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I. INTRODUCTION

In a paper published in 1902 on the boundary value problems for
partial differential equations and their physical meaning, Jacques
Hadamard introduces the basic concept of we//-posed problem (Hadamard,
1902). In this first formulation he calls a problem well-posed when its
solution is unique and exists for arbitrary (non-analytic) boundary values.
Then, from the investigation of several examples related to elliptic and
hyperbolic equations, he derives the conclusion that only the problems
motivated by physical reality are well-posed. In particular, he shows that
the Dirichiet problem for the Laplace equation and the Cauchy problem for
the wave equation with boundary values at t=0 are well-posed, while the
Cauchy problem for the Laplace equation and the Cauchy problem for the 3D
wave equation, with boundary values at x=0, are not well-posed.

In subsequent work Hadamard emphasizes also the requirement of
continuous dependence of the solution on the data (Hadamard, 1923). He
claims that a solution which varies considerably for a small variation of
the data is not actually a solution in the sense of physics. Physical data
are never known exactly but only with a certain degree of accuracy and
this should imply that the solution is not known at all. He provides a
striking example of this fact in the case of the Cauchy problem for the
Laplace equation in two variables

+ U, =0 : (n
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XX
If we consider the following Cauchy data at y=0

ux,00=0 , uy(x,O) =71 sin(nx) (2)

then there exists a unique solution of Eq.(1) satisfying these conditions,
which is given by



u(x,y) = n"2 sin(nx) sinh(ny) . (3)

The factor sin(nx) produces a fluting of the surface which represents the
solution of the problem and this fiuting, however imperceptible near y=0,
becomes enormous at any finite distance from the x-axis, provided the
fluting be taken sufficiently small by taking n sufficiently large. Notice
that when n— o, the amplitude of the oscillating data tends to zero
while the frequency tends to infinity. This is now a classical example used
for illustrating the effects which arise when the dependence of the
solution on the data is not continuous.

In honour of this contribution a problem is now called we//-posed
n the sense of Hadamard if it has the property of continuous dependence
of the solution on the data, even if the complete definition, containing the
three requirements of uniqueness, existence and continuity, was firstly
given by Courant and Hilbert (Courant and Hilbert, 1964, pg.227; Hadamard,
1964, pg.28).

The ideas outlined above are certainly related to a deep thougth of
Hadamard. “He liked to work with the rigor of a mathematician and the
practical sense of a physicist, and liked to repeat Poincaré ‘s words: /g
Physique ne nous donne pas seulement loccasion de résoudré aes
problémes,. . . , elle nous rait pressentir la solution” (Mandelbrojt and
Schwartz, 1965). The physics of Hadamard was, however, the physics of
the nineteenth century. In fact, the requirements of existence, uniqueness
and continuity of the solution were "deeply inherent in the ideal of a
unique, complete, and stable determination of physical events. . . Laplace’s
vision of the possibility of calculating the whole future of the physical
world from complete data of the present state is an extreme expression of
this attitude” (Courant and Hilbert, 1962, pg.230).

The idea of well-posedness was extremely useful in the theory of
partial differential equations and in functional analysis. A negative

consequence was that, for years, the problems which are not well-posed,



and which now are called ill-posed or incorrectly posed, were just
considered as mathematical anomalies and, for this reason, they were not
seriously investigated. Recent developments in physics and especially in
applied physics have shown that ill-posed problems can also be related to
extremely important physical situations. For example, the solution of the
Cauchy problem for elliptic equations may have interesting applications in
electrocardiography (Colli Franzone ef &g/, 1977), namely in the
reconstruction of the epicardial potential from body surface maps. We
want to emphasize, however, another ill-posed problem which has
revolutionized diagnostic radiology.

In 1971 the first clinical machine for the detection of head tumors,
based on a new X-ray technique called computer-assisted tomography or
also computerized tomography was installed at the Atkinson Morley's
Hospital, Wimbledon. In 1979 Allan M. Cormack and Godfrey N. Hounsfield
awarded the Nobel prize in Medicine for the invention of this technique. As
everybody knows, computerized tomography provides images of cross
sections of the human body by measuring the attenuation of the X-rays
along a large number of lines through the cross section. Then the
processing of the data requires the reconstruction of a function of two
variables from the knowledge of its line integrals. The solution of this
mathematical problem was already contained in a paper of Johann Radon
(Radon, 1917). To be precise, the result of Radon was more general, since he
proved formulas for the reconstruction of a function on R" from the
knowledge of its integrals over all the hyperplanes of R" . In honour of
this contribution, the mapping which transforms a function into the set of
its integrals over hyperplanes is now called Aadon fransform and
therefore the problem of tomography is just a special case of Radon
transform inversion. Moreover, Radon transform inversion is a beautiful
example of an ill-posed problem since the solution does not exist for
arbitrary data and the dependence of the solution on the data, in general, is
not continuous. As a consequence, the effect of the noise on the solution is
amplified in a way similar to that discussed in the case of the Cauchy
problem for the Laplace equation.



Even if Cormack and Hounsfield were not aware of the work of
Radon ( Hounsfield has also been quoted as saying "I find I've got other
tools of thinking than math.” (Di Chiro and Brooks, 1979) ), there is no
doubt that mathematics has given important contributions to the
development and improvement of computerized tomography. On the other
hand computerized tomography has certainly stimulated the fast growth of
the theory of ill1-posed problems in the last twenty years.

Radon transform inversion is an example of an /nverse problem. A
precise mathematical definition of inverse problems however, without
reference to physics, is quite difficult, perhaps impossible. For a
mathematician the distinction between direct and inverse problems is
quite arbitrary. "We call two problems /averses of one another if the
formulation of each involves all or part of the solution of the other. Often,
for historical reasons, one of the two problems has been studied
extensively for some time, while the other is never and not so well
understood. In such cases, the former is called the direct problem, while
the latter is called the /nverse problem " (Keller, 1976). Another quote
from the same paper shows a route for a characterization of inverse
problems based on physics rather than on mathematics. " The main sources
of inverse problems are science and engineering. Often these problems
concern the determination of the properties of some inaccessible region
from observations on the boundary of the region"(Keller, 1976).

In fact inverse problems are related to indirect measurements,
remote sensing and so on and one must specify for each domain of physics
the definition of the direct problem and the definition of the corresponding
inverse problem. For example, in classical mechanics, the direct problem
is the determination of the trajectories of the particles from the
knowledge of the forces. Then the inverse problem is the determination of
the forces from the knowledge of the trajectories (in this sense Isaac
Newton has perhaps solved the first inverse problem). In potential theory,
the direct problem is the determination of the potential generated by a
known mass or charge or current distribution while the inverse problem is
the determination of the mass or charge or current distribution from the
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measured values of the potential. In the theory of wave propagation, the
direct problem is the determination of fields distributions in time and
space from given constitutions of sources or scatterers. Then the inverse
problem is the determination of the characteristics of the sources or
scatterers from the observation of the fields (computerized tomography is
an inverse problem in this sense since it consists in the determination of
the space distribution of the X-ray absorption coefficient from the
observation of the attenuation of the X-rays passing through the probe). In
instrumental physics the direct problem is the computation of the output
of a given instrument, with a known impulse response function, from the
knowledge of the input. Then the inverse problem is the determination of
the input from the knowledge of the output and so on.

Having these examples in mind one can accept a definition of direct
and inverse problems claiming that direct problems are problems oriented
along a cause-effect sequence or, in other words, problems which consist
in providing the consequences of given causes, while inverse problems are
those associated with the reversal of the chain of casually related effects
and therefore these problems consist in finding the unknown causes of
known consequences (Turchin e¢ @/, 1971). This definition is not misieading
if one never forgets that the formulation of any specific problem must be
based on well-established physical laws and that physics must specify
what is a cause and what is an effect as well as provide the equations
relating the effects to the causes. Moreover, a merit of this definition is
the attempt of justifying the fact that direct problems are, in general,
well-posed while the corresponding inverse problems are, in general,
ill-posed.

Nowadays inverse problems are fundamental in several domains of
applied science: medical diagnostic, atmospheric sounding, radar and
sonar target estimation, seismology, radioastronomy, microscopy and so
on. Everyday applications are in use not only in X-ray or MR tomography,
but also in seismic data processing for geophysical exploration and in

radiometric data processing for meteorological forecasts and monitoring.



Moreover, in the last years, several books have been published on inverse
problems related to various areas of applied physics: optics
(Baltes, 1979;1980), astronomy (Craig and Brown,1986), electromagnetics
(Boerner et 2/,1983), atmospheric sounding (Zuev and Nats,1983),
computerized tomography (Herman,1979;1980; Herman and Natterer,1981;
Natterer,1986 a). Miscellaneous examples and mathematical results are
contained in (Colin, 1973; Sabatier, 1978; 1987; Talenti, 1986; Cannon and
Hornung, 1986). I11-posed problems for partial differential equations are
investigated in (Payne, 1975; Carasso and Stone, 1975).

Inverse problems, in general, are nonlinear. Two nonlinear problems
have been the object of beautiful mathematical investigations, namely the
inverse Sturm-Liouvilie problem and the inverse scattering problem. The
first one is perhaps introduced by Lord Rayleigh (Lord Rayleigh, 1877)
which, in describing the vibrations of strings of variable density, briefly
discusses the possibility of deriving the density distribution from the
frequencies of vibration. A modern version and generalizations are given
by Kac (Kac, 1966). Roughly speaking the mathematical problem is the
determination of the coefficients of a differential operator from the
knowledge of its eigenvalue spectrum. important contributions to this
problem were given by outstanding mathematicians such as Levinson,
Marchenko and Krein among others. A short survey is given in (Barcilon,
1986).

The inverse scattering problem was originally investigated in
connection with Schroedinger equation and later extended to other
equations such as Helmholtz equation, impedance equation and so on. In
short, the problem is the determination of the potential (or of the
refraction index, of the impedance, etc.) from the knowledge of quantities
related to the scattering amplitude such as phase shifts, reflection and
transmission coefficients, etc. A complete account of the main results is

given in (Chadan and Sabatier, 1977).



The inverse problems above are nonlinear. For example, in the case
of the vibrating string, the direct problem consists in solving the linear

eigenvaiue problem
S = w0 2 ) Y x) 5 k=0, (4)

on the interval (O,L), for a given density function p(x) and suitable
boundary conditions at the end points O and L. But, since the eigenvalues

“’k2 are nonlinear functionals of the density function p(x), the inverse

problem, consisting in the determination of p(x) from given values of the

wkz, implies the inversion of a nonlinear mapping. However, when an
estimate of p(x), say py(x), is known and the difference f(x) = p(x) - py(x)

is small, it is possible to linearize the functionals ‘*’k2 using, for

instance, perturbation theory. In this way the original nonlinear inverse
problem is approximated by means of a linear one, the unknown function
being now f(x). Similar results can be obtained in inverse scattering using
Born or Rytov approximation, geometrical optics approximation and so on.
Moreover some inverse problems related to inverse diffraction are
rigorously linear problems.

In this paper we consider only /inear inverse probl/ems which have
the following general structure. The first step is the definition of the
direct problem, which must be linear. Then the solution of the direct
problem defines a linear mapping L from the space X of all the functions
characterizing the properties of the physical sample (such as the density
function in the case of a vibrating string or the refraction index in the
case of a semi-transparent object etc.) into the space Y of all the
corresponding measurable quantities (such as sequences of eigenvalues,
scattering amplitudes and so on). Of course in the direct problem the data
are elements of X while the solutions are the elements of Y. In the
corresponding inverse problem there is an exchange between data and



solutions. If we assume that the operator L is known (and this implies the
need of solving the direct problem), then the inverse probiem can be
formulated as follows: given geY and given the linear operator L:X—Y,
find feX such that

qg=Lf . (5)

An element of X will be called an object (or a so/ution) while an element
of Y will be called an /mage (or a data function, a data vector, etc.).
Accordingly X will be called the abject space (or the solution space) and
Y will be called the /mage space (or the gata space).

In this paper, as in most of the mathematical papers on these
problems, it is assumed that both X and Y are Hilbert spaces and that the
linear operator L :X——Y is continous. Continuity means that, given any

sequence [fn] converging to zero in the sense of the norm of X, the

corresponding sequence [Lfn] converges to zero in the sense of the norm of

Y. In other words, it is assumed that the direct problem is well-posed in
the sense of Hadamard.

In order to illustrate the difficulties of solving linear inverse
problems, we consider a particular example of Eq.(5), namely the case of a
rirst kind Freadholm integral equations of the following type

b
g(x) = f Kix,y) fiy)dy , c<x<d . (6)
a

This can be written in the general form (5) if we introduce the integral
operator

b

(LTX(X) = fK(x,y) ryyday , c<x<d ) (7)
a



which transforms functions on [a,b] into functions on [c,d]. Moreover we
consider the simple case where the solution and data space are spaces of
square integrable functions, i.e. X = L2(a,b) and Y = L2(c,d). Then the
operator L is continuous when the integral kernel K(x,y) is square
integrable. Notice that this is only a sufficient condition for continuity. In
the case of a convolution operator, i.e. K(x,y) = K(x-y) and also a=c=-o,
b=d=+00, the operator L is continuous in LZ(R) when the impulse response
function K(x) is integrable and therefore the kernel is not integrable nor
square integrable as a function of the two variables x,y.

Assume now, for example, that the integral kernel K(x,y) is an
analytic function of x for any y € [a,b]. Then, given an arbitrary object f €
L2(a,b), the corresponding image g(x), computed by means of Eq.(5), is also
analytic. It follows that the inverse problem does not have a solution for
an arbitrary g € L2(c,d) but only for functions g in a subset of analytic
functions. The problem is ill-posed in the original sense of Hadamard.

Also continuous dependence of the solution on the data does not
hold true. If the interval [a,b] is bounded and the kernel is square
integrable, then the kernel is also integrable and, from the
Riemann-Lebesgue theorem (Titchmarsh, 1948) it follows that

b
_r K(x,y) costny)dy — 0, n—> 0 . (8)
a

In this way it has been found a sequence of functions which does not tend
to zero in L%(ab) while the sequence of the corresponding images tends to
zero. This example is similar to the example of Hadamard in the case of
the Cauchy problem for the Laplace equation.

The previous example indicates that it is necessary to reconsider
the validity of the mathematical model provided by Eq.(S) for the
description of a physical experiment. When we apply the operator L to all
the functions of X we obtain a set of images which can be called the set of
the exact images or the set of the noise rree images . In the example
discussed above these functions are much more regular (analytic) than the

9



corresponding functions f and this situation is rather common in most
inverse problems, i.e. the operator L, which solves the direct problem, has
rather strong smoothing properties. But measurement errors or noise can
destroy the smoothness of the exact image. The measured image is not
related to f by Eq.(S) but by the following one

g=Lf+h (9)

where h is a stochastic function which represents the random noise. Such
a function is, in general, much more irregular than any exact image Lf. For
example, Lf is band-limited while h is not band-limited or has a band
much broader than the band of Lf.

