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INTRODUCTION

On measuring the critical current of S/C conductors some difficulties arise in
the evaluation of the real field at which the critical current is measured.

The field produced by the current flowing in the conductor must be added to
the external magnetic field, almost uniform on the conductor width. The resulting
magnetic field on the conductor can be highly nonuniform, specially for that cables
carrying high current (multi Kamperes cables for High Energy Physics applica-
tion). In the present work the ”Self Field Effect” is studied in detail. The problem
of the real field ,at which the critical current measurement is performed, is solved.
Furthermore an electrical model is developped (2 Filaments Model) showing the

self field influence on the n-value.



BASIC RELATIONS

In this section some useful relations are recalled from literature.
In the region from 5 to 8 Tesla , at a fixed temperature T, the critical current

is well described by a linear dependance on the magnetic field:
I(B) = a1(T)Bapp + a2(T) (1)

This equation can be re-written in a more general form considering the empiri-
cal scaling formulas found by Lubelll}]. According to these formulae the critical

current density is described by:
JC(B,T=42) =J0 (1-—(13B) (2)

where a3 is a constant with a value of 0.096 in MKS.

The formula for the temperature variation is found to be:

J(B = const.,T) = J§(1 — ayg(B)T) (3)

Where a4 = (IB)) = 1_5_).59; a4 has a value of 0.174 at B=8 Tesla and
° 14.5

9.2(1—
0.139 at B=5 Tesla. From equations (2) and (3) it is possible to find the general

relations:

JC(B, T) = Jo{[l - (T - To) F(.B, To)] - 0,3.B} (4)
Where Ty is a reference temperature and

0,4(1 - G3B)

(5)
Putting To=4.2 K, it results a3=.096 and consequently F(B,T=4.2) ranges from
0.171 at B=5T to 0.150 at B=8T.

Considering that the critical current measurements are performed in the tem-
perature range 4.2-4.6 K, the maximum error on the critical current value by
putting F(B,T=4.2)=F ;=const=0.16 is about 2%. Using this approximation (5)
becames:

Jc(B,T) = Jo [(1 - FC(T - To) - a3B] (6)

formally equal to (1) if a;=const=-.096 and a,(T)=1-F (T-To).
In the following relation (6) will be used under the form

Jo(B,T) = Jo[az(T) — asB] (7)
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FIRST ORDER CORRECTION OF SELF FIELD

In order to have a better understanding of the procedure utilized to correct
the measured critical current, the analized situation is shown on a graphic (Fig.1).

On the ordinate axis the current fed into the sample is represented, on the
ascissa the magnetic field. At a fixed temperature the characteristic curve I.=I,(B)
is a straight line as given from (6) . At a fixed field the critical current is I%,
but the measured value is different due to the self field, that can be represented
by the "load line” 1l,¢; the measured critical current is I, at a real applied field
Bapplied=BezternaitBaels fietd- The above discussion can be drawn up analitically
as follows. As first approximation the considered self field is the maximum one.
It is given by the relation:

I

.Bsfﬂ‘l‘:a’—5 (8)

being I; the current carried by the sample and a5 the slope. From (8):

It = (Bapp - Be:t)a5 (9)

At the intersection between the critical field load line and the curve I.=I.(B), it

results I;=I., then B,p, and I, are calculated:

Ioaz + asB. ¢

Bgpp = 10
°rP as + a3l (10)
Where Ip=Jo x (S/C cross section) is used.
I*
Icr = _——_GT (11)
Lok
The percentual correction to obtain I from I, is:
I*-1.,
€= —— 12
I (12)
From (11) and (12)
¢ = aalo (13)
ag

This is an important result because the correction is not depending on the tem-
perature, the applied field or a particular self field value , but only on the critical
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current vs field slope and the self field slope. It is interesting to perform the calcu-
lation of € for a simple geometry as a round cable in a configuration in which the

self field is not compensated (hair-pin, long or short sample, coil); in these cases:

po I
Bs m= 5_
f 27 To (14)

ro is the outer radius of the conductor. From (13) and (14)

_ Mo azlo
E — ——

= 15
2T ro ( )

Not to loose generality it is convenient to introduce again the characteristic current

density Jo = 1"—(:'%’\1 where A is the —#:<— ratio. Then:
[<]
po Joasro
== 16
2 (1= (16)

A reasonable value for Jgaz is about 40000 c":, , so that for a wire with A = 1.8
the self field compensation is € =90rq. For a wire 1 mm in diameter the correction

is about 4.5%.
EFFECTIVE FIELD AT THE CONDUCTOR

The following arguments will show that the peak field is not the right value
at which the critical current is measured.

