag{8.2}\\
-\frac{1}{\beta_{v}} \sin \mu_{v} & \cos \mu_{v}
\end{array}\right|
$$

i.e $\alpha_{v}=0$ and $J=\left[\begin{array}{cc}0 & \beta_{v} \\ -\frac{1}{\beta_{v}} & 0\end{array}\right]$ or, if referred to the co-ordinate $\left(z, \beta_{v}, z^{\prime}\right)$,

$$
J=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

The simplified matrix (8.2) represents either a sheer approximation (smooth machine) or, more correctly, a situation where the vertical β-function has a maximum at the Spin-Splitter location, just for duly enhancing the Stern-Gerlach kicks.

Introducing the new variable

$$
\begin{equation*}
\tilde{z}=z-i \beta_{v} z^{\prime} \quad(i=\sqrt{-1}) \tag{8.3}
\end{equation*}
$$

and applying the matrix (6.2) to all the couples of $z, \beta_{v} z^{\prime}$ coordinates, we obtain after the 1 st turn:

$$
\tilde{z}_{1}=\left(\cos \mu_{v}+i \sin \mu_{v}\right) z_{0}-i\left(i \cos \mu_{v}-\sin \mu_{v}\right) \beta_{v} z_{0}^{\prime}-i \beta_{v} \eta \sin (\alpha-\delta)
$$

or

$$
\tilde{z}_{1}=e^{i \mu_{v}} \tilde{z}_{0}-i \beta_{v} \eta \sin (\alpha-\delta)
$$

after the 2nd turn:

$$
\tilde{z}_{2}=e^{2 i \mu}{\underset{z}{z}}^{\tilde{z}_{0}}-i \beta_{v} \eta\left[\sin (\alpha-2 \delta)+e^{i \mu} \sin (\alpha-\delta)\right]
$$

after the 3rd turn:

$$
\tilde{z}_{3}=e^{3 i \mu_{v}} \tilde{z}_{0}-i \beta_{v} \eta\left[\sin (\alpha-3 \delta)+e^{i \mu_{v}} \sin (\alpha-2 \delta)+e^{2 i \mu_{v}} \sin (\alpha-\delta)\right]
$$

and further iterating:

$$
\tilde{z}_{N}=e^{N i \mu_{v}} \tilde{z}_{0}-i \beta_{v} \eta \sum_{h=1}^{N} e^{i(N-h) \mu_{v}} \sin (\alpha-h \delta)
$$

or

$$
\begin{equation*}
\tilde{z}_{N}=e^{i N \mu} v-\left[\tilde{z}_{0}-i \beta_{v} \eta\left[\sin \alpha \sum_{h=1}^{N} e^{-i h \mu} v \cos h \delta-\cos \alpha \sum_{h=1}^{N} e^{-i h \mu} v \sin h \delta\right]\right] \tag{8.4a}
\end{equation*}
$$

or

$$
\begin{align*}
\tilde{z}_{N} & =e^{i N \mu_{v}}\left[\tilde{z}_{0}-\frac{1}{2} \beta_{v} \eta\left[\sin \alpha\left(\sum_{h=1}^{N} e^{-i h\left(\mu_{v}+\delta\right)}+\sum_{h=1}^{N} e^{-i h\left(\mu_{v}-\delta\right)}\right)+\right.\right. \\
& \left.\left.+i \cos \alpha\left(\sum_{h=1}^{N} e^{-i h\left(\mu_{v}+\delta\right)}+\sum_{h=1}^{N} e^{-i\left(\mu_{v}-\delta\right)}\right)\right]\right] \tag{8.4b}
\end{align*}
$$

If we want a blowing-up of the two closed-orbits, referring to the different spin-states, we must have either $\mu_{v}+\delta=2 \pi k$ or $\mu_{v}-\delta=2 \pi k$ ($\mathrm{k}=$ integer) ; chosing e.g.