The remarks above indicate that the space Y must be broad enough to
contain both the exact and measured images and that, in general, the set of
exact images is a subset of Y. Moreover, if we assume that Y is a Hilbert
space, then we must also assume that it is equipped with a scalar product
such that the norm of the experimental error h is small with respect to
the norm of the exact image Lf (for this reason a space of square
integrable functions is the most convenient in several practical problems).
As a consequence of these properties of the image space Y, the solution of
Eq.(5) does not exist for arbitrary g and the problem is ill-posed. In the
case of inverse problems with discrete data, however, the solution may
exist for arbitrary g (even if it is not unique - see Chapt.IIl). It also
depends continuously on the data since the space Y is a finite dimensional
euclidean space and any operator is continuous in a finite dimensional
space. One must never forget, however, that continuous dependence of the
solution on the data is a necessary but not sufficient condition for the
numerical stability (robustness) of the solution. Finite dimensional
problems obtained by discretizing ill-posed problems are usually
ill-conditioned, even extremely ill-conditioned, so that error propagation
from the data to the solution can deprive the solution of any physical
meaning.

If we come back now to a linear inverse problem formulated in

10



Hilbert spaces, we have a puzzling situation: or we use Eq.(5), but in this
case solution may not exist, or we use Eq.(9), but in this case we have only
one equation and two unknown functions, namely f and h. Also the idea of
looking for approximate solutions of Eq.(5), i.e. for objects f such that Lf
is approximately equal to g, is not successful due to the non-continuous
dependence of the solution on the data. In fact, as clearly illustrated by
the example of Hadamard, the set of the approximate solutions can contain
wildly oscillating and completely unphysical functions. More precisely the
set of all the functions f, such that the distance between Lf and g is not
greater than a prescribed small guantity €, is an unbounded set of the
object space X.

Then the basic idea in the treatment of ill-posed problem is the
use of g prior7 information about the unknown object in order to restrict
the class of approximate solutions. This means that we need some
additional informations, namely informations which cannot be deduced
from Eq.(S) or Eq.(9), about properties of the unknown object f and that
these informations must be inserted in the algorithm in order to produce a
physically meaningfu/ approximate solution. The additional informations
can consist of upper bounds on the solution and/or its derivatives, of
regularity properties of the solution (existence of derivatives up to a
certain order, analyticity, etc.), of localization properties of the solutions
(restrictions on its support, behaviour at infinity etc.), of lower bounds on
the solution and/or its derivative (positivity of the solution and/or of its
first derivative), and so on.

The idea of using prescribed bounds in order to produce approximate
stable solutions was introduced by Pucci in the case of the Cauchy problem
for the Laplace equation (Pucci, 1955), while the constraint of positivity
was used by John in the solution of the heat equation for preceding times
(John, 1955), another classical example of ill-posed problem. A general
version of similar ideas was independently formulated by Ivanov in the
case of Eq.(S) (Ivanov, 1962). This method and the method of Phillips for
first kind Fredholm integral equations (Phillips, 1962) were the first
examples of the regu/arization theory ror ill-posed problems, which was

1



a little bit 1ater formulated and developed by Tikhonov (Tikhonov, 1963 a;
1963 b; 1964). Expositions of this theory can now be found in a series of
monographs (Tikhonov and Arsenine, 1977; Groetsch, 1984; Bertero, 1982;
Morozov, 1984). A summary of this theory will be given in Chapt.V. This
will be preceded by a short Chapter on the theory of generalized solutions
which is the basis of the general formulation of regularization theory.

Regularization theory is essentially deterministic in the sense that
statistical properties of the noise or of the objects are not used.
Probabilistic methods for the solution of ill-posed problems have also
been developed but they will not be considered in this paper. Some of them
are gg hoc methods and have not yet been formulated in a sound
mathematical framework. We only mention here the so-called method of
wiener rrlters which has been developed as a general method for solving
ill-posed problems (Strand and Westwater, 1968; Franklin, 1970; Bertero
and Viano, 1978) and which can be considered as a probabilistic version of
a particular regularization algorithm (Bertero et a2/ ,1980). This method,
of course, is very well established and it can be used whenever a
knowledge of the statistical properties not only of the noise but also of
the object is available. The last kind of information plays, in a sense, the
same role as the prescribed bounds on the solution in the case of
regularization theory and therefore it is the required & pr7or/ information
in this formulation (Turchin et &/, 1971). The difficulty in the use of
wiener filters is that, in several practical inverse problems, the required
correlation functions are not known. When these can be determined, the
method can be very useful as demonstrated by the applications to
atmospheric remote sensing (Askne and Westwater,1986).

12



II. LINEAR INVERSE PROBLEMS

According to the definition introduced by Courant and Hilbert, the
problem of solving the functional equation (5) is we//-posed in the sense
of Hadamard if the following conditions are satisfied:

i) the solution f is unique in X;
ii) the solution f € X exists forany g€ ;

1ii) the inverse mapping g ——f is continuous.

Conditions i) implies that the operatorL: X —Y admits an inverse
operator L™! : Y ——X while condition ii) means that L™ is defined
everywhere on Y. Then, since the continuous operator L is linear, from a
corollary of Banach gpen mapping theorem (Yosida, 1966, pg.77) it follows
that L' is also continuous and therefore, in the linear case, conditions 1)
and ii) imply condition iii).

We emphasize that the requirement of continuous dependence of the
solution on the data is a necessary but not sufficient condition for the
stability (robustness) of the solution against noise. In the case of a
well-posed problem, the propagation of relative errors from the data to
the solution is controlled by the conaition number . 1f dg is a small
variation of g and &f the corresponding variation of f = L"g, then

latlly /lielly < cond W llsglly /llally (10)

where cond (L) is the condition number given by
cond (L) =L} I > 1 . (11)

Here ||L || and ||L™" || denote the norms of the continuous operators L and
L™1 respectively.
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When cond(L) is not too large, the problem (5) is said to be
well-conditioned and the solution is stable with respect to small
variations of the data. On the other hand, when cond(L) is very large the
problem is said to be ///-conditioned and a small variation of the data can
produce a completely different solution. It is clear that the separation
between well-conditioned and ill-conditioned problems is not very sharp
and that the concept of well-conditioned problem is more vague than the
concept of well-posed problem.

As we have announced in the Introduction, one of the conditions
i)-iii) may not be satisfied when Eq.(S) is the mathematical model of a
linear inverse problem. In such a case the problem is said to be ///-posed .
According to this definition inverse problems with discrete data are
always ill-posed because unigueness never holds true (see Chapt. III). In
the recent mathematical literature however, the term ill-posed is used in
a more restrictive sense which is related to the theory of generalized
solutions. Since the generalized solution, when it exists, is always unique
(see Chapt. IV), the problem of solving Eq.(5) is called ill-posed only when
the generalized solution does not exist for arbitrary g or, equivalently, it
does not depend continuously on the data. It follows that only problems
formulated in infinite dimensional spaces can be ill-posed in this sense,
while problems with discrete data are always well-posed (but, may be,
ill-conditioned).
In the next Sections we first investigate some general properties of
Eq.(S) in the ill-posed case and successively we present some examples of
linear inverse problems which are the most significant in our opinion.

A General Properties

The i11-posedness of a problem is a property of the triple (L, X, Y}:
the problem is ill-posed because, for instance, the space Y is too broad. As
already discussed in the Introduction, however, the space Y cannot be

14



modified since it must be broad enough to contain both exact and measured
(noisy) data. Therefore if we know that in an inverse problem the set of
measured data does not coincide with the set of exact data, condition ii) is
not satisfied.

As concerns the object space X, in many practical circumstances it
is quite natural to assume that it is a space of square integrable
functions. It may be convenient, however, to adapt the structure of X to
the available apr7or7 information about properties of the solution such as
regularity properties (existence of derivatives of f up to a certain order,
analyticity, etc.) and/or localization properties (approximate size of the
support of f, asymptotic behaviour at infinity, etc.). This means that in the
case of functions f defined on some interval [a,b], the appropriate Hilbert
space can be a welghted Sobolev space whose scalar product is defined by

m b
oy = 2 J o006 Doo* o (12)
k=0 a

Here the star denotes complex conjugation, the p; are given functions

which are continuous and positive and f(i) means dif/dx i.

A more general description of the process which consists in
restricting the object space by the use of g pr7or7 knowledge can be the
following. Let X be the original Hilbert space where the problem (5) is
formulated (for example a space of square integrable functions) and let us
assume that the & pr7or7 information about the specific solutions we are
considering can be described as follows: the solutions of the problem
belong to the domain of an operator C from the Hilbert space X into another
Hilbert space Z (the operator C is called the constraint gperator and the
space Z is called the constraint space) with the following properties :

a) the operator C has a domain D(C) dense in X and is closed (the

importance of this property is based on the fact that, as a rule, all
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differential operators are closed; for the definition see, for example,
(Balakrishnan, 1976))

b) the operator C has a continuous (bounded) inverse ¢!

Then it is possible to introduce a new space X~ C X, which is the

domain of the operator C equipped with the scalar product

(f9)c = (CICHY; . (13)

It is easy to prove that, when conditions a) and b) are satisfied, Xc is also
a Hilbert space. Moreover the operator L : XC——>Y is also continuous
because the topology of X~ is stronger than the topology of X. It follows

that the inverse problem can be reformulated by taking X~ as the new

object space. We just notice that the scalar product (i2) is a particular
case of the scalar product (13).

As stated in the Introduction, we will consider Eg. (5) only in the
case where L is a linear and continuous operators. Therefore, for the sake
of completeness, we summarize here a few general properties of these
operators which will be frequently used in the following. We also indicate
their physical interpretation.

The null space of L, denoted by N(L), is the set of all the functions
f which annihilate L, i.e.

NLY=(feXILf=0] . (14)

When the linear operator L is continuous, N(L) is a closed linear subspace
of X. Moreover, N(L) is not trivial if and only if the inverse operator does
not exist. The null space of the operator L will also be called the subspace
of the /nvisible objects (Rust and Burrus, 1972), since the image of any
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element of N(L) is exactly zero. This also means that the experiment, or
the instrument, described by the operator L is unable to detect the objects
which belong to N(L). On the other hand the orthogonal complement of N(L),

N(L , Will be called the subspace of the visible objects, since the

objects which belong to this subspace can be recovered, in principle, from
exact data. Thanks to the orthogonal projection theorem (Yosida, 1966; pg.
82), an arbitrary object f can be uniquely represented as the sum of a
visible plus an invisible component. It is evident that only the visible
component can be at most recovered from the image in the absence of
further g priori information about the object, .

The range of the operator L, denoted by R(L), is the set into which L
maps X

R(L) = {geYlg=LMfeX] (15)

and therefore R(L) is the linear subspace of the exact or noise free images
(data). The distinction, discussed in the Introduction, between exact and
measured images makes clear that R(L) in general does not coincide withY.
Moreover, in the case of inverse problems formulated in infinite
dimensional spaces, R(L) may not be a closed subspace of Y. In some cases
(for example in the case where L is the Laplace transformation) R(L) is
dense in the image space Y.

The adjoint operator L™ is uniquely defined by the following relation

(LT, @y = (f, L")y (16)

which holds for any f € X and g € Y. The operator L™ is also linear and

continuous and it has the same normas L : l| L* || = || L H The null space
and the range of L™ will be denoted by N(L™) and R(L™) respectively.

For example, in the case of the integral operator (7), if we take X =
L2(a,b) and Y = L%(c,d), the adjoiont operator is given by the following
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equation

d

oy = [Kxy) gx)dx , a<y<b . (17)
C

Finally we recall two important relations between the null spaces

and the ranges of the operators L and L*, and precisely

RO =NLY , RO =NLZ (18)

where R(L) denotes the closure of R(L). In other words the investigation of
R(L*) can allow the determination of the subspace of the visible objects
while the investigation of N(L*) provides informations about the subspace
of the exact images. These properties will be used in some of the examples
of inverse problems discussed in the next Sections. The relations (18)
imply the following decompositions of the spaces X and Y

X = N(L)® R(TH) . Y=NLH® RD . (19)

We shortly discuss now two important examples of linear operators
whose range is not closed. The first is that of a compact operator
(Balakrishnan, 1976) whose range is not finite-dimensional (i.e. we
exclude the case of the so-called finite rank operators). An example of a
compact operator is provided by the integral operator (7) when the kernel
K(x,y) is a square integrable functions of the two variables x,y. More
precisely, in such a case, L is a Hilbert-Schmidt integral operator from
L2(a,b) into LZ(c,d).

We consider the general case where the solution and data space do
not coincide (for example, in Eq.(7) the intervals [a,b] and [c,d] do not
coincide) and we introduce the so called singu/ar valuve decomposition of
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the operator L. We then indicate the relationship with the well known
spectral representation of a compact, self-adjoint operator.

The operators L™L and LU are compact, nonnegative operators in X
and Y respectively. Moreover NIL™L) = N(L) and N(LL™) = N(L). Tt follows

(Balakrishnan, 1976) that both operators admit a countably infinite set of

positive eigenvalues. It is also easy to prove that L™L and LL™ have exactly
the same positive eigenvalues with the same finite multiplicity (Lanczos,

1961 ; Kato, 1966). If we denote these eigenvalues by sz and if we count

each eigenvalue as many times as required by its multiplicity, the ok2

can be ordered in such a way as to form a non-decreasing sequence :

0920122 0,%>... The compactness of L implies that

lim ¢ 2=0 . (20)
k—c0

Now let u, and v, be the eigenfunctions of L*L and LL™ respectively,

associated with the same eigenvalue °k2

L*LUk = O'k2 Uk , LL* Vk = C'kz Vk . (21)

Then the u, form an orthonormal basis in N(LY, i.e. the subspace of the
visible objects, while the v, form an orthonormal basis in N(L*)l, i.e. the

closure of the subspace of the exact images.