The system considered is a round multifilamentary wire, in which the su-
perconducting filaments are placed in a single shell (typical conductor for NMR
application).

The filaments are twisted on a diameter d for a characteristic lenght /, .

A outer field B..; is applied normal to the wire. At this field the self-field
produced by the current flowing in the filaments must be added.

For simplicity the self field is supposed to be generated by a current uniformly

distributed on the whole cross section of the wire, as shown in Fig.2.

B“PP = [(Bezt + Baclfll)2 + BZelfJ.] 1/2 (17)

Being B,.;s|| and B,y the components of the self field parallel and normal
to the applied field. In the most of the cases the term B,. 51 can be neglected.
Due to the twist, the term B,y on a single filament changes moving along the

wire (say x direction); for a round wire this component can be written:
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By = AB sin=> (18)
lp
AB is the maximum self field.
Supposing relation (18) to be valid for a certain filament, the same self field

component for the opposite filament is:

2
B” = —~AB sin% (19)
P

On a twist each filament experiences the same field variation starting from
different values. We consider the filament in which the maximum self field occurs
at x=I,/4 i.e. that filament for which the field is described by (18).

We now suppose that the resistance per unit lenght is described by:
R=al™ (20)
The critical value occurs at I., where V. is measured
R.=al? (21)
Introducing the reduced current i=I/I., from (20) and (21) it results:

R=R.i" (22)

From the equation (6) :

IC(B, T) = Io [az(T) - G3B] (23)

Having defined Ip=Jo x (S/C cross section). The field B is written as B=B.:+B),

then it results:

I(B,T) = Io[az — asBest — a3ABsin——2;T Z) (24)
P
From which:
as AB . 27z
= — a3 Bezt)(1 - 25
I. = Ip(az — a3 Bezt)( P sin I, ) (25)

Designing K = M—f‘_t% the critical current at the applied field can be referred

to the critical current at the external field:
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Ic(Bapp’ ) - I (Bez:t’T)(l - K stn#) (26)
P

We remark that if the self field is considered constant, from (12) and (26) it results

K
1-K

€= (27)
i.e. the constant K is just about the percentual correction to the critical current at
the maximum self field. From (26) and (22) it is possible to calculate the integrated
voltage on a twist pitch ;this value corresponds to the measured voltage per unit
lenght:

IP
1
mcaa = R I dz (28)
lp
0
Substituting the relation for R :
IP
1 Ve (nt1) p
Vineas = l / K sin%)" z (29)
0 P

V. is defined as the critical voltage per unit lenght measured at I=I.(B..:,T)so
that it is a constant. Changing to y=2%= (29) becames
P

V i(n+1) 1
Vmcae= =
27 / (1- K sin y)n dy (30)
0
The function
2 1
G(K) = _/ (1 - K sin y)n dy (1)
0

is showrr in fig.3 for several values of field and self field. The self consistence is
guaranteed considering that in the limiting situation Byeis fie1a=0 (then K=0), so
it results G(K)=2 7 and the measured voltage is just the same measured for a
single filament.

Being G(K)> 2, a lower value of the critical current is measured :

Vmeaa _

I new = '_R;_ = 1¢ old (E(%)')# (32)
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It is interesting to calculate the critical field B,.s; at which I, ., is measured.
This field must be greater than B,.,; and can be written as a sum of the applied
field and an effective self field AB*:

Beff=Bnt+AB* (33)

From (26),(32):
Ic(Bess) = Ie(Best)(1 — K¥) (34)

Where K* = —2-88°_ From (32) and (33) it results:
203 ext

2T 1
K*=1-— 5
(&) (35)
and AB* can be calculated:
L1 21w
AB* = 0—3[1 — m ](a2 - a3Bezt) (36)

In Fig.4 the effective self field vs the maximum self field is shown.
From these considerations it is found that the self field correction €* depends

on the external field and the self field values; it is given from (27):

«._ K* ,ﬁ%K)
T 1-K* ' 2n

€ % —1 (37)

It must be remarked that while relation (29) is valid only for a round cable, because

the sine dependance, the results (31) to (37) are general.
EFFECTS DUE TO THE CURRENT TRANSFER

In this section we will investigate the effects due to exchanges of current
between filaments. For simplicity the system under consideration is the previous
one (one shell of filaments ) with only two filaments. The basic idea is that the
filament in the zone at higher field (the more resistive) can give current to the
other filament (less resistive). The situation is reversed moving along the wire;
after half a twist the opposite condition occurs.