$$
\begin{equation*}
\mu_{\mathrm{v}}+\delta=2 \pi \mathrm{k} \tag{8.5a}
\end{equation*}
$$

$$
\begin{equation*}
\mu_{\mathrm{v}}-\delta=2 \pi \mathrm{k}-2 \delta \tag{8.5b}
\end{equation*}
$$

follows immediately.
Besides, if $\mathrm{Q}_{\mathrm{v}}=\mathrm{k}-\delta \mathrm{Q}_{\text {, }}$ with $\delta \mathrm{Q}$ made as small as possible compatibly with the stability of the storage ring, one has from eqs. (8.5a) and (2.8c) :

$$
\begin{equation*}
\delta=2 \pi \delta Q \tag{8.6}
\end{equation*}
$$

Anyway, inserting eqs. (8.5) into eq. (8.4b) yields:
$\tilde{z}_{N}=e^{i N \mu} v\left[\tilde{z}_{0}-\frac{1}{2} \beta_{v} \eta\left[\sin \alpha\left(N+\frac{\sin (N+1) \delta}{\sin \delta} e^{i N \delta}\right)+i \cos \alpha\left(N-\frac{\sin (N+1) \delta}{\sin \delta}\right) e^{i N \delta}\right]\right]$
or

$$
\begin{equation*}
\tilde{z}_{N}=e^{i N \mu}\left[\tilde{z}_{0}+\frac{1}{2} \beta v^{n}\left[N e^{-i \alpha} \frac{\sin (N+1) \delta}{\sin \delta} e^{i(N \delta+\alpha)}\right]\right] \tag{8.7}
\end{equation*}
$$

since:

$$
\begin{aligned}
\sum_{h=1}^{N} e^{-i h\left(\mu_{v}+\delta\right)} & =\sum_{h=1}^{N} e-i h k 2 \pi
\end{aligned} \sum_{h=1}^{N} 1=N \quad \begin{aligned}
\sum_{h=1}^{N} e^{-i h\left(\mu_{v}-\delta\right)} & =\sum_{h=1}^{N}[\cos (2 \pi h k-h 2 \delta)-i \sin (2 \pi h k-h 2 \delta)] \\
& =\sum \cos 2 h \delta+i \Sigma \sin 2 h \delta \\
& =\frac{\sin (N+1) \delta}{\sin \delta}(\cos N \delta+i \sin N \delta)
\end{aligned}
$$

For $\alpha=\pi / 2$ eq.(8.7) becomes

$$
\begin{equation*}
\tilde{z}_{N}=e^{i N \mu} v\left[\tilde{z}_{0}-\frac{1}{2} i \beta_{v} \eta\left[N+\frac{\sin (N+1) \delta}{\sin \delta} e^{i N \delta}\right]\right] \tag{8.8}
\end{equation*}
$$

or, recalling the definition (8.2), a particle with a certain spin state (i.e. with a defined sign of η), at the spin-splitter entrance after \mathbb{N} turns, has the following coordinates:
the closed-orbit representative point crosses the z-axis in the ($z-z^{\prime}$) phase-plane as before.

Apart from the difficulties of implementing the hardware of this proposal, there is the further problem of synchronizing the z-axis crossing with the trigger of the jumping-device. Anyway this method should work in principle. In fact after $n=1 /(2 \delta Q)$ turns, corresponding to the period during which the representative point remains in a half-phaseplane, we have:

$$
\tilde{z}_{n}=e^{i n \mu_{v} \tilde{z}_{0}+i \beta_{v} \eta\left[1+e^{i \mu_{v}}+e^{2 i \mu_{v}}+\ldots e^{(\pi-1) i \mu_{v}}\right]}
$$

then, having missed the spin-splitter, after other n-turns:
$\tilde{z}_{n}=e^{2 n i \mu_{v} \tilde{z}_{0}+i \beta_{v} n\left[\left[1+e^{i \mu_{v}}+\ldots e^{(n-1) i \mu_{v}}\right]-\left[e^{n i \mu_{v}}+e^{(n+1) i \mu_{v_{~}}}+\ldots e^{(2 n-1) i \mu_{v}}\right]\right]}$
iterating this process every n revolutions one obtains

or choosing (e.g.) $\mathrm{N}=2 \mathrm{mn}=$ even integer:

$$
\begin{equation*}
\tilde{z}_{N}=e^{N i \mu_{v}} \tilde{Z}_{0}+i \beta_{v} \eta \frac{\left(1-e^{n i \mu_{v}}\right)^{2}}{1-e^{i \mu_{v}}} \frac{1-e^{m 2 n i \mu_{v}}}{1-e^{2 m i \mu_{v}}} \tag{9.1}
\end{equation*}
$$