As it is easy to verify, it is always possible to choose the pair
{u,vi ) in such a way that it is a solution of the following shifted

eigenvalue problem

LUk = Ck Vk s L*Vk = O'k Uk . (22)
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The positive numbers Oy are called the singuiar values of the operator L
and the functions uy, v\ the corresponding singu/ar runctions. The set of

the triples (0y; Uy, vy 1s the singu/ar system of L. Then one can prove

the following representation (Kato, 1966)

+00
Lf = Z O'k (f, Uk)x Vk (23)
k=0

which is called the singu/ar value decomposition of the compact
operator L. A similar representation holds true for the operator L*, which
is obtained from Eq.(23) just by exchanging the role of the singular

functions Uy and Vi

The singular value decomposition (23) implies that the visible
components of the object corresponding to small singular values give a
small contribution to the corresponding components of the exact image.
Therefore, in the case of a noisy image, these components can also be
invisible in practice. Moreover, Eq. (23) implies that an image g is an exact

image, i.e. g €R(L), if and only if the following conditions are satisfied

+00
g eN(L*)L kz(:) ok-2 (g, VK)Y|2 <+ 00 ' (24)

These conditions are also called Picard’s conditions (Nashed, 1976) for the
existence of the solution of Eq.(5), since they were first derived by Picard
in the case of first kind Fredholm integral equations (Picard, 1910). They
show that R(L) is not closed, since an arbitrary function satisfying the
first of the conditions (24) does not satisfy necessarily the second one. It
is evident, however, that R(L) is dense in N(L*)<.

When the operator L is self-adjoint and non-negative (the integral
operator (7) is self-adjoint when [a, b] = [c, d] and also K(x, y)* = K(y, x)),
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let us denote by A, its positive eigenvalues and by u, the corresponding

eigenfunctions. Then we have O = )‘k: Vg = Uy, and Eq. (23) becomes the

spectral representation of the operator L.
The second example is that of a convolution operator in L2(R)

(Lf)x) = IK(X -y)fly)dy , xeRD (25)
Rn

where x = { XpXo, .y xn} and dy = dy]dy2 ...dyn. If the impulse response

function K(x) is integrable, then its Fourier transform K(¥) is bounded and
continuous and from the Riemann- Lebesgue theorem (Titchmarsh, 1948) it

also follows that IR(&)I—)O when |&l— o0 . As a consequence, if Q is

the set of the points where |K(E) | # 0 (the closure of Q is the support of
K(E)), we have

m=inf IREIIE€Q) =0 . (26)

When Q is a bounded subset of R, the function K(x) is called band-
limited. In such a case the set of the invisible objects is the set of the
functions whose Fourier transform is zero over Q. Moreover, the set of the
exact images is contained in the subspace of the functions whose Fourier
transform is zero out of Q. More precisely, if g is an exact image, using the

well-known convolution theorem of the Fourier transform we get
a® = R® (o (27)

and therefore g e R(L) if and only if
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ip=0 ££a ; JIKk®[25ERdE<+ . (28)
Q

These conditions, which are analogous to the conditions (24), combined
with the property (26) of the kernel, imply that R(L) is not closed. Notice
that this is not true when the quantity m, Eq.(26), is strictly positive. An
example is provided by the band-limiting operator which will be discussed
in the following. In this case, K(x) is not integrable.

B Inverse Source Problems

An inverse source problem can be defined, in general, as the
problem of determining the constitution of a source from the measured
values of the emitted radiation. A specific example is the determination of
the current distribution of an antenna from the knowledge of its radiation
pattern. Here we illustrate the main features of these problems by
discussing the most simple case, namely that of a scalar source
generating a scalar field. The more general problem of the determination
of a charge-current distribution is investigated in (Devaney and Wolf,
1973; Bleinstein and Cohen, 1977; Hoenders, 1978) with a particular
attention to the question of uniqueness.

The basic equation is the inhomogeneous Helmholtz equation:

Au + k2y = - drtf (29)

where k = 21t/ is the wave number of the emitted radiation. The function
f(r), the source density function, can be assumed to be zero outside some
bounded region D. Without loss of generality we can also assume that D is
a sphere whose radius a is known. Then the direct problem 1s the
determination in the whole three-dimensional space of a field amplitude
u(r), satisfying Eq.(29) and also Sommerfeld radiation condition
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lim r(au/ar-iku) = 0 , r=|r| , (30)
r—>00

i.e. u(r) has to represent at infinity an outgoing spherical wave. As it is
well known, if fe L2(D), then there exists a unique continuous solution of
this problem, given by

ulr) = fG(r-r')f(r')dr' (31)
D

where
G(r) = elKlyp . (32)

Moreover, the behaviour at infinity of this solution is

ur) =g 6m 1+ or™hl | (33)

Here s =r/r = {sin 6 cos ¢, sin 6 sin ¢, cos 6} and the function

os) = fe'”((s-r')f(r')dr' (34)
D

is the so-called radiation pattern .

The inverse problem is now the determination of the source
distribution f(r) given the radiation pattern g(s) and this implies the
solution of the first kind Fredholm integral equation (34) which has the
same structure as Eq.(5) if we introduce the integral operator

(LEXS) = f o k(S £y o : (35)
D
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The operator L transforms a function f € L2(D) into a function defined on
the unit sphere 52 C R3. Let us assume that the data space Y is the space
L2(52) of the functions which are square integrable with respect to the

Lebesgue measure on 82, ds = sin 6 d6 d¢. Then it is easy to show that the

operator L : L2(D) —> L2(S?) is compact, and that its adjoint is given by

(L9 (r) = ,I'zeik("’S) g(s)ds . (36)
S

We first notice that R(L) C L%S?) fs a subspace of analytic
functions since, as follows from Eq. (34), any exact image g(s) is the
restriction, to the surface of the sphere of radius k (Ewald sphere), of the
Fourier transform of a function with a bounded support. Moreover the null
space N(L) can also be easily characterized. The radiation pattern is
identically zero if and only if the Fourier transform of f is zero on the
surface of the Ewald sphere. Since it is possible to prove (Devaney and
Wolf, 1974; Hoenders, 1978) that the emitted field outside D is uniquely
determined by the radiation pattern (this problem will be considered in the
next Section), it follows that any f € N(L) produces a radiation field which
is identically zero outside the source region D. In other words N(L), the
subspace of the invisible objects, is also the subspace of the so-called
non-raaiating Sources.

Given an arbitrary source distribution f, this can be uniquely
decomposed into a component onto N(L) (the invisible component) and a
component orthogonal to N(L) (the visible component). Using the second of
the relations (18) the component orthogonal to N(L), i.e. the component
which contributes to the radiation pattern, can be characterized by
investigating the range of the operator L™, as given by Eq.(36) (Bertero and
De Mol, 1981 a).

If we use the well-known expansion of a plane wave into spherical

harmonics
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o ]
eKr(8.S) a5 > it k) V(8) Yy (89 (37)
=0 m=-1

and if we introduce the functions

WP = @/ i OV, g = Yps)  , (38)

where

a
gy = 4n (f r2j]2(kr) dr)g : (39)
0
from Eq.(36) we obtain

+00 ]

Cpm=> > of fg(s')vlm(s')*ds' Yy (0 . (40)
1=0 m=-1 52

In conclusion, the subspace of the visible sources is the closed subspace

spanned by the functions u]m(r), Eq.(38). Moreover the set of the triples

(gy; Uym, Vim) 15 just the singular system of the compact operator L, as
1 Yim: Vim! 15 ) g y

follows from the relations
. Vi = (41)
Lhm =9 Vim > L Vim = 91 4im

which are easily obtained from Egs. (34), (36) and (37) using the
orthogonality properties of the spherical harmonics.

We finally remark that the singular values o) tend to zero

exponentially fast when 1 > ka, indicating a strong ill-posedness of the
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problem of determining the visible component of the source distribution.

C. Inverse Diffraction Problems

The problem of inverse diffraction can be defined as the problem of
determining the field distribution on a boundary surface from the
knowledge of the field distribution on a surface situated within the
domain where the wave propagates (Shewell and Wolf, 1968). More

precisely, consider a scalar field u in a region exterior to a surface ZO

which is the boundary of the region where the sources or the scatterers
are situated. Then u is a solution, in the exterior region, of the
homogeneous Helmholtz equation

Au + k2u = 0 (42)

and it also satisfies Sommerfeld radiation condition (30) at infinity (in
the case of a scattering problem this condition is satisfied by the
scattered wave). The problem of inverse diffraction is now the problem of

determining the field distribution on 2y from the knowledge of the field
distribution on another surface X; which belongs to the exterior region. In

particular, when the surface Z; is a sphere of large radius sorrounding X,

the data consists of the radiation pattern or of the scattering amplitude,
and the problem is called inverse airfraction rrom rar-rieia oata

A general discussion of the uniqueness of the solution of the
problem of inverse diffraction is given in (Hoenders, 1978) both in the
scalar and in the vector case. The uniqueness of the problem of inverse
diffraction from far-field data is proved in (Devaney and Wolf, 1974) in
the case of the electromagnetic field.

The scalar problem formulated above can be easily solved when the
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surfaces 2 and Z; are circular cylinders with the same centre (Cabayan e:

al, 1973) or spheres with the same centre (Hoenders, 1978) or parallel
planes (Shewell and Wolf, 1968). Here we sketch the case of inverse
diffraction from far-field data and the case of inverse diffraction from
plane to plane.

\. [nverse Diffraction from Far-Field Data

In the case of the problem of inverse diffraction from far-field
data we can assume, without loss of generality, that %, is the surface of a
sphere of radius a (for example the sphere, containing the source
distribution, introduced in the discussion of the problem of Section B).
Then we denote by f(s) the field distribution on % The direct problem is
the determination of the solution u(r,s) of Eq.(42) in the region r > a,
satisfying Sommerfeld condition (30) at infinity and also the boundary

condition u(a,s) = f(s). This is a typical exterior problem for the
homogeneous Helmoltz equation. If we represent f(s) in terms of spherical

harmonics
+00 |
f(s) =2 2 CpYym (8) (43)
1=0 m=-1
where
ey = J 1(8) Yp(s) s, (44)
52

then the solution u(r,s) of the direct problem is given by
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oo} 1

wrs)= > > o Pkern Par] viyis) (45)
1=0 m=-1

where the hy(Pkr) are the spherical Hankel functions of first kind. Notice

that Ih](])(X)I is never zero for real values of x and therefore the solution

of the direct problem (for a fixed r) always exists, is unigue and depends
continuously on f in the norm of L2 (52).
Using now the well-known asymptotic behaviour of the spherical

Hankel functions

nMPr) = D k)i o (46)

from EqQ.(33), which defines the radiation (diffraction) pattern g(s), we
derive the following integral relationship between g(s) and f(s)

g(s) = [ K(s,s") f(s')ds (47)
g2
where
o |
Ks,s) =k S > ™ [Pl v v . @8
1=0 m=-1

It follows that the solution of the inverse diffraction problem from
far-field data has been reduced to the solution of a first kind Fredholm
integral equation. It is also easy to recognize that Eq.(48) is the spectral
representation of the kernel. As a consequence the corresponding integral

operator L is compact in L2%(52), its eigenvalues are given by Ay =

k"l(-i)m/h]m(ka) and the corresponding eigenfunctions are just the

spherical harmonics. Since the latter form a basis inf L2(52) and all the
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eigenvalues )\] are different from zero, it follows that N(L) = {0) and

therefore the solution of Eq.(47) is unique. This is the uniqueness result

already mentioned in the previous Section. However, since )\]—>O when

1—>+00, the solution does not depend continuously on the data. As a
consequence, even if uniqueness holds true, the information content of the
far field is poorer than the information content of the near field. This
result is obvious on the basis of elementary physical considerations.

We notice also that, when the source or the scatterer is interior to
the sphere of radius a, it is possible to determine the field to the surface
of the source or of the scatterer by means of suitable Bessel function
expansions which provide a sort of analytic continuation of the field. This
technique is described, for instance, in (Bertero e/ @/, 1980 a) and it has
been applied to the problem of determining the shape of perfectly
conducting bodies (Imbriale and Mittra, 1970).

2. Inverse Diffraction from Plane to Plane

We consider now the inverse diffraction from plane to plane
(Shewell and Wolf, 1968). Stability results for this problem are given in
(Bertero and De Mol, 1981 b; Magnanini and Papi, 1985). An application of
this problem is investigated in (Sondhi, 1969). The direct problem is the
following : find, in the half-space z > 0, a solution u(r) = u(x, y, z) of
Eq.(42), satisfying Sommerfeld radiation condition (30) at infinity and

taking given boundary values on the plane z = 0. If we denote by f(p), p =
{x,y), the boundary field distribution and by g,(p) = u(x,y,a) the field

distribution on the plane z = a, then the solution of the direct problem is
given by (Luneburg, 1964)
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9x(p) = _r Gi(p -p*,a) f(p")dp’, (49)
R2
where

6(p.2) = - —— —2- &(r) (50)
2n oz

and G(r) is defined in Eq.(32).
The inverse diffraction problem is now the determination of the

boundary distribution f(p) from the knowledge of the field distribution
g,(P) on the plane z = a > 0. According to Eq.(49) this corresponds to the

inversion of a convolution operator such as the operator (25), a problem
which has been treated by means of the Fourier transform. Notice that the
representation of the field on the plane z = a in terms of its Fourier
transform is also called its representation in the form of an anguiar
spectrum of plane waves (Shewell and Wolf, 1968).

The 2D Fourier transform of the kernel (50) is given by

6y(8,2) = el ZM(E) (50)

where

mE = &2 -2k |, 1E <k (52)
mE = i(82- k22 B >k

and therefore, in this case, Q = RZ. The part of the spectrum [E| < k

corresponds to the so-called fomogeneous waves while the part [El >k
corresponds to the so-called /iomogeneous or evanescent waves.

Since IG](E,,Z)| # 0 for any finite value of |§| we conclude that the

solution of EQ.(49) is unique in L2(R2). The solution however does not
exist for arbitrary data and it does not depend continously on the data due
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to the fast decay of | é](g,z)l when |§| —+o or, in other words, due

to the existence of evanescent waves. We also notice that, when z is very

large, | Gy(E,2)| is practically zero for [El >k . In such a case one can

extract from the data only the values of f(E) in the disc [E| < k and

therefore this inverse diffraction problem provides a first example of the
general problem of Fourier transform inversion with limited data (see
Section F).

D Linear Inverse Scattering Problems

The inverse scattering problems are in general nonlinear. They have
stimulated beautiful mathematical researches which have been briefly
mentioned in the Introduction and which are not the subject of this paper.
Under some circumstances, however, it is possible to introduce physical
approximations which allow a linearization of the nonlinear problem.

A well-known case is that of a weak scatterer, in which case it is
possible to use Born approximation. Another kind of approximation which
also leads to a linear problem is the so-called Rytov approximation
(Chernov, 1967) which is valid when the scale at which the properties of
the scatterer fluctuate is large compared to the wavelength A of the
incident radiation.