Indeed the results that will be obtained are also valid for a cable composed
by 2 strands, because the system is composed by 2 interacting objects, phisically
caracterized by having a critical current I, and a n-value . To study this situation,
the system can be simulated using a network as in Fig.5. The footindex 1 or 2
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relate to the two filaments; the position is x for the considered loop, z— Az and z+

Az for the two neighbouring rings of the chain. The filament denoted by ’1’ is
characterized by having the maximum self field at x=!f ; its resistance per unit

lenght is (from 22) :

|4 1)
=—=R n
Rile) = 7 °(1—Ksm%?) (38)
The opposite filament has a resistance per unit lenght:
|4 12
R =—=R n
2(2) = 7 =Fe (g sinzz) (39)

lp

The transverse electrical resistance for a single elemnent A =z is R; = -f‘z—‘fi‘:; we

introduce a shape factor 6 = gf equal to unity for a round cable and a value
greater than zero for a Rutherford cable with B.,;; normal to the wide face ( 6
equal to the ratio between larger and shorter side).

Applying the Kirchoff’s laws the following equations are written:

Ii(z - Az) = Iy(z) + T115(z) (40)
In(z — Az) = Iy(z) + I1o1(z) (41)
Ii(z) = Ii(z + Az) + Lizo(z + Az) (42)
Ip(z) = I;(z + Az) + L1z (z + Az) (43)

Rl(:z:) Az Il(:z:) + R, [qu(z'l' A:E) - It21($+ A:I:)] -
Rg(:c) Az I2(Z) + Rt [Itzl(.’ﬂ) - Itlg(I)] =0
From (40) to (44):

Ry(z) Az I (z) — Ra(z) Az Iy(z) —
_ R: [[(Ii(z + Az) - Ii(2)) — (La(z) — Li(z - Az))] - (45)
(Ta(s + &%) — (@) — (Ia(z) — (s — Az))] = 0

For Az — 0, putting I (z)+Iz(z) = I(z) =constant and assuming :f:zIz - _ gd_’;Izl
(45) becames:
d2I,

2 pib "11:—2 - [Rl(:c) + Rz(.‘t)] Il(:c) -+ Rz(z) I(:I:) =0 (46)
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Substituting in (46) the expressions for R(x) as in (38) and (39), then rearranging:

d2I, pe [iTTH (L+ K sin2E2)n — 4377 (1 - K sin2f2)"]
— E = 0 (47
dz? 2 pd Ay (1- K2 sin2%’:f’)" (47)
The reduced current i, can be replaced by ¢ — ¢; ({ = I/I.) and then, to

symmetrize the equation a new variable "f” is introduced so that:

i1=i/2 = f and i,=i/2 +f (48)

The new variable represents the quantity for which the current flowing trought
a filament is different from half of whole current. Furthermore an effective cross

section is introduced A,y = M‘;ﬂﬁ .Re-writing (48):
ﬂ + L (i)n+1
dz? A.s 2
(- B™ (4 K sinZ)n — (14 2™ (- K sin®)] (49)

(1-K2 sin2-"’l”T’)"

This non-linear differential equation can be solved numerically, but for a better
understanding of the physical aspects of the problem , an analytic solution can be
tried with some approximation.

For K< 1 it is possible to develope in a Taylor serie the terms:

2
(1K sin%—z)” and (1- K? sin—H)"
lp lp
and stopping at the first 2 terms, they are changed to:
(1K nsin2—IE) and (1-n K? sin?;T—z)
. P P

The denominator of right side of (49) can be changed completely with unity.

The same can be made for the term:
(1 + _z_ii)n-i-l

This means that relatively little current exchanges are allowed .

Using these approximations and re-arranging (49) is changed to:
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2
)"+l K n sin l’”’ =0 (50
14

d2f 2 1 2 .1
- < _ -\n 1 (-
R WSS P el C

A harmonic solution can be found putting the limiting conditions:

f(z=0) = f(z=1,) =0 (51)

which means that no transfer current is between filaments in the regions where

they experience the same field.Resulting:

Acy 2

f = - sin
i (1) + 47 lp
¢ P

Kn . 27z

(52)

From which the reduced current in the filament 1 is found:

. 2 _‘L"’K

. 1 A2 n . 27z

i1 =-(1- . sin ) (53)
2 24" (n+1) + 4—,1'3 lp

It is now possible calculate the voltage drop along a twist :

IP
v =i / Ry(z) Ii(z) do (54)
0

From expression for R; as in (38) and from (54) it results:

1y . n+1
V., 1 ntl AL(%)"K" .27z dz
V= -1—(5) - = n 1) + 425" ) (1 — Ksin2ZZ)n
p J i, () + 1)+ 5 P Iy
(55)

Having stated that little current exchange are allowed between the two filaments

we can approximate:

' 2B Kn 27z
2 = L1 (n4 1)l sin ] (56)
1 2 _Az_e;_;-” (n+1) + 4_15:3 lp
So that the voltage per unit lenght is:
 ntl 2 (H*"K (n+1)n
V= :; % [G1(K) — G2 A°!(2 ( (57)

2{7(%)”(1‘& +1) + %’%’-
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G;(K) is just G(K) previously described, while G5(K) is:

2r
. siny
G2 = / (1- K siny)n ay (58)
0

Where the new variable y= 2’{: has been introduced

Some interesting considerations arise from (58)

(1) If no current transfer between filaments (or strands) occurs due to a high
pt value, the term of (58) multiplied to G vanishes and the current dependance
of the voltage is that described by (29).

(2) The current transfer acts towards a reduction of the voltage drop ; the
reduction is increasing with the current so that there is also an effect on the n-
value.

(3) There is a further variation of the self field correction now given by:

G1(K) — A(K,n,lp A f)Go(K)
o 2220 -1 (59)

6**':[

APPLICATIONS OF THE DEVELOPED MODELS

Summarizing the obtained results, there are three levels for the self field cor-

rection:

1) The maximum self field is considered
In this case the self field correction is field and temperature indipendent;it is
defined by relation (13). The application field is every superconducting wire or

cable.The correction is over extimated.

2) The effective self field is considered.

The self field correction depends on the values of the external and self fields
applied. ‘For a cable having a single shell of strands (Rutherford type) or filaments
(NMR wire) the correction is given from (37) The function G(K) is described in
(31) for a round cable.

3) Transfers of current between filaments are considered
In this case the self field correction depends on several phisical quantity.The
n-value is changed. For a 2 filaments (strands) cable the self field correction is

represented by relation (59)
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Using these models an attempt is made to describe the behaviour of the
cable used in the dipoles for the HERA ring, considering as starting point the

characteristics of the single strand.

The cable has a trapezoidal shape, with height 10 mm and bases 1.67,1.28 mm.
It is compoused by 24 strands 0.84 mm in diameter ,critical current as in Table
I and a n-value of about 40. The evaluation of the field requires a description of
the experimental set-up. In a first stage we consider a single straight cable, placed
in a field normal to the wide face . In Fig.6 the iso-field lines at the cable are
shown; the external field is 5 Tesla, the transport current 8000 A. The maximum
self field is .53 Tesla so that the self field slope is a5 = 1.50910% A/Tesla. The
slope Ioag is directly found by Table I to be 24 x 105=2550 A/Tesla.From (13)
it is found that the self field correction at maximum field ¢ = 16.8% To evaluate
the effective self field, the function G(K) must be calculated. In Fig. 7 the By
component of the self field is shown (tick line),compared with a function (thin
line) B=B,, ma,sin:’(%’ + ¢) being ¢ a phase due to the trapezoidal geometry.
In the next calculations the sine function approximation is used, so that for a
fixed experimental set-up only the maximum self field is required to be known .
Furthermore no physical meaning is lost putting ¥ = 0. In Fig.8 the function
G(K) for this cable is shown, while in Fig.9 the calculated effective self field is

shown.

At a fixed external field the maximum applied self field must be calculated
using (10), then the effective self field is drawn from Fig.9 and the self field correc-
tion is calculated either by (13) with as slope calculated from effective self field,
or directly from (37) using G(K) of Fig.8. In Table II the maximum self field,the
effective one and the correction are shown for different values of the external field.
In the last step the transfer current effects are taken into account. In order to
have a comparison with experimental results , the calculation is performed not
only for the single straight cable but also for a real experimental configuration (2:3]
in which-the maximum self field is .47 Tesla at 8000 A (a5 = 1.7 105).

Equation (49) is solved numerically using a routine of NAG library (D02GAF).

In Fig.10 the foreseen Voltage-current characteristic for the straight is shown
and compared with the situations of (a) no self field and (b) effective self field.In
Fig.11 the plot LogV vs. Logl is shown in the three cases. The interesting result
is that the n-value (the slope of curves) at the beginning of the transition is just

equal to the one of the single strand, but increasing the current it is lowered.
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In TABLE III the values of the self field correction are shown.

In Fig. 12 and 13 the results for the real configuration at an external field of
6.4 Tesla . In Fig.14 the measured characteristic. Some interesting considerations
arise from (58)

(1) If no current transfer between filaments (or strands) occurs due to a high
p: value, the term of (58) multiplied to G2 vanishes and the current dependance
of the voltage is that described by (29).

(2) The current transfer acts toward a reduction of the voltage drop ; the
reduction is increasing with the current so that there is also an effect on the n-
value.