having made use of the relation:

$$
\begin{aligned}
1+e^{i x}+e^{2 i x}+\ldots e^{(n-1) i x} & =1+a+a^{2}+\ldots a^{n-1} \\
& =\frac{1-a^{n}}{1-a} \\
& =\frac{1-e^{n i x}}{1-e^{i x}}
\end{aligned}
$$

with $a=e^{i x}$.
But $\mu_{v}=2 \pi \quad Q_{v}=2 \pi k+2 \pi \delta Q=2 \pi k+\frac{\pi}{n}$, then
$n \mu_{\mathrm{v}}=2 \pi \mathrm{nk}+\pi, 2 \mathrm{n} \mu_{\mathrm{v}}=(2 \mathrm{nk}+1) 2 \pi, m 2 \mathrm{n} \mu_{\mathrm{v}}=\mathrm{m}(2 \mathrm{nk}+1) 2 \pi$
thus eq. (9.1) gives:

$$
\begin{equation*}
\tilde{z}_{N}=e^{N i \mu} \tilde{z}_{0}+4 m \beta_{v} \eta \frac{i}{1-e^{i \mu} \mu_{v}} \tag{9.2}
\end{equation*}
$$

since:

$$
\begin{aligned}
& 1-e^{n i \mu_{v}}=1-(-1)=2 \\
& \frac{1-e^{m 2 n i \mu_{v}}}{1-e^{2 n i \mu_{v}}}=\frac{0}{0}=\frac{-m 2 n i}{-2 n i}=m
\end{aligned}
$$

Eq. (9.2) shows a growing-up of the closed-orbits separation proportional to $N / 2 n$.
10. - SPIN-PRECESSION LAG

A zero-order experiment can be performed, even using a coasting beam, to prove the validity of the method. It consists of checking the growth of the vertical beam dimensions over a huge number of revolution, by implementing a resonance of the periodic spin solution \vec{n}.

If the magnetic field in the solenoid does not have the due value to provoke a π precession of the spin, one has the \vec{n}-components shown in eqs. (4.8). This mean that turn after turn the precession lags, or preceeds, by an amount equal to $\delta \varphi$: then at the K-th crossing we have

$$
\begin{equation*}
\eta_{k}=\eta \cos k \delta \varphi \tag{10.1}
\end{equation*}
$$

hence

$$
\tilde{z}_{N}=e^{i N \mu_{v}} \tilde{z}_{\sim}-i \beta_{v}\left[\eta_{N}+e^{i \mu_{v}} \eta_{N-1}+\ldots e^{(N-1) i \mu_{v}} \eta_{1}\right]
$$

or
$\tilde{z}_{N}=e^{i N \mu_{v}} \tilde{z}_{0}-i \beta_{v} \eta\left[\cos N \delta \varphi+e^{i \mu_{v}} \cos (N-1) \delta \varphi+\ldots e^{(N-1) i \mu_{v}} \cos \delta \varphi\right]$
or

$$
\begin{equation*}
\tilde{z}_{N}=e^{i N \mu_{v}}\left[\tilde{z}_{0}-i \beta_{v} \eta_{h=1}^{N} e^{-i h \mu}{ }_{v} \cos h \delta \varphi\right] \tag{10.2}
\end{equation*}
$$

which is just the diverging term in eq. (8.4a) when $\alpha=\pi / 2$.
Opposite to the situation discussed for the spin precession kicks the spin states are in this case completely mixed, nevertheless giving rise to a broadening of the beam associated with the Stern-Gerlach kicks.

APPENDIX I

As mentioned in Section 1, the proposed Spin-Splitter consists of two quadrupoles with opposite polarity (F and D), interspaced by a solenoid. Then, in the thin lens approximation and neglecting (for the moment) any coupling between horizontal and vertical oscillations, one has the following behaviour:

1) after the F quadrupole:

$$
\left|\begin{array}{l}
z_{1} \tag{A1.a}\\
z_{1}^{\prime}
\end{array}\right|=M_{F}\left|\begin{array}{c}
z_{0} \\
z_{0}^{\prime}
\end{array}\right|+\left|\begin{array}{l}
0 \\
z_{k}^{\prime}
\end{array}\right|_{(1-s t \text { kick })}
$$