A third example is the investigation of dispersed systems by light
scattering experiments. The typical case is that of a suspension of
spherical particles which have the same physical properties (for instance,
refraction index) but different sizes. The aim of the experiment is the
determination of the distribution function of the particle sizes. In the
case of dilute systems one can neglect multiple scattering and the
problem becomes linear.
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\. Semi-Transparent Objects

The use of Born approximation for reconstructing the refraction
index of weakly scattering semi-transparent objects has been widely
investigated (Wolf, 1969; Devaney, 1978; Hoenders, 1978) and also applied
to experimental data processing (Carter, 1970; Carter and Ho, 1974; Fercher
et al , 1979).

Let n(r) be the refraction index of the object and f(r) =1- n2 (r).
Since we consider a bounded object, situated, for instance, inside the
sphere of radius a, f(r) is zero forr > a. Then the total field u (incident

plus scattered) is a solution of the wave equation
Au + k2u = K2£(r)u (53)

where k = 21t/ ) is the wave number (in the free space) of the incident
radiation.

When the incident radiation is a plane wave, uy(r) = exp [ik(sq,r],

the first Born approximation to u(r) = un(r) + ug(r) (incident + scattered

radiation) is

(B = kS0 - 42747 [ 6ie-r) K S0 ey o . (54

Now, let uS(B)(r) be the second term on the r.hs. of Eq.(54) (Born

approximation of the scattered wave). The 2D Fourier transform of

uS(B)(p,z) ( p = (xy} ), over any plane of constant z which does not

intersect the region containing the object, is given by (Wolf, 1969)

GsBE,2) = (ik/s,) expliks,z] flk(s-sq)] (55)
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where, in the r.hs, f denotes the 3D Fourier transform of f and ks =

[«Ex,‘Ey,(k2 - &xz - §y2) 1/2)1f tollows from Eq.(S5) that the knowledge of
GS(B)(E,Z) is equivalent to the knowledge of f on the surface of the Ewald

sphere with centre ksq and radius k and therefore, from the mathematical

point of view, this problem is similar to the inverse source problem

discussed in Section B. Moreover, by varying the direction of incidence sy,

a (theoretically infinite) number of experiments would allow one to
determine f within the sphere with centre the origin and radius 2k
(limiting Ewald sphere). In such a case the unigueness of the
reconstruction of f is assured, since f is an analytic function due to the
bounded support of f. We notice that we have again the problem of
recontructing a function from a limited knowledge of its Fourier
transform.

The same mathematical problem must be solved if one applies
Rytov approximation (Devaney, 1981). The basic point is the introduction of
the complex phase function

¥(r) = Inulr) - ik(sg, r) . (56)

Then the Rytov approximation for the compliex phase function is given by
the following equation (Chernov, 1967)

¥RXr) = eTk(50.) y (B)p) | (57)

It is obvious now that if one takes the 2D Fourier transform of

explik(sq,r)] IIJ(R)(r), over any plane of constant z which does not intersect

the scatterer, one gets again the values of f on the surface of the Ewald
sphere. A short discussion of the limits of validity of the two
approximations is given in (Devaney, 1981).
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2. Perrectly Conducting Bodies

In the case of the scattering of an electromagnetic wave by a
perfectly conducting body the Born approximation (also known as Kirchhoff
or physical optics approximation) consists in taking for the magnetic
field, at the surface of the body, the values of the incoming field
(Bojarski, 1966, Lewis, 1969; Hoenders, 1978). This approximation is valid
when the wavelength X of the incoming field is small with respect to the
smallest geometrical details of the surface of the body.

Consider an incident plane wave with electric field Ei(r) =
exp[ik(so,r)] Eo and assume that the target is a smooth, convex and
bounded body which occupies the domain D. The backscattered field E(r),

i.e. the field observed in the direction Sp = ~Sp, at a large distance from

the scatterer is given by

) = o) (/2 vt M)Ey + 00r72) (58)

where k = ksq. Then in the papers mentioned above it is proved, using

Born approximation, that

T(k) = 2vT k2 [pk) + p (-K)] = f x(r) elkF) g (59)

where ¥(r) is the characteristic function of the target, i.e. the function
which is I when r is in D and zero elsewhere.

Since, in practice I'(k) can be measured only for values of k in a
restricted domain (in particular, in radar applications, only for points
interior to the annular region m < |kl <M, where m and M are related to

the minimum and maximum value of the usable frequency band), we have
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again a problem which consists in inverting the Fourier transform with
limited data.

A special feature of this problem is the lack of information at low
frequencies. For this reason it has been suggested of reconstructing the
directional derivative of the characteristic function rather than the
characteristic function itself (Mager and Bleinstein, 1978). In this way one
simultaneously attenuates low-frequency data while enhancing the effect
of high-frequency data.

3. Dispersed Systems

Consider a dilute suspension or a dilute aerosol consisting of
spherical particles having the same physical properties (refraction index
etc.) but different sizes. We denote by f(r) the probability density of the
particle size distribution. Moreover we denote by Q(p,r) the measured
scattering pattern in the case where all the particles have the same radius
r (monodisperse system). This pattern, in general, is a function of the
radius r and of the measured scattering variable p. For example Q(p,r) is
the correlation function of the scattered field in photon correlation
spectroscopy (Cummins and Pike, 1974) - here p is the correlation time -
or the small angle differential cross-section in Fraunhofer diffraction
(Van de Hulst, 1981) - here p is the scattering angle - or the absorption
coefficient as a function of the wavelength of the incident radiation (Van
de Hulst, 1981).

Then, by neglecting multiple scattering, in the case of a
polydispersed system with particle size probability f(r), the scattering
pattern is (Shifrin and Perelman, 1965)

+Q0

g(p) = J‘ Q(p,r) f(r) dr : (60)
0
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In several important cases Q(p,r) depends only on the product of the
two variables, i.e. Q(p,r) = K(pr) and the first kind Fredholm integral
equation (60) becomes

+00

g(p) = f K(pr) f(r) dr : (61)
0

For example in polydispersity analysis by photon correlation spectroscopy
(Cummins and Pike, 1974) we have K(x) = exp(-x) and the solution of Eq.(61)
becomes the inversion of the Laplace transform, a problem considered in
Section G (in such a case, however, the variable r is not the radius of the
particles but their translational diffusion coefficient, which is
proportional to the inverse of the radius of the particles). The integral
equation (61) is also a satisfactory approximation both in the case of
Fraunhofer diffraction and in the case of extinction experiments, when
using anomalous diffraction approximation (Shifrin and Perelman, 1965).

The integral equation (61) has the form (5) with

+00

L= ke e (62)
0

We assume, for simplicity that the data g(p) are measured for all the
values of p in (0, +o) and we consider L as a linear operator in L2(O,+00).
Then the integral equation (61) can be investigated using the spectral
representation of L in terms of generalized eigenvalues and eigenfunctions
(McWhirter and Pike, 1978).

An equivalent approach is based on the use of the Mellin transform
which, for a square integrable function is defined by (Titchmars, 1948).

+CO

(T XE) = f f(ry -2+ gr . (63)
0
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The transform 91 is an isometry from L2(0, +o0) into L%(-00, +o0)

+C0 +00
flf(rn? dr = f | (TmEXEN? (64)
0 27 -o0

and the following inversion formula holds true

+ 00

= L [ oG (65)
2m -oo

Now, by taking the Mellin transform of both sides of Eq.(61) one gets
(Mg)(&) = (TUNENTMFN-E) . (66)

we find that the operator L is a continuous, self-adjoint operator in
L2(0,+oo) if K(x) is real and satisfies the condition

+00

f x'li’lK(x)Idx < +0 : (67)
0

Moreover the operator L is invertible if and only if the support of ( JMK)}(&)
coincides with (-oo,+o0) . In such a case from Egs.(65) and (66) we can

derive that

+CO

o= - [ Ees g (e
2nm -co (MK)(-¥)

The condition (67) however, implies that |(MK)(¥)}— 0 when [l — +o0
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(this is again a consequence of the Riemann-Lebesgue theorem) and

therefore the operator L™! is not continuous in L2(O,+oo).

£ Kadon Transrorm Inversion and Tomography

In a paper devoted to inverse problems it is impossible to forget
the problem of Radon transform inversion which is basic in several
fundamental areas, such as diagnostic radiology (computérized
tomography ), radio astronomy and electron microscopy. On the other hand
it is impossible to give even a short account of the explosive development
of this field where the most spectacular applications of the theory of
inverse problems have been obtained. Therefore we limit ourselves to
show the connection between Radon transform inversion and the general
formulation given above. The interested reader is deferred to the books
which have been published both on the mathematical aspects (Herman and
Natterer, 1981; Natterer, 1986 a) and on the applications as well as on the
computational methods (Herman, 1979; Herman, 1980).

The problem of Radon transform inversion, which is also called
object reconstruction from projéctions, and the related problem of Abel
transform inversion are two examples of linear inverse scattering
problems which arise when the variations of the dynamical functions over
a given wavelength are so small that diffraction can be neglected. In such
a case a geometrical-optics description of the process is possible and, in
several instances, it is also possible to assume straight line ray
propagation. These approximations are adeguate especially at X-ray
wavelengths.

The n-dimensional Radon transform R maps a function f(x) defined

on R into the set of its integrals over the hyperplanes of R" . Therefore,

it sN~! is the surface of the unit sphere in R"and © € S, s € R, the

integrals of f over the hyperplanes perpendicular to ©, with signed
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distance from the origin s, are given by

(RTXO,8) = [  f(x)dx (69)
(x,0)=s

where (x,0) is the scalar product in R". The operator R defines the Radon
transrormation and the inverse problem is the solution of the equation
g=Rf for a given g. A terse discussion of related transforms such as the
A-ray transrorm, the divergent beam transrormand the attenuated Kaaon
transrform is contained in (Louis and Natterer, 1983). Another related
problem is diffraction tomography which is derived from the scattering
problem of the wave equation by the use of Rytov approximation (Mueller
et a/, 1979; Devaney, 1982, 1984; Natterer, 1986 a).

We focus now on the 2D case, in which case Radon transform and
X-ray transform coincide since the integrals over hyperplanes are simply
integrals over straight lines. Eq.(69) can also be written in the following

form, where 8- is the unit vector orthogonal to ©

+00
(Rf)X@,5) = [ f(so+tel)dt . (70)
-0

Another notation which is often used is the following

(RTXO,8) = (Rgf)s) (71

and the function Ref, with fixed O, is called a projection of f. This is the

origin of the name object reconstruction from projections which is often
used as a synonymous of Radon transform inversion.

One of the basic properties of the Radon transform, which clarifies
its information content about the function f, is the so-called projection

slice theorem (or projection theorem or also fourier slice theorem - for
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a proof see, for example, (Natterer, 1986 a)) - whose content is the
following relation between Fourier transforms

(Rgf) " () = f (£0) (72)

where (Ref)A is the 1D Fourier transform of Ref while f is the 2D

Fourier transform of f. The meaning of this result is clear : the knowledge

of Rgf is equivalent to the knowledge of f along the straight line parallel

to © and passing through the origin.

Several results concerning the uniqueness of the solution can be

immediately deduced from Eq.(72). If Rgf is known for all the values of 0,

then f is known everywhere and therefore f is uniquely determined. On the

other hand, if Ref is known only for values of © in a subset of the

half-circle - this is the problem of /imited angle tomography - the
solution of the problem in general is not unique. But, when the function f
has a bounded support, its Fourier transform is an analytic function and
therefore it can be uniquely recovered from its values in a finite sector.
We have again a problem of restoring a function f from limited values of
its Fourier transform.

An explicit inversion formula for the transform (69) was already
obtained by Radon (Radon, 1917), as we recalled in the Introduction. Here
we sketch an approach which is the basis of the algorithms which are
currently used in the practical applications. If we introduce the formal

adjoint R* of the Radon transform, also called back projection operator

(R*g)(x) = fg(e, (x,0))de (73)
gl

then the equation g = Rf can be replaced by R¥*g = R¥Rf. By taking the 2D
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Fourier transform of both sides of this equation we have (Natterer,1986)
(R#R1)"(E) = 4m |E171 £ (B) . (74)
Then, if we introduce the operator A defined by
(AD)(E) = 1 (&) (75)

we obtain (AR*Rf) = 4nf and this equation, combined with the original

equation Rf = g, provides the following inversion formula
f=(4n)'AR%g . (76)

This formula is the basis of the filtered backprojection method which is
the algorithm most frequently used in practice.

In the previous computations we have not specified the object
space X and the image space Y. As concerns the unknown function f it is
always convenient, and also reasonable in practice, to assume that f has a
bounded support. Moreover, in several papers it has been considered the
case where both X and Y are Sobolev spaces. Then it is possible to prove
that with an appropriate choice of these Sobolev spaces the operator R,
Eq.(69), is continuous and has a continuous inverse (Natterer, 1980; Louis
and Natterer, 1983). The continuity of R'], however is only obtained when
the functions of the data space are smoother than the functions of the
solution space. As we have already discussed in the Introduction, this
choice may not be reasonable in practice due to the effect of the noise on
the data. Therefore Radon transform inversion is an ill-posed problem
when the data space is, for example, a space of square integrable
functions. The ill-posedness is essentially related to the fact that the

operator A, Eq.(75), is not continuous in L2, We also mention that, in the

case of functions f with bounded support, the Radon transform R defines a
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compact operator if X and Y are suitable weighted L2—Space3. Then the
singular system of R has been explicitely determined for arbitrary values
of n (Davison, 1981; Louis, 1984) while for the limited angle problem the
singular system has been determined only in the case n=2 (Louis, 1986).

F. Fourier Transform fnversion with Limited Data

We have seen in the previous Sections that several inverse
problems can be reduced to the same basic problem: determine a function

f(x) defined on R" from the knowledge of its Fourier transform f (£) on a

bounded domain Q@ ¢ R" . Therefore if we denote by g(&) the known (in

general noisy) values of f , we must solve the following problem

o(g) = J‘e'i(‘s"‘) f(x)dx EcQ . (77)
RrR"

A quite natural framework for dealing with this problem is to take X =
L2 (RM) and Y = L2 (Q). Then it is obvious that the solution of the problem
is not unique. The null space of the operator is the set of all the functions
f whose Fourier transform is zero over Q. Unigueness, however, holds true

when the function f has a given bounded support D CR" . In such a case
one can take X = L%(D). Then the Fourier transform of any f € L2(D) is
analytic and therefore it can be uniquely determined from its values on a
suitable infinite set of points. The problem however is ill-posed because
existence and continuous dependence of the solution on the data in general
do not hold true.

In this Section we treat essentially the one-dimensional case using
the basic results of Slepian and coworkers (Slepian and Pollak, 196];
Landau and Pollak, 1961; 1962). The extension to many dimensions can be
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done along the lines indicated in (Sliepian, 1964).