(3) There is a further variation of the self field correction now given by:

G1(K) - A(K,n,zp,Aef)Gz(K)]* _
2T

e**z[

1 (59)

APPLICATIONS OF THE DEVELOPED MODELS

Sumarizing the obtained results, there are three levels for the self field cor-

rection:

1) The maximum self field is considered
In this case the self field correction is field and temperature indipendent;it is
defined by relation (13). The application field is every superconducting wire or

cable.The correction is over extimated.

2) The effective self field is considered.

The self field correction depends on the values of the external and self fields
applied. For a cable having a single shell of strands (Rutherford type) or filaments
(NMR wire) the correction is given from (37) The function G(K) is described in
(31) for a round cable.

3) Transfers of current between filaments are considered

In this case the self field correction depends on several phisical quantity.The
n-value is changed. For a 2 filaments (strands) cable the self field correction is
represented by relation (59)

Using these models an attempt is made to describe the behaviour of the
cable used in the dipoles for the HERA ring, considering as starting point the

characteristics of the single strand.
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The cable has a trapezoidal shape, with height 10 mm and bases 1.67,1.28
mm. It is compoused by 24 strands 0.84 mm in diameter ,critical current as in
Table I and a n-value of about 40. The evaluation of the applied field requires a
description of the experimental set-up. In a first stage we consider a single straight
cable, placed in a field normal to the wide face . In Fig.6 the iso-field lines at the
cable are shown; the external field is 5 Tesla, the transport current 8000 A. The
maximum self field is .53 Tesla so that the self field slope is a5 = 1.50910% A /Tesla.
The slope Ipag is directly found by Table I to be 24 x 105=2550 A /Tesla.From (13)
it is found that the self field correction at maximum field ¢ = 16.8% To evaluate
the effective self field, the function G(K) must be calculated. In Fig. 7 the B
component of the self field is shown (tick line),compared with a function (thin
line) B=By musina(zT’;’ + 1) being ¢ a phase due to the trapezoidal geometry.
In the next calculations the sine® function approximation is used, so that for a
fixed experimental set-up only the maximum self field is required to be known .
Furthermore no physical meaning is lost putting ¥ = 0. In Fig.8 the function
G(K) for this cable is shown, while in Fig.9 the calculated effective self field is
shown.

At a fixed external field the maximum applied self field must be calculated
using (10), then the effective self field is drawn from Fig.9 and the self field cor-
rection is calculated or by (13) with a5 slope calculated from effective self field
or directly from (37) using G(K) of Fig.8. In Table II the maximum self field,the
effective one and the correction are shown for different values of the external field.
In the last step the transfer current effects are taken into account. In order to
have a comparison with experimental results , the calculation is performed not
only for the single straight cable but also for a real experimental configuration (23l
in which the maximum self field is .47 Tesla at 8000 A (a5 = 1.7 105).

Equation (49) is solved numerically using a routine of NAG library (D02GAF).

In Fig.10 the foreseen Voltage-current characteristic for the straight is shown
and compared with the situations of (a) no self field and (b) effective self field.In
Fig.11 the plot LogV vs. Logl is shown in the three cases. The interesting results
is that the n-value (the slope of curves) at the beginning of the transition is just
equal that one of the single strand, but increasing the current it is lowered. In
TABLE III the values of the self field correction are shown.

In Fig. 12 and 13 the results for the real configuration at an external field
of 5.81 Tesla and temperature 4.51K In Fig.14 the measured characteristic and in
Fig.15 the connected LogV vs Logl curve.
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A critical current of 7570 A is observed (foreseen 7975) with a n-value of 17
(22). From the experimental results a confirm comes out for the changing of the
n-value; instead it is not clear the difference between the foreseen and measured
critical current. There are two possibilities:

1) The effective self field theory does not apply

2) A degradation is occurred from the strands to the cable ( 5.3% ).

A work is in progress to understand if any degradation occurs. Our opinion
is that both the effective field theory and transfer current theory are quite good
and can give an acceptable background to connect critical current measurements

performed in different laboratories.
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TABLE I Critical current Valu'es

B (T)

5.3

6.5

7,5

I1(A)

450

340 .

240

TABLE 11: Effective s.f. and correction

B external | applied sf | effec.sf correction
Tesla Tesla Tesla %
55 0.606 0.402 11.02
6.0 0.534 0.343 10.64
6.5 0.460 0.295 10.56

TABLE IIT S.F.

correction

Field (T) | 3.

50| 6.

00| 6.30

Corr.

(Z) | S.

45 9.

52| S.65
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Fig.1 Schematic view of self field correction
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Fig.2 The considered system
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