2) after the solenoid:

$$
\left|\begin{array}{c}
z_{2} \\
z_{2}^{\prime}
\end{array}\right|=M_{S} M_{F}\left|\begin{array}{c}
z^{0} \\
z_{0}^{\prime}
\end{array}\right|+M_{S}\left|\begin{array}{c}
0 \\
z_{k}^{\prime}
\end{array}\right|
$$

3) after the D quadrupole:

$$
\left|\begin{array}{c}
z^{3} \tag{A1.b}\\
z_{3}^{\prime}
\end{array}\right|=M_{D} M_{S} M_{F}\left|\begin{array}{c}
z_{0} \\
z_{0}^{\prime}
\end{array}\right|+M_{D} M_{S}\left|\begin{array}{c}
0 \\
z_{k}^{\prime}
\end{array}\right|+\left|\begin{array}{c}
0 \\
z_{k}^{\prime}
\end{array}\right|_{\text {(2-nd kick) }}
$$

where $z_{k}^{\prime}=\eta^{\prime} s_{x}$ is the elementary Stern-Gerlach kick in the quadrupole, with η^{\prime} given by eq. (2.6).
(Notice that the 2nd kick in eq. (2.3b) has the same sign as the first kick, since the solenoid reverses the spin).
where

$$
M_{F}=\left|\begin{array}{cc}
1 & 0 \\
\pm \frac{1}{f} & 1
\end{array}\right|, M_{S} \simeq M_{0}=\left|\begin{array}{ll}
1 & L_{S} \\
0 & 1
\end{array}\right|
$$

with

$$
\begin{equation*}
\frac{1}{f}=\frac{e \mathrm{GL}_{\mathrm{Q}}}{\mathrm{p}} \simeq 30 \mathrm{~m}^{-1}, \mathrm{~L}_{\mathrm{Q}}=0.5 \mathrm{~m},\left(\mathrm{~L}_{\mathrm{S}}=1 \mathrm{~m}\right) \tag{A2}
\end{equation*}
$$

for $p=100 \mathrm{MeV} / \mathrm{c}$ and $\mathrm{G}=20 \mathrm{~T} \mathrm{~m}^{-1}$
Then eq. (A2) can be written as
or

$$
\left|\begin{array}{c}
z_{c o} \\
z_{c o}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
2 & L_{s} \\
\frac{1}{f} & 2+\frac{L_{s}}{f}
\end{array}\right|\left|\begin{array}{c}
0 \\
z_{k}^{\prime}
\end{array}\right|=\left|\begin{array}{c}
L_{s} z_{k}^{\prime} \\
\left(2+\frac{L_{s}}{f}\right)_{z}^{\prime}
\end{array}\right|
$$

which demonstrates that, for high quadrupole-gradients and low momenta, the "optical -lever" due to the (quasi) free-flight in the solenoid, can enhance the double Stern-Gerlach kick as

$$
\begin{equation*}
\eta=z_{c o}^{\prime}=\left(2+\frac{L_{s}}{f}\right) z_{k}^{\prime} \tag{A3}
\end{equation*}
$$

Again for $p=100 \mathrm{MeV} / \mathrm{c}, \mathrm{L}_{\mathrm{s}}=1 \mathrm{~m}$ eq. (A3) yields a total kick of the order of $32 z_{k}^{\prime} \simeq 2.11 \times 10^{-12} \mathrm{rad}$.

The vertical separation, between two antiprotons with opposite spinstates, is given by the product of the angular kick (A3) times the betatron function β_{v} at the 2nd quadrupole of the Spin-Splitter. Then one can define as separation rate

$$
\begin{equation*}
v_{\text {sep }}=\left(2+\frac{L_{s}}{f}\right) \frac{G_{\mu} L_{Q} \beta_{v}}{\tau_{\text {rev }}}=\left(2+\frac{L_{s}}{f}\right) \frac{G_{\mu} L_{Q} \beta_{v}}{m_{p} c^{2} \tau_{\infty}} \frac{1}{\beta \gamma}=\frac{v_{0}}{\beta \gamma} \tag{A4}
\end{equation*}
$$

where
$\tau_{\text {rev }}=\frac{\tau_{\infty}}{\beta}, \tau_{\infty}=\frac{C}{c}=\frac{\text { Ring Circumference }}{\text { Speed of Light }}$