We assume that the values of the Fourier transform of a function f
e L? (-00,+a0) are given in the interval [-c,c] and we notice that, in such
a case, Eq. (77) has the form (S) if the operator L is defined as follows

+00

(LFXE) = J.e'igx fix)dx, 18 <c . (78)

-0

We assume also that the data space Y is L2(-c,c) and we define the norm

of g as its L2- norm divided by 2. Then the adjoint operator is given by

C

L*gx) = 1 feixig(a)dg . (79)
2w -c

In this particular case the null space of L is the set of all the functions
fe L2(-a,+00) whose Fourier transform is zero on the interval [-c,c, and
therefore, as we have already pointed out, the solution of the problem is
not unique. We also notice that the operator LL* is just the identity
operator in L2(-c,c), while the operator L*L is the so-called

band-limiting operator B, , given by

+00

(B.IXx) = I(n/c) sinc [c(x-y)/m] f(y) dy (80)

-0

where the following standard notation has been used

sinc(x) = sin(mtx) / (;tx) . (81)

In fact the operator BC transforms a function f € L2(—oo,+00) into a

function whose Fourier transform coincides with the Fourier transform of
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f over the interval [-c,c] and is zero elsewhere. It follows that B is the

projection operator onto the subspace of the band-limited functions with
bandwidth c. Such a subspace of entire function, which is the subspace of
the visible objects, is closed with respect to the L2—norm and therefore it
is itself a Hilbert space, also called Paley-Wiener space and denoted by

PW.. We recall that, for any function fe PW. the following Whittaker-

Shannon expansion (sampling theorem) holds true

+00
f(x) = Z f(xn) sinclc(x-x)/m] . (82)
n=-c
where x, = nmt/c, n = 0+ 1, . .. The distance 1/c between adjacent

sampling points is usually called the Ayguist sampling distance.

As we have already remarked, uniqueness holds true when the
function f has a bounded support, say interior to the interval [-1,1]. Then, if
we take X = L2(—1,l), the operator (78) is replaced by the following one

1
w® = fe & rxyax, |d<c | (83)
-1

It is easy to recognize that this is a compact operator from L2(-1,1) into

1_2(-c, c). The determination of its singular system can be reduced to the
solution of the eigenvalue problem of the operator L*L which is given by

1
(L*Lf)x) = J.(n/c) sinclc(x-y)/mt] f(y) dy, Ixl <1 . (84)
-1

This is the integral operator investigated by Slepian and coworkers. Its

eigenfunctions, denoted by W (c,x), k = 0,1,2, . ., are called prolate
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spheroidal wave functions (PSWF). The corresponding eigenvalues M,
ordered to form a decreasing sequence have a typical step behaviour : they
are approximately equal to one for values of the index less than 2c/m and

then fall of f to zero exponentially. Notice that 2c/m is just the number of

the sampling points appearing in Eq.(82) and interior to the interval [-1,1].
The main properties of the PSWF, which are usually normalized to

one with respect to the norm of L2(-oo, +o0), are the following:

a) the norm of Y (c,x) in L2(-1,1) is VX

b) Y (c,x) and \Ifj(c,x), with k # j, are doubly orthogonal, i.e. they are

orthogonal both with respect to the scalar product of L2(—l,l) and with
respect to the scalar product of L2(—00, +00);

c) Yy (c,x) has exactly k zeros interior to the interval [-1,1];

d) the set of the Yy (c,x) forms an orthonormal basis in PW while the set
{

of the X~ 2 Y (c,x) forms an orthonormal basis in L2(-I,l);

e) The Y (c,x) are also eigenfunctions of the differential operator

(D(X) = - [(1-x2) (O} + c2x2f(x) (85)

which is a self-adjoint operator in L2(-l,l), with boundary conditions
defined by the requirement that the eigenfunctions must be bounded at the

points %I

The last property is quite important in practice for the computation
of the PSWF and it is also important from a theoretical point of view since
it provides one of the few examples of a differential operator commuting
with an integral operator with an analytic kernel (Grinbaum, 1986). A
second one will be shown in the next Section.

Finally, by investigating the operator LL™ it is easy to conclude
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that the singular system of the operator (83) is given by

|
G M U0 =N E (o) (86)

Vi (&) = (chy)” ¢ Y (c,&/c)

As a concluding remark we point out that a related problem is the
inversion of the following integral operator

1
(LT)x) = J‘(n/c) sinclc(x-y)/nt] f(y) dy, -oo<x<+o . (87)
-1

which is relevant for the investigation of optical systems (Bertero and
Pike, 1982). The difference with respect to the Slepian operator (84) is
obvious: while in that case the range of the variable X is restricted to the
interval [-1,1], in this case it is the full real line. As a consequence the
operator (87) is not self-adjoint, but it is still possible to show that it is
a compact operator from L2(-I,l) into L2(-oo,+oo). Moreover its singular
system can be given again in terms of the PSWF. More precisely the

singular values g, and the singular functions u, are given again by Eq.(86)

while the singular functions v, are now given by v, (x) = Yy (c,x). The

operator (87) is also basic in the solution of the problem of bandwidth
extrapolation (Viano, 1976;Bertero etal.,1980 a).

G. Laplace Transform Inversion

In several domains of experimental science, the experimenter is
concerned with the problem of recovering and resolving exponential
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relaxation rates. Many examples come to mind : nuclear magnetic
resonance in chemistry and, more recently, in medical imaging, photon
correlation spectroscopy, fluorescence, sedimentation equilibrium and, in
general, relaxation kinetics. In all such cases, the basic problem is the

inversion of the Laplace transform

+CO

== ePtrwa | (88)
0

It is well known that, in general, g(p) is analytic in a half-plane

Re(p) > py and that an inversion formula can be given using contour

integration in the complex plane. This formula, however, is useless
in practice because the available data will be no/sy values of g(p) for a
finite number of values of p. Here we assume that the values of g(p) are
known for all the values of p in (0, +oo) and we defer the case of discrete
data to the next Chapter.

The linear mapping L, defined by Eq.(88), is continuous and injective in
L2(0, +o). In fact, from Eq.(66), recalling that the Mellin transform of the
exponential is the gamma function, we have

(TGNE) = T ( %+ iE) (ME)-§) . (89)
Then, using the bound
Ire+ie2 = —1— <7 (90)
cosh(mx)

and Eq.(64), with f replaced by Lf, we obtain
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+00 +00

fl(Lf)(pn?dp < nf It 2 dt . I
0 0

Moreover, from Eq.(89) and Eq.(68) we derive the following inversion
formula for the Laplace transform

+00
W=Clgm = - [ Taeh (B g (o)
2T oy T(%- if)

We conclude that L is a continuous, self-adjoint operator in L2(0,+ o0),
withlILll = v and that L™ exists but is not continuous.

An important case which has been investigated only recently
(Bertero et a/,1982) is the inversion of the finite Laplace transform, i.e.
the inversion of the Laplace transform of a function with a bounded
support interior to a given interval, say [a,b], 0 <a <b <+0o. The dual
problem is the inversion of the Laplace transform with limited data, i.e.
the case where the Laplace transform is known only on the interval [a,b]
and no restriction is introduced on the support of the unknown function.

Thanks to the scaling properties of the Laplace transformation, it
is not restrictive to assume that the support of f is interior to the

interval [1,y], so that the finite Laplace transformation is defined as

follows

Y

(LF)(p) = f ePlr(that, O0<p<o. (93)
1

It is easy to recognize that L is a compact operator from LQ(W) into

L2(0,+) and that its inverse operator L™ exists. Analogously, its adjoint
operator
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+C0

(L*g)(t)=f e gp)dp, 1<t<y (94)
0

is also compact and invertible, so that the range of L is dense in L2(0,+oo).

It follows that if we introduce the singular system of L, i.e. {ok; U, vk],
then the singular functions uy form an orthonormai basis in L2(l,'y) while

the singular functions vj form an orthonormal basis in L2(0,+00). From

the general results on compact operators presented in Section A, we know

that the u, are the eigenfunctions of the operator L*L which is given by

Y
(L*Lf)(t)=f L_f(s)ds , 1<t<y (95)
1 t+s

and can be called the finite Stieltjes transrormation . Analogously the

singular functions v are the eigenfunctions of the operator L*L which is

given by

+ Q0
W= | 1 [e® ¢ ¥®D] gqrdq . (96) -
0 p*q

The singular values g have been computed numerically in (Bertero efa/,

1982) for a few values of <y. If they are ordered to form a decreasing

sequence, then it is possible to prove that, for a fixed k, g, is an

increasing function of y. As concerns the dependence on k, for fixed vy, the

o) tend to zero very rapidly so that only a few singular values are

significantly large. For example, in the case y=5 only 5 singular values are
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greater than 1073 : gg = 08751, gy =0.1935, g, = 0. 03827, g3 =

0.007434, g,4=0.001435.

A remarkable property, similar to the basic property of the PSWF,
is that it is possible to find differential operators commuting with the
integral operators L™*L and LU (Bertero and Grinbaum, 1985). This result
also provides a tool for the computation of the singular functions (Bertero

et g/, 1986). More precisely the singular functions U, are the

eigenfunctions of the second order differential operator

OV = - [(t2-0 (y2-tD 1 ] + 20621 (b (97)

which is a self-adjoint operator in L2(I,'y), with boundary conditions
defined by the requirement that the eigenfunctions must be bounded at the

points 1,y. On the other hand, the singular functions v, are the

eigenfunctions of the fourth order differential operator

0@g)p) = [p2 gy )~ (y2en[p2 ¢ @] + (y2p2-22g)  (98)

which is also self-adjoint in L2(O,+oo) if one looks for eigenfunctions
which are bounded at the origin and square integrable at infinity.

Using these results it is possible to prove (Bertero and Grinbaum,
1985) that:

a) all the singular values have multiplicity i;

b) the singular function y, has exactly k zeros interior to [1,8]; the points 1

and 'y can never be zeros of uy .

In the 1limit y——1 it has also been found an interestng relationship
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between the singular functions u, and the Legendre polynomials (Bertero

et a/, 1986 a).

H Generalized Moment Problems

A generalized moment problem can be defined as follows: let ¢y,

¢o, &3,. . . be a sequence of Tinearly independent functions in the Hilbert

space X; then find a function feX such that

(f,d)x=0y; N=123, .. (99)

where 9 92, 93 - - is a sequence of given numbers. This problem has the

general form (5) if we introduce a linear operator L which transforms a
function f € X into a sequence of numbers according to Eq.(99). Moreover we

will assume that the data space Y is 12, i.e. the space of square summable
sequences, with a norm defined by

(o)
laly2- 2 |g, 2 (100)
n=1

where we have denoted by g the sequence gy, 99, g3, - -

If the ¢n form an orthonormal basis in X, then the problem is

trivially well-posed and there exists a unique solution, for any geY, given
by the expansion

(00)
f= 2 gy - (1o1)
n=1
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The problem is also well-posed when the set of the functions ¢y, is nearly

an orthonormal basis in the following sense : there exists an orthonormal

basis [‘I‘n] and a positive number © <1, such that, for any sequence g €Y

(0.0
" Zgn ( ¢n - llln) “X = 6 ||g||Y : (102)
n=1

In such a case one can prove (Riesz and Nagy, 1972) that there exists the

dual basis { ¢}, i.e. the set of the functions satisfying the conditions
(o My = 8y 5 MM =1,2,... (103)

and that the sets (¢, )} and (¢ ) form a biorthogonal basis in X. This

result implies that there exists a unique solution of the problem (99),
which is given by
(00}

=2 g, " . (104)
n=1

Moreover the mapping ¢ — f is continuous since, as follows from
inequalities proved in (Riesz and Nagy, 1972), we have

Itlly sa+elally | (105)

Applications of this resuits to the theory of non-harmonic Fourier series
are outlined in (Riesz and Nagy, 1972).

When the functions ¢, do not satisfy the previous conditions and, in

particular, the angle between ¢, and ¢, tends to zero for n— oo, the

problem can be ill-posed. It is easy however to give a general condition
for the uniqueness of the solution or, in other words, for the existence of
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the inverse of the operator L : the solution is unique if and only if the span

of the ¢y, is dense in X. Otherwise the null space of L is just the orthogonal

complement of the span of the functions ¢y,

A classical example which satisfies the requirement of uniqueness
is the Hausahorrr moment problem : find a function f defined on (0,1) from
the values of its moments

1
o = f M ixydx ; n=1,2,3,.. (106)
0

This problem has the form (99) if X = LZ(O,I), in which case the span of the
functions ¢(x) = x"1 is dense in X. The operator L : L2(0,1)——> 12,
defined by Eq.(106) is continuous and ||L]j= vAT. The range of L, however,

is only dense in 12 and therefore L™! is not continuous. In fact, the
characterization of the necessary and sufficient conditions for the

numbers g;, g9, 93, . . to be the moments of a function f € LP(o,1, p >, has

been the subject of several beautiful mathematical investigations
(Widder, 1946). A terse discussion of the main results can also be found in
(Talenti, 1987).

It is important to point out that the Hausdorff moment problem is
related to Laplace transform inversion when the Laplace transform is

given at the points py = n - ‘é, n=1 2, ...1Infact if we consider the

generalized moment problem

+Q00
o = f M Dtytygt;  n=1,2,... (107)
0

using the change of variables x = e~ and introducing the function f(x) =
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x'!é u(-in x), we transform this problem into the problem (106). Moreover
if the function u(t) belongs to L2(0,+00), then the function f(x) belongs to
L2(0,1).

Other examples are the S¢/e/tjes moment prob/em, i.e. the problem
of determining a function f(x) defined on (0,+o0) from the knowledge of its

moments

+ Q0

Oy = f " ode ; n=1,2,3, .. (108)
0

or the Hamburger moment problem which is the problem of determining a
function defined on (-o0,+o0) always from the knowledge of its moments.
It is obvious that the functionals (108) are not continuous in L%(0,+c0) and
therefore the problem must be considered in some suitable weighted
L2-space or, roughly speaking, one must consider a Hilbert space of
functions which tend to zero at infinity more rapidly than any inverse
power of X. The uniqueness of the solution however is not assured in
general (it depends on the choice of the space) since, as it was already
shown by Stiltjes, all the moments of the following function

f(x) = exp (-x1/4) sin (x'/4) (109)

are zero (Widder, 1947).