For Lear $\left(C=78.54 \mathrm{~m}, \tau_{\infty}=0.262 \mu \mathrm{~s}, \beta_{\mathrm{v}} \simeq 10 \mathrm{~m}\right.$) eq. (A4) gives $v_{0}=1.15 \times 10^{-6} \mathrm{~ms}^{-1} \simeq 4 \mathrm{~mm} /$ hour. Of course, the lower $\beta \gamma$ the faster the beam separation is built up in particular for $\beta_{\gamma}=0.107(p=100 \mathrm{MeV} / \mathrm{c})$, one obtains $v_{\text {sep }} \simeq 1.07 \times 10^{-5} \mathrm{~ms}^{-1} \simeq 0.6 / \mathrm{min} \simeq 4 \mathrm{~cm} /$ hour.

Notice how eq. (A3) gives an appreciable enhancement for $p \leq e G L_{Q} L_{S}$ $\simeq 3 \mathrm{GeV} / \mathrm{c}$, becoming slowly equal to 2 as p increases, having kept the same values as in eq. (A2).

Of course, if the sequence of the quadrupole is inverted, the sign of f in eq. (A3) changes and the enhancing factor can be either reduced or lost (for $\left.2=-L_{S} / f\right)$.

FIGURE CAPTIONS

Fig. 1 - The Spin-Splitter basic configuration.

Fig. 2a- Use of an $E \times B$ device to adjust the spin precession angle.

Fig. 2b- Separate electrostatic and magnetic deflectors, acting on the median horizontal plane.

Fig. 3 - Closed-orbit representative point evolution in the normalized phase space.

Fig. 4 - Three possible example of spin-orientation.

Fig. 5 - Sketch of an electrostatic deflector, acting vertically, capable of splitting the $p(\bar{p})$ beam in two beams with opposite spin-states.

REFERENCES

1) W. Hardt, L. Hoffman, P. Lefevre, D. Moeh1, G. Plass and D. Simon: Conceptual Study of a Facility for Low-Energy Antiproton Experiments, CERN/PS/DL/Note 79-1 (1979).
2) Y. One1, A. Penzo and R. Rossmanith: A Spin-Splitter for Antiproton in Low Energy storage Rings, AIP Conf. Proc. 150 (eds. R.G. Lernerand D.F. Geesaman), p. 1229, American Institute of Physics, New York, 1986.
3) T. Niinikoski and R. Rossmanith: Nucl. Instrum. Methods A255 (1987) 46.
4) H. Kreiser et al.: Proc IVth Lear Workshop at Villars-sur-O11on. Ed. C. Amsler, G. Bakenstoss, R. Klapisch, C. Leluc, D. Simon, L. Tauscher, Harwood Acad. Publisher, Chur (1988) 205.
5) M. Conte et al.: Proc. IVth Lear Workshop at Villars-sur-Ollon. Ed. C. Amsler, G. Bakenstoss, R. Klapisch, C. Leluc, D. Simon, L. Tauscher, Harwood Acad. Publisher, Chur (1988) 211.
6) J.S. Bell: Polarized Particles for Accelerator Physicists, CERN 75-11.
7) B.W. Montague: Physics Reports 113 (1984) 1.
8) M. Conte: Polarized ($\mathrm{p}, \overline{\mathrm{p}}$) Beam-handling Techniques, Commutation presented at the Adriatico Research Conference on "Spin and polarization dynamics...", Jan 12-15 1988, ICTP, Trieste, Physica Scripta (in the press).
9) A. Pisent: Spin-Dynamics in a $\mathrm{p}(\overline{\mathrm{p}})$ Ring, The same as Ref. 7.

THE SPIN-SPLITTER

Fig. 1

Fig. 2a

Fig. $2 b$

Fig. 3

Fig. 4

Fig. 5

[^0]: a) Department of Physics, University of Genoa and INFN-Genoa Italy.
 b) INFN-Trieste, Italy and CERN, Geneva, Switzerland.
 c) Institut für Experimentelle Kernphysik, University of Karlsruhe, Fed. Rep. Germany and INFN-Padua, Italy
 d) Department of Physics, University of Padua and INFN-Padua, Italy