Another problem is APaisson transrorm inversion (Saleh, 1978;
Bertero and Pike, 1986), a problem which is related to the inversion of
photon counting distributions to obtain distributions of classical light
intensity fluctuations

+00
g = | fx““ eXfx)dx ; n=1,23,... (10
(-t 0
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The solution of this problem is unique in L2(O,+00) as easily follows from
the completeness of Laguerre polynomials. Notice that the inversion of the
Poisson transform is equivalent to the solution of the Stieltjes moment
problem in a suitable weighted space with an exponential weight.
Moreover, if the problem (110) is also formulated in a weighted space with
an exponential weight, i.e. if we define the norm of f(x) as follows

+Q0

IFly? = f e2BX |r(x)P dx , (m)
0

with B > 0, then, as shown in (Bertero and Pike, 1986), the linear operator

L: X—>12, defined by Eq.(110), is compact and one can use its singular
system for the investigation of the Poisson transform inversion.
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I11. LINEAR INVERSE PROBLEMS WITH DISCRETE DATA

In most of the examples of the previous Chapter it is assumed that
the data are known everywhere in some domain of the measured variable.
For example it is assumed that the scattering amplitude or the diffraction
pattern is known for all the values of the scattering angle in a given
interval. Analogously it is assumed that the Fourier transform of the
unknown function is known for all the frequencies in a given interval and
so0 on. Such an assumption, however, does not provide a satisfactory model
of real experimental situations. In practice one has only a finite number of
detectors which can only measure the data function in a finite number of
points. Therefore the output of an experiment is a set of (real or complex)

numbers gy, gy, -, Gy - These numbers can be viewed as the components

of a vector which will be called the @4tz vector and denoted by g.

A General Formulation

In the case of linear problems we can assume that the gy are the

values of prescribed linear functionals of the unknown solution (Bertero
et a/ ., 1985 a). Consider, for example, the case where the physical
quantity g(x) measured by the detectors is related by an integral operator
to the unknown function f(y), so that the inverse problem is the solution
of a first kind Fredholm integral equation, Eq.(6). Then, if the responses of

the detectors are linear, their outputs g, are proportional to the values of

g at some points x. By neglecting the constant related to the efficency of

the instrument we can write
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gn = 9xy) = f Kxy) fy) dy) (112)

Such an equation does not take into account that any detector integrates
over some region in the domain of the physical variable x . When this
effect cannot be neglected, Eq.(112) must be replaced by the following one

On = f Pn(x) (IK(x,y) fly) dy) dx = (113)

= f(f Pr(x) K(x,y) dx ) f(y) dy

Here P,(x) is an averaging function which describes the integration effect
of the n-th detector and which has typically a peak centred near the
experimental point x = Xny:

The r.h.s. of Eq.(112) or (113) is a scalar product in L2 and therefore it
defines a linear and continuous functional in this space. More generally, we

can assume that the data g, depend continuously on the object f and that

the object space X is a Hilbert space (as concerns the choice of this space
we recall the considerations developed in Chapt. II, Section A). Then, since
according to Riesz representation theorem (Balakrishnan, 1976) any linear
continuous functional on a Hilbert space X can be represented as a scalar
product, we can summarize the remarks above as follows:

A) The design of an experiment for the indirect determination of a physical
guantity f consists in specifying a finite set of Iinear, continuous

functionals Fn ,n=1,2,...N. The output of the experiment is the set of the

values g, of these functionals F,.

B) Given the object space X, if the functionals F, are continuous on X, then
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to any functional Fn is associated a function ¢, such that

Fa(D=(f, d)y ; n=1.,N . (114)

C) In the case where experimental errors or noise are neglected, then the
linear inverse problem with discrete oata corresponding to the

experiment specified above consists in determining a function f € X

satisfying the equations

gnh= (L oyl ; n=1,.,N. (115)

The previous scheme applies also to problems where the data are
intrinsically discrete, in the sense that, even in the ideal case, they do not
depend on a continuous variable. A very simple example is provided by the
Hausdorff moment problem already discussed in Chapter II, Section H.
Another important example is the determination of the physical properties
of a vibrating system (for instance the density of a vibrating string) from
the knowledge of its eigenfrequencies. Such a problem, shortly discussed
in the Introduction, has also interesting applications to the investigation
of the structure of the Earth in the large. In such a case, a successful
approach (Backus and Gilbert, 1968; 1970) consists in postulating an Earth
model about which linearize the nonlinear inverse problem. The resulting
linear problem is consistent with the general definition given above.

If we remember the definition of a generalized moment problem
given in Chapt. II, Section H, we conclude that a linear inverse problem
with discrete data is always a finite section of a generalized moment
problem.

It is obvious that the information about the physical quantity f

which can be extracted from Eq.(115) is incomplete. If we denote by Xy the

o8



linear, finite-dimensional subspace spanned by the functions ¢y, then the

data vector g depends only on the orthogonal projection of f onto Xy;. Any

function f which is orthogonal to XN produces a zero data vector and
therefore it cannot be recovered by means of the experiment specified by

the functions ¢, . According to the general definitions given in Chapter

11, Section A, the component of f orthogonal to XN can be called the

invisible component of f (Rust and Burrus, 1972; Bertero ef 4/ , 1985 a)
since this component cannot be detected by the experiment. In a
mathematical language this means that ¢he solution of £q.(1I5) is never
unique.

When the ¢, are linearly independent, in which case the dimension

of the subspace XN is exactly N, the component of f onto XN’ which is the

visible component of f and which will be denoted by f*, must be a linear

combination of the ¢, and therefore it can be written in the following

form

N

f* = 2 ay oy . (116)
m=1

Substitution into Eq.(115) shows that the coefficients a, must solve the

linear system

N
2 Gondm =9, Nn=1,..N (117)
m=1

where the quantities

Grn = (B O)x = Gnp (118)
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are the elements of the so-called Gram malrix. If we denote by MM the
elements of the inverse of the Gram matrix (remember that the Gram

matrix is invertible if and only if the functions ¢, are linearly

independent) which satisfy the relations

N N
mi = In
121 G Gm-% Gy 6 = 8y, (119)

and we also introduce in Xy the dual basis, given by

N
"= > 6" o, n=1, ., N (120)
m=1

so that the sets { ¢" ) and dn } form a biorthogonal basis in Xy. then we

have

N
=2 gy ¢" , (121)
n=1

which is just the finite dimensional version of the solution (104) of a
well-posed generalized moment problem. This representation clearly

shows that f* depends continuously on the data. If 8¢ is a small variation
of g and 8f* is the corresponding variation of f*, then ||8f*||x tends to

zero when 8g tends to zero.

Continuous dependence of the solution on the data, however, does
not imply numerical stability which is related to more deep properties of

the Gram matrix of the functions ¢y, Even if the functions ¢, are linearly
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independent, some (or many) of the ¢n can be nearly paralle/ . In such a

case the problem of determining the component of f onto Xy exhibits
numerical instability. In fact this problem is equivalent to invert the

Gram matrix of the functions ¢, and, as it is known, the Gram matrix

indicates how much the functions (vectors) Pn depart from an orthogonal

system : it becomes ill-conditioned when the vectors are close to a
linearly dependent system. We recall that, in the finite dimensional case,
ill-conditioning means essentially that the smallest eigenvalues cluster
near zero while the others spread elsewhere.

In order to quantify the stability of the problem of determining the
visible component of f it is necessary to introduce a measure of the errors
on the data or, in other words, to introduce a metric in the data space Y.
We assume that Y is an euclidean space with a scalar product defined by

N
(@.hy =2 Wom b (122)
n,m=1

the weights Wy, being the matrix elements of a given positive matrix W.

The simplest choice of the weights is obviously W= 85y On the

other hand, in the case of least squares problems it is quite natural to
relate W to the covariance matrix C of the errors on the components of the
data vector. In linear regression theory the relation is

w=C! (123)

and in such a case the choice Wn,= ‘5nm corresponds to white noise.

Another possible choice will be discussed in Section E in connection with
the problem of moment discretization.

61



We can define now a linear operator L, from X into Y, which
transforms a function of X into @ vector of Y according to the rule

(LD, = (o 5 n=1,...N. (124)

The mapping is onto when the ¢, are linearly independent, otherwise the

range of L is a subspace of dimension N <N, if N is the number of
linearly independent ¢,. Moreover, in terms of the operator L, Eq. (115) can

be written in the following way
g = Lf (125)

which has precisely the general form (5).

We consider, for simplicity, the case where the ¢, are linearly

independent. Since L is a finite rank operator, we can always introduce its

singular system {ok; Uy ; vk] which is the set of the solution of the shifted

eigenvalue problem

Lug = o v, L*vk = Oy Uy (126)

k=0,1,... N1 .

The adjoint operator, defined by Eq.(16), transforms a vector of Y into a
function of X. Its explicit expression is the following one

NN
L*g =2 (2 Wom 9m) 9n . (127)

A few remarks about the computation of the singular system of L.
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The singular vectors v, are the eigenvectors, associated with the

eigenvalues °k2 , of the operator LL*. This is an operator in Y and

therefore it can be characterized by means of a matrix which will be
denoted by L . Combining Eq.(124) with EQ.(127) it follows that

1 -=6"w (128)

where G denotes the transpose of the Gram matrix (notice that the rank
of L coincides with the rank of G because W is positive definite). It
follows that the computation of the singular values and singular vectors is
a standard eigenvalue problem. When this has been solved, the

corresponding singular functions uy, can be obtained by means of the

second of the equations (126) which, using Eq.(127), can be written
explicitely as follows

N N
U = 0 20 (20 Wom Viom) (129)
n=1 m=1

where ("k)m is the m-th component of the vector v.
Since the singular vectors v|. form an orthonormal basis in Y while

the singular functions u, form an orthonormal basis in Xy, it is easy to

obtain the following representation of the visible component of f

N-1

= 2 o @vyy - (130)
k=0

As we have already remarked in the Introduction, the determination of f*
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is a well-posed problem and therefore the propagation of relative errors
from the data to the solution is controlled by the condition number. If &g
1S @ Smatl variation of g and 81" the corresponding vartation of f+, then
Eq.(10) holds true with

cond (L) = 0p/OpN-1 . (131)

This inequality is precise in the sense that equality can hold true.
In spite of this fact, however, the condition number may be a rather
pessimistic estimate of error propagation. Equality holds in a very special
case which, in general, is not satisfied in practice. For this reason the
condition number can be called the "worst magnification® of relative
errors (Twomey, 1974). A more realistic estimate is given by the “average
magnification” of relative errors which will be denoted by <cond(L)> . Its

expression is the following (Twomey, 1974)

N-1 N-1
<cond(L)> = NN 30, 212 ( 30 72)1/2 . (132)
k=0 k=0

It is easily verified that this quantity is always smaller than cond(L) but
greater than cond(L)/N.

It is important to point out that the ill-conditioning of an inverse
problem with discrete data usually derives from the fact that it is the
discrete version of an ill-posed inverse problem. A few relevant examples
will be discussed in the next Sections. From these examples it clearly
appears that, when the number of data points increases, the
il1-conditioning of the problem also increases. The reason is that, by
increasing the number of data points, one obtains a sequence of discrete
problems providing better and better approximations of the ill-posed,



infinite dimensional inverse problem, whose condition number is infinite.

As a consequence, an increase of the data points produces an increase of
the instability in the computation of the visible component of f, without a
significant increase of the information content of the data, because the

new functions ¢n are nearly parallel to the subspace spanned by the

previous ones.

On the other hand, when the number of data points is sufficiently
small, an inverse problem with discrete data can be well-posed. Since the
number of data points cannot be too small (in such a case the information
content of the data is too poor) it follows that there exists an optimum
number of data points, which corresponds to a compromise between
stability and information content. In other words there exists an optimum
experiment for the determination of the desired physical quantity. To our
knowledge, however, such a problem has not yet been solved both from the
theoretical and from the practical point of view. Some interesting results
in this direction have been obtained in the case of the finite Hausdorff
moment problem (Talenti, 1987).

B Fourier Transform inversion with Discrete Data

As a first example of an inverse problem with discrete data we
consider the problem of determining a function of bounded support when
its Fourier transform is given in a finite number of points. As in Chapt. II,
Section F, let us assume that the support of the function f is interior to

the interval [-c,c]. When the points where f is known are Xy, X9, . . ., Xy, WE

have the following problem

c

Oy = fexD(-ixny)f(y)dy; n=1...,N . (133)
-C



If we assume that f € L2 (-c,c) and that the data space Y is the usual
euclidean space, ie. the scalar product is defined by Eq. (122) with

Wnm = 9nm» then the operator T_, Eq. (128), coincides with the Gram matrix

(which is symmetric) and the latter is given by

G = 2c sinc[c(xn-xm)/'n] . (134)

nm

The singular values g, of the problem are the square roots of the
eigenvalues of G and the singular vectors v, are the corresponding

eigenvectors of G. Then the singular functions u are given by

N

uly) = ok'] Zl (Vi )y expl =1 X5y) : (135)
n=

Consider now the important case of uniformly spaced sampling points
Xp =X +dn-1;n=1...,N, (136)

where d is the sampling distance.
when d = 1nt/c, the Fourier transform is sampled at the Nyquist rate.

In such a case the functions ¢.(y) = exp( - i X.y) are orthogonal and the

Gram matrix is a multiple of the unit matrix, G =2 ¢€ Snm- The problem

is well-conditioned and the solution (121) is a truncated Fourier series

N

Py s 2 gy expl- 1 xy) | (137)
n=1



when d < T/c the Fourier transform is over-sampled and the

problem becomes ill-conditioned. A qualitative argument for explaining
this fact is the following. If we fix the interval where the data are given,
the optimum number of data points is obtained when the data are sampled

at the Nyquist rate, as shown by the orthogonality of the functions ¢y, in

such a case. If we increase the sampling rate, we add more and more
points which are less and less linearly independent from the previous
ones and which therefore do not contain significant new information about
the function f.

A gquantitative analysis of the problem follows from the properties
of the matrix

Spm = 2W sinc[2W(n-m)] , W <1/2 (138)

which can be obtained from the Gram matrix (134) (with x, given by

Eq.(136)) if we put W = c d/2m and if we multiply G, by d/2m.

The matrix S has been studied by Slepian (Slepian, 1978) who
denotes its eigenvalues by A\ (N,W), with Ao(NW) > N(NW) > ... >
M-1(N,W), and defines the aiscrete prolate spheroidal sequences (DPSS)

as the real solutions, fork =0,1,..., N -1, of the system of equations

N
20 S v MW = A W v (W n = 0,142, . (139)
m=

1

nm Vm

Therefore the eigenvectors of S are obtained by index-limiting the DP3S
to (1, N).

It follows that the singular values of the problem (I133) are
proportional to the square roots of the eigenvalues of S



g = L2 \NW) 7d12; k=0, N-1 (140)
while the singular vectors are just obtained by index-l1imiting the DPSS
Vi =V (NW) ;. k=0, N-Tn=1, N (141)

since, according to the definition given by Slepian, the euctidean norm of

these vectors is one. Finally the singular functions u(y) are related to the

aiscrete prolate spheroidal wave functions (DPSWF) which are defined by
Slepian as follows

N

UNW; ) = 6 20 v K w) g7 TN + 1= 20 (142)
n=1

where €= 1, when k is even, and €, = i, when k is odd. In fact, by

comparing Eq.(142) with Eq.(135) (the x, being defined in Eq. (136)), one
finds that

Uly) = (0 €)™ explilx*(N-DA/2] U (NW;dy/2m) . (143)

As proved in (Slepian, 1978) the DPSWF are simultaneous
eigenfunctions of an integral and of a differential operator (a property
analogous to a basic property of the PSWF); they are doubly orthogonal in
the sense that they are orthogonal both with respect to the scalar product
of L%-W, W) and with respect to the scalar product of L2(-% %) ;

moreover U, (N, W; x) is an even or odd function of f according to the parity

of k, has exactly k zeros in the open interval (-W, W) and has exactly N-1
zeros in the interval (-%, %).
InFig.l we give a plot of the DPSWF in the case N=5> and W = 0.2.
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Fig.1 Plot of the discrete prolate spheroidal wave functions (DPSWF) in
the case N=5 and W=0.2.

The corresponding singular values (square roots of the A (N,w) ) are: gq =
0.993, g, = 0.875, dg = 0.481, gz = 0.128, 4= 0.0165. Asymptotics of

the eigenvalues and eigenfunctions are given in (Slepian, 1978). In



particular it is proved that, when W—>0 and N— o, in such a way that

TNW —>c¢, then

MNW— XN, VWU INW; W) — g (c,x) (144)

where W (c,x) is the PSWF of order k and A, the corresponding eigenvalue.

If we recall the behaviour of the eigenvalues of the PSWF, this property
shows that, when the number of sampling points in a fixed interval is
large, the number of singular values nearly equal to one is approximately
equal to the number of sampling points corresponding to the Nyquist rate.

Finally, when d > T/c, the Fourier transform is sampled below the
Nyquist rate and the problem becomes well-conditioned since each
sampling point contains an independent piece of information. For example,
in the case N=5 and W=0.8, the square roots of the eigenvalues of the

matrix (138) are: 0= 1414, o= 1.408, g, = 1330, g3 = 1N, g4=1007,

with a condition number equal to 1.404.

C. Interpolation and Numerical Derivation

Interpolation is the problem of determining a function f when its
values are given in a finite number of points. Analogously numerical
derivation is the problem of determining f* from the same data. These are
classical problems of numerical analysis and have recently found
interesting applications to inverse problems in computational vision
(Grimson, 1982; Torre and Poggio, 1986; Bertero et 4/, 1986 b).

We show the relationship between these problems and the general
formulation of an inverse problem with discrete data in the simple case of
functions depending on one variable. Then the problem is the determination
of a function f(x), defined on the interval [a,b], which takes prescribed



values gp, at the N points xy, Xp, ..., Xy Witha <Xy <Xo <...<xy<b:

gn = T(xy) 5 n=1,...,N . (145)

When we have a differentiable solution f(x) of this problem then a solution
of the corresponding problem of numerical derivation is just f'(x). It must
be pointed out, however, that the problem of numerical derivation can be
formulated independently of the corresponding problem of interpolation. If

we put '(x) = h(x) and we assume that x; = a then the problem is

99y = .rh(x)dx ; n=2,...,N (146)
a

which is already in the form (115), at least when X = L%(a,b).

The interpolation problem (145) can be formulated in the form (115)
if the space X of the solutions is a reproaucing kernel Hilbert space
(RKHS), i.e. a Hilbert space of continuous functions such that all the
evaluation functionals are continuous. In fact, if feX then, from the Riesz
representation theorem (Balakrishnan, 1976) it follows that, for a given

X €[a,b], there exists a function Q, € X such that
f(x) =(f, Ox)x (147)

and this shows that the problem (145) has the form (115), the functions ¢y,

being the functions Q, associated with the points x5 The symmetric

kernel
Qx,x) = (Ox, Qx‘)x = Ox(x') = OX'(x) (148)

is called the reproaucing kerne/ of X (Aronszajn, 1950). Once the RKHS has



been choosen, the Gram matrix of the interpolation problem is given by
Gam = AXp, Xpp) ; (149)

We consider now two examples.
\. Interpolation of Band-Limited Functions

The first example is the interpolation of a band-limited function.

Let X be the Paley-Wiener space PWC already discussed in Chapter II,
Section F. Then, if B, is the band-limiting operator (80), for any feX we

have B.f = f and this shows that PW. 1is a RKHS with the reproducing

kernel
Q(x,x") = (1t/c) sinclc(x-x)] . (150)

This interpolation problem is strictly related to the problem (133)
of Fourier transform inversion with discrete data, since one can solve the
latter just by determining a band-limited function which interpolates the

data values g, and then by taking the inverse Fourier transform of the

result. As a consequence the two problems have the same Gram matrix,
except for a multiplicative factor, as follows from Eqgs.(149) and (150).
Moreover, the singular values of this interpolation problem are the
singular values of the Fourier inversion problem, multiplied by (2ny V2,
the singular vectors are the same and the singular functions are given by

N

uly) = ot ZI (V) (/) sincletxx)] . (1SN
n:
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Fig2 Plot of the singular functions for the interpolation of a
band-limited function, with bandwidth c=211W, W=0.2, given at the
points 0, 1, +2.

Notice that these singular functions are just the inverse Fourier
transforms of the singuiar functions (135) (muitiplied by a suitable



normalization factor).
In the case of equidistant points, Eq.(136), the analysis runs
parallel to that of the Fourier transform inversion. In particular, if

d=m/c, the solution (121) is the interpolating function obtained by

truncating the Whittaker-Shannon expansion (82) and it is exactly the
inverse Fourier transform of the solution (137).

when d < m/c the singular system can be expressed again in terms

of the eigenvalues and eigenvectors of the Slepian matrix (138). As follows
from Egs.(151) and (141) the singular functions are the interpolating
functions of the index-limited DPSS or also the inverse Fourier
transforms of the singular functions (143). Notice that the singular
functions of the interpolation problem are even or odd, according to the

parity of k, only when the set of the data points is symmetric, i.e. ¥ = -

d(N-1)/2. In Fig.2 we give a plot of these singular functions in the case
N=5, W=0.2, where W=cd/2m. We notice the similarity of these functions
and of the DPSWF of Fig.l. This is explained by the limiting property (144)
if one recalls that the Fourier transform of a PSWF is still a PSWF.

As the problem of Fourier transform inversion, the interpolation
problem is also ill-conditioned when d < m/c and this is related to the
fact that the sampling process is made as efficient as possible when data
are sampled at the Nyquist rate. It must be observed however that
efficient reconstructions of oversampled functions can be obtained using
generalized sinc-series (Campbell, 1968; Natterer, 1986 b). These series
allow the evaluation of f(x) using a small number of sampling points in the
neighborhood of x and therefore they provide a nearly local method. It may
be that these generalized sinc-series are a sort of regularization of the
ill-conditioned interpolation problem, but they have not yet been
investigated from this point of view.

Finally the case d > m/c has the same properties of the

corresponding case in the problem of Fourier transform inversion.



2. Interpolation by Spline Functions

The second example is the interpolation of a function, defined on
the interval [0,1], which has square integrable derivatives up to the order k.
For simplicity we consider only the cases k=1 and k=2. The case of
arbitrary k is discussed in (Bertero et 4/, 1985 a).
Let X be the space of the continuous functions with a square
integrable first derivative - this space is usually denoted by H‘(O,1) - and
let us introduce in X the scalar product

1
(1,9l = F(0)P(0) + ff'(x) ¢'(x) dx . (152)
0

Then, using Taylor formula, it is easy to show that the reproducing kernel
is given by

Qlx, X) =1+ % -(x-x), =1+ min(x, x} (153)

where x, denotes the function which is zero when x <0 and is equal to x
when x > 0. Since ¢p(x) = Q(x,x,) , it is obvious that, in such a case, the

solution (121) is just the linear interpolation of the data values Iy

Let X be now the space of the continuous functions with a square
integrable second derivative - this space is usually denoted by HQ(O,I) -
and let us introduce in X the scalar product

1
(1.0 = 1O + PO + | 100 "0 dx (59
0

Then X is a RKHS and, using again Taylor formula for a function f € X, it is



easy to show that the reproducing kernel is

QXX) =1+ XX + X2X'/2 - X316 + (x-X), 376 . (155)

If we recall that the class Sm(x1, X0y xN) of the spline runctions of

degree m, having the knots x;, X, . .., X, 1S the set of all the functions

s(x) which have the following representation

N

s(x) = p(x) + 2, cp (x = %), ™ (156)
n=1

where p(x) is an arbitrary polynomial of degree < m (Greville, 1969), we

see that the functions ¢n(x) = Q (x, X,) are spline functions of degree 3
(cubic splines) and that the subspace XN spanned by the functions ¢n(x) is

a linear subspace of Sm(x,, XD,onnes xN). Therefore the interpolation provided

by the solution (121) or (130) is just an interpolation in terms of cubic
splines. Interpolation in terms of natural cubic splines (Greville, 1969) is
obtained by minimizing the L2-norm of the second derivative of f. Since
this is a seminorm, this kind of problem will be discussed in the next
Chapter, Section B.

Finally, if we consider the problem (146) in the space (152), the
corresponding generalized solution is obtained by interpolating the data

values g, in terms of cubic splines and then by differentiating the resuit
(Bertero et g/, 1986 a).

Interpolation of functions of 2 variables in RKHS are investigated
in (Duchon, 1976; Wahba and Wendelberger, 1980).



D Finite Hausdorfr Moment Problem

We consider a finite section of the Hausdorff moment problem and
therefore we want to determine a function f(x) defined on the interval [0,1]
from the knowledge of its first N moments:

1
gn=fx“"f(x)dx; n=1...,N. (157)
0

Let X be L2(0,I) and Y the usual N-dimensional euclidean space. Then the

problem has the form (115) with ¢, (x) = x"1 It follows that Xy is the

subspace of the polynomials of degree N-1 and that the solution (121) is
also a polynomial of degree N -1.

A well-known procedure which can be used for the computation of
this solution consists in representing f*(x) in terms of shifted Legendre

polynomials L(x) (Papoulis, 1956)

N

0= 2 ey Lo 00 | (158)
m=1

We recall that the shifted Legendre polynomials are uniquely defined
(except for the sign) by the following properties: a) the degree of Lj(x)
is exactlyn; b)) (Ly Ly = 8y (n,m = 0,1,2. . ), the scalar product
being that of LZ(O,I). The relation between the shifted Legendre polynomial
Ln(x) and the usual Legendre polynomial P(x) is: L(x) = (2n+l)!é Pn(2x - 1).

Now, by substituting the representation (158) into Eq.(157) and by

taking into account the properties of the L,(x) one finds that



n

an = Z Bnm Cm n=1,...N (159)
m=1
where
|
Bom = f X Ly () dx = (160)
0

= 2m-012 (-1 (=112 /7 Un-m)! (n+m-1)1]

Since in Eq.(159) the summation index goes from 1 to n, it is possible to

obtain recursively the coefficients ¢, from the moments g, and the

coefficient c,, depends only on the moments of order < n. Therefore it is

not necessary to change the algorithm when the number N of given
moments is changed.

The previous algorithm is very simple but also very ill-conditioned
even when N is moderately large (for instance, N=10). This can be shown by
introducing the singular system of the problem. The Gram matrix is now
given by

_ TS _
Gy =(M+m-D7"; nm=1.. N (161)

and this is a well-known example of an ill-conditioned matrix. It is
called Aribert matrix, it is denoted by Hy(-1) and it is often used for
testing numerical algorithms (Gregory and Karney, 1969). A remarkable
property of this matrix is that it commutes with a tridiagonal matrix
(Grinbaum, 1982) so that its eigenvectors can be easily computed.

It follows that the singular values of the finite moment problem

are just the square roots of the eigenvalues of Hy(-1), the singular vectors

are the corresponding eigenvectors of HN('I) and the singular functions
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Fig.3 Plot of the singular functions of the finite Hausdorff moment
problem in the case N=6.

are orthogonal polynomials of degree N-1, obtained by means of Eq.(129).
In order to give a numerical example of the ill-conditioning of the
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Figd4 Plot of the singular functions of the inversion of the Laplace
transform, given at the points p,=n-1/2, with n=1,2,..,6.

moment problem we give the singular values in the case N=6: ag= 1.2724,

01=0.4923, 0,=0.1277, 95=0.2481 x 107, 0,4-0.3545 x 1072, 05=03291 X



1073 with a condition number cond(L) = 3866. The plot of the
corresponding singular functions is given in Fig.3. For large N, the
asymptotic estimate of the condition number is (Gregory and Karney, 1969)

cond(L) =e 72N (162)

and therefore it increases very rapidly for increasing N. We have here a
very clear example of the relation between the ill-conditioning and the
number of data points, as discussed at the end of Section A.

Another problem related to the moment problem is the inversion of

the Laplace transform when this is given at the points p, =n - 1/2 with

n=1,2,. ., N. This relation has been already discussed in Chapter II, Section
H. In Fig.4 we give the singular functions of this problem, always in the
case N=6. These singular functions can also be obtained from the singular
functions of Fig.3 by means of the change of variables which transforms
Eq.(107) into Eq.(106). For a more general discussion of the Laplace and of
the finite Laplace transform inversion in the case of equidistant points
and of geometrically distributed points see (Bertero e¢f 4/ , 1985 b).

£ Moment-Discretization of First Kind Fredholm Intégral Equations

Consider a first kind Fredholm integral equation, such as that given
in Eq.(6), with a continuous kernel K(x,y) and a continuous data function
g(x). Assume also that the intervals [a,b] and [c,d] are bounded. Then we

denote by Ly the integral operator associated with the kernel K(x,y), Eq.(7).
As we know, this is a compact operator from L2(a,b) into L2(c,d). we
denote its singular system by {gq \; Ug k. Vo k)-

The method of moment-discretization , which provides a natural
way for approximating a solution of Eq.(6) is as follows (Nashed, 1976 b;



Nashed and Wahba, 1974; Groetsch, 1984 ). given a finite set of points a <x;

<Xp <... <Xy XD, seek for a function f(y) which satisfies the equations

b
9(xp,) = fK(xn,y) f(y) dy ; n=1...,N. (163)
a

This is a problem in the form (115), with ¢p(y) = K(x.y), if X = L2(a,b).

In order to investigate the relationship between the singular

system of the integral operator Ly and the singular system of the operator

L associated with the problem (163), as defined by Eq.(124), we assume that

the points x,, are the knots of some quadrature formula. We denote by w;,
Wo, .. .,Wp the corresponding weights and we introduce in the data space Y
a scalar product defined as in Eq.(122) with Wy = W 8,

We recall now that the singular values of L are the square roots of

the eigenvalues of the integral operator LO*LO whose kernel is given by

d
Toly,y) = J‘K(x,y) K(x,y") dx (164)
c

and that the singular functions ug | are the corresponding eigenfunctions.

Analogously the singular values of L are the square roots of the
eigenvalues of the finite rank integral operator L*L whose kernel is

N

T(yy) = Z Wy K(X0,y) K(xp,y) (165)
n=1



as follows from Eqs.(124) and (127). Again the singular functions uy are

the corresponding eigenfunctions. Clearly T(y,y") is just the approximation

of Toly,y') provided by the quadrature formula corresponding to the knots

Xp and the weights wy,

Since K(x,y) is continuous, the kernel T(y,y’) converges to the kernel

Toly.y") when N— co and the maximum distance between adjacent knots

tends to zero. Using this result and well-known perturbative lemmas -
more precisely the Weyl-Courant lemma (Riesz and Nagy,1972)- it is

possible to prove (Bertero, 1986) that the singular values oy of the

problem (163) converge to the singular values g of the integral operator
LO. Analogously the singular functions U, converge, in the norm of L2(a,b),

to the corresponding singular functions ug . Since the singular values

gpk tend to zero when k— oo, the previous result implies that the

ill-conditioning of the problem (163) increases when the number of the
data points increases. We have another example of the property discussed
at the end of Section A.

A special kind of moment-discretization can also be used for the
approximate solution of first kind integral equations associated with
operators of the following type

+00

(LofXx) = fK(x-y) Ply) f(y)dy , -oo<x <+ (166)

-Q0

where K(x) is a band-limited function with bandwidth c. This operator is
compact whenever the functions K(x) and P(y) are square integrable. An
example is provided by the operator (87), in which case K(x) =
(rt/c)sinc(cx/m) and P(y) is the characteristic function of the interval
[-1,1]. Another important example is an operator whose inversion is related



to the problem of data processing in confocal scanning microscopy and
which is obtained from Eq.(166) by taking K(x) = P(x) = sinc(x) (Bertero
et al,1984).

Since the functions in the range of L are band limited, it is quite

natural to sample the data at the Nyquist rate, so that we can consider the

problem
+00
a(xg) = fK(xn—y) P(y) fly) dy (167)
-0
Xp=nlm/c) ; n=0,+1..,+N

and take w, = m/c. Then the kernel Ty(y,y) and T(yy") are given

respectively by

+Q0
Toly,y) = P(y) ( IK(x-y) K(x-y") dx) P(y") (168)
-0
and
N
Tl = P (2 (7€) Klxy) Kixg-y D PY) . (169)
n=-N

Using the fact that the trapezoidal rule is exact for bandlimited functions

in the case N=0o, it is possible to prove that T(y,y’) converges to Tn(y.y")

in the L2-norm when N—» oo (with fixed sampling distance). It follows
again that the singular values of the problem with discrete data converge
to the singular values of the integral operator.

It is important to point out that, in some cases, it is possible to
obtain very good approximations of the first singular values using a very



small number of data points. As an example we give a numerical result
obtained in the case of the integral operator mentioned above and related
to confocal scanning microscopy. In such a case it is possible to derive
analytic expressions of the singular values and singular functions (Gori
and Guattari, 1985). From this result it follows that the first five singular

values are given by ogqg= 0.821898, g =0.450158, gy o= 0.206417,

00,3=O.150053, 90,47 0.109845. On the other hand, in (Bertero et a/ ,

1987) it is shown that, using five sampling points, the corresponding five
singular values are: 0O = 0.821807, g =0.413815, g, =0.206327, g3

= 0.136873, g,4=0.109751. As concerns the even singular values the error

is at most one unit on the fourth digit !



and which now are called ill-posed or incorrectly posed, were just
considered as mathematical anomalies and, for this reason, they were not
seriously investigated. Recent developments in physics and especially in
applied physics have shown that ill1-posed problems can also be related to
extremely important physical situations. For example, the solution of the
Cauchy problem for elliptic equations may have interesting applications in
electrocardiography (Colli Franzone ef 4/, 1977), namely in the
reconstruction of the epicardial potential from body surface maps. We
want to emphasize, however, another ill-posed problem which has
revolutionized diagnostic radiology.

In 1971 the first clinical machine for the detection of head tumors,
based on a new X-ray technique called computer-assisted tomography or
also computerized tomography was installed at the Atkinson Morley's
Hospital, Wimbledon. In 1979 Allan M. Cormack and Godfrey N. Hounsfield
awarded the Nobel prize in Medicine for the invention of this technique. As
everybody knows, computerized tomography provides images of cross
sections of the human body by measuring the attenuation of the X-rays
along a large number of lines through the cross section. Then the
processing of the data requires the reconstruction of a function of two
variables from the knowledge of its line integrals. The solution of this
mathematical problem was already contained in a paper of Johann Radon
(Radon, 1917). The result of Radon was even more general, since he proved
formulas for the reconstruction of a function on R" from the knowledge of
its integrals over all the hyperplanes of R" . In honour of this
contribution, the mapping which transforms a function into the set of its
integrals over hyperplanes is now called Radon {ransform and therefore
the problem of tomography is just a special case of Radon transform
inversion. Moreover, Radon transform inversion is a beautiful example of
an il1-posed problem since the solution does not exist for arbitrary data
and the dependence of the solution on the data, in general, is not
continuous. As a consequence, the effect of the noise on the solution is
amplified in a way similar to that discussed in the case of the Cauchy
problem for the Laplace equation.



IV. GENERALIZED SOLUTIONS

As it is known, the study of Eq.5) is a rather intricate problem
even in the case where this equation is an nxm linear system, i.e. the
operator L is a matrix with n rows and m columns. Existence and
uniqueness of the solution depend on the number n of rows, on the number
m of columns and on the rank p of the matrix (Lanczos, 1961). A great
simplification is obtained by introducing the so-called Moore-Penrose
generalized inverse of a matrix, which is deeply related to the problem of
looking for a least squares solution of minimal norm of the original linear
system. Such a solution, which is also called the generalized solution of
the linear system, always exists and is unique, independently of the
number of rows, of the number of columns and of the rank of the matrix. A
very important fact for the treatement of linear inverse problems is that
the concept of generalized (Moore-Penrose) inverse can also be extended
to the case of linear continuous operators in Hilbert spaces (Nashed, 1976
a; Groetsch, 1977). In such a case, however, the generalized inverse is not
always continuous and therefore the problem of determining the
generalized solution may be i11-posed.

The essential result is that the generalized solution is unique,
exists for arbitrary data g and depends continuously on g when the range of
the operator L is closed, even if the requirements of existence and
uniqueness of the solution are not satisfied by the original equation (5). On
the other hand, when the range of L is not closed (examples are provided by
the compact operators and by the convolution operators discussed in Chapt.
11, Section A) the generalized solution is unique but it does not exist for
arbitrary data and it does not depend continuously on the data. In some
mathematical literature the term ill-posed is deserved to this case.
According to this definition, inverse problems with discrete data are
always well-posed (but, of course, they can be very ill-conditioned) and
therefore the concept of ill-posedness is restricted to the case of
problems formulated in infinite dimensional spaces.



In this Section we sketch the procedure which leads to the
introduction of the Moore-Penrose generalized inverse for a linear
continuous operator and we also provide a physical interpretation of this
procedure in terms of the concepts of visible and invisible components of
the object, introduced in Chapt. II, Section A. We also introduce an
extension of the Moore-Penrose generalized inverse which is obtained
when the criterion for selecting a least squares solutions is not the
minimization of a norm, but the minimization of a seminorm. Finally we
sketch the Backus-Gilbert method for linear inverse problems with
discrete data in order to clarify the analogies and differences between
this method and the method of generalized solutions.

A Moore-Penrose Generalized Inverse

The solution of Eq.(5) may not exist for arbitrary data g because R(L)
is a subspace of Y. In the case of the band-limiting operator BC, Eq.(80),

for example, Y is the space of the square integrable functions and R(L) is
the closed subspace of the band-limited functions with a fixed bandwidth.
Similarly, in the case of a problem with discrete data, R(L) is a subspace

of Y if the functions ¢y, are not linearly independent.

when R(L) is a subspace of Y, the measured data may have a
component orthogonal to R(L), as an effect of the noise contribution h in
£q.(9). For example, in the case of the bandlimiting operator, the noise may
have Fourier components out of the band of the ideal low-pass filter

described by the operator B.. Under these circumstances, the solution of

Eq.(5), with g given by Eq.(9), does not exist. Then a quite natural procedure
is to look for the function (or the functions) u such that Lu is as close as
possible to g.

The projection operator onto R(L) will be denoted by P, so that,



recalling the relations (18), we conclude that Q = I - P is the projection
operator onto N(L™). Moreover the f ollowing relations are obvious

PL=L, QL =0 . (170)

We give now the following definition : a functionu € X is said to be a
least squares solution (or pseudvsolution) of Eq.(S) if it minimizes the
distance between Lf and g:

ILu - g ly = inf {flLf - glly If ex} . (171)

By considering the first variation of the functional ||Lf - g||Y, it is

quite easy to see that any least squares solution must satisfy the
orthogonality condition

(Lu-g, Lo} =0 (172)

for any ¢ e X. It follows that u must be a solution of the Euler eguation
L*Lu = g ‘ (173)
On the other hand, if we use the relations (170) we can write

Lt - glly? = flus - pally? + llaglly? (174)

and therefore we see that a least squares solution exists if and only if
there exists a function which annihilates the first term of the r.h.s. of this
equation. We conclude that Eq.(173) has a solution if and only if the
equation

Lu=Pg (175)



has also a solution. In other terms, the process which consists in
replacing the usual solutions with least squares solutions is equivalent to
project the measured data onto R(L) and then to solve EqQ.(5) with g
replaced by the projected data Pg.

The advantage of Eq.(173) with respect to Eq.(175) is that, in practice,
it can be difficult to determine the projection operator P while, in
general, it is quite easy to determine the adjoint operator L*.

From the previous remarks it follows that: & /east squares solution
or £q.(5) exists Ir and only ir Pg € R )

As a corollary we have that, when R(L) is closed, a least squares
solution exists for any measured data g. This result applies, for example,
to the case of inverse problems with discrete data and also to the case of
the band-1imiting operator (80).

As concerns uniqueness, the solution of Eq.(175) is unique if and only
if N(L) = {0). When N(L) is not trivial, let us denote by S(g) the set of all
the least squares solutions associated with g. If «0) is one of these least
squares solutions, then S(g) is the closed affine subspace given by

stg) = fuexlu=u®+ ¢ L4=0} (176)

i.e. S(g) is a translation of N(L), S(g) = uf0) + NeL).

For example, in the case of the band-1imiting operator (80), S5(g) is
the set of all the square integrable functions whose Fourier transform
coincides with the Fourier transform of g over the band [-c,c] and is
arbitrary elsewhere. In a similar way, in the case of an inverse problem

with discrete data, S(g) is the set of all the functions whose component in

Xy is given by Eq.(121), while the component orthogonal to Xy is arbitrary.

Now, for any g such that Pg € R(L), S(g) is not empty and it is a
closed and convex set of X. Then, from a general theorem of functional
analysis (Balakrishnan, 1977) it follows that there exists a unique solution
of minimal norm. This is called the generalized solution (or also the



normal pseudoselution) and is denoted by f*:
I+ Nl = e {flully |u es(g) . (177)

It is easy to see that f*is the unique least squares solution which is
orthogonal to N(L) (see Fig.5) and therefore this procedure is equivalent to

(o)

S(g)

N(L)

Fig> Two-dimensional geometric representation of the generalized
solution. The null space N(L) is a straight line passing through the
origin and the set of least squares solutions S(g) is a straight line
parallel to N(L). Then f* is the element of S(g) orthogonal to N(L).



the restriction of the operator L to the orthogonal complement of N(L). In
other words the generalized solution is the unique least squares solution
whose invisible component, i.e. the component not transmitted by the
instrument described by the operator L, is exactly zero.

We point out that, when ARl) is closeqd, there exists a unigue
generalized solution for any g € ¥. Since it is also possible to prove that,
in such a case, the mapping g—)f'r is continuous (Groetsch, 1977), it
follows that when R(L) is closed the problem of the determination of
is well-posed  Again, this result applies both to the case of the
bandlimiting operator (80) and to the case of inverse problems with

discrete data. In the latter case, when the functions ¢, are linearly

independent, the generalized solution f* just coincides with the visible

component of f as given by Eq.(121) or also by Eq.(130). When not all the ¢,

are linearly independent, then f* is given again by Eq.(130) with a number

of terms which is not N but the number N’ of the linearly independent d)n.

We consider now the two examples of linear operators with
non-closed range already discussed in Chapter IIL

In the case of a compact operator, using the representation (23), we
have

Q0
Lt - gl = 2 loy udy - @vyl? + llaglly? (178)
k=0

and therefore the generalized solution exists if and only if Pg satisfies
the second of the conditions (24) (the first condition just means Qg = 0).
Then the generalized solution is given by

(8.0)
f* = Z Uk_l (g,Vk)Y Uy : (179)
k=0



In a similar way, when L is a convolution operator, using Parseval
equality we obtain

e -glly2= 1 flf«g) fe)- g® 2 + flé(g)l%g (180)
em" Q R/ Q

and it follows again that the generalized solution exists if and only if the
second of the conditions (28) is satisfied, in which case it is given by

roo= 1 f _gE el B . (181)
em" Q KE)

We come back now to the general case and we notice that both in
the case of an operator with a closed range and in the case of an operator
with a non-closed range, the mapping g ——f" defines a linear operator
L*:Y——X as follows

f*=1L%g . (182)

L" is called the generalized inverse or also the Moore-Penrose
generalized inverseof the linear operator L. The latter name comes from
the fact that, as we have already remarked, L* is the natural extension, to
the case of a linear continuous operator, of the Moore-Penrose inverse on
a matrix.

It is easy to prove (Groetsch, 1977) that, when L is linear and
continuous, L is closed. Now, when R(L) is closed, f* exists and is unique
for any g € Y and therefore, if we denote by D( L*) the domain of L*, we
have D( L*) = Y. From the closed graph theorem (Balakrishnan, 1976) it
follows that L* is continuous or, as we have already pointed out, that the
problem of the determination of f* is well-posed. Its stability is



controlled by the condition number
cond(L) = ||lL || IL*I (183)

which is just a generalization of the condition number (11). For a problem
with discrete data Eq.(183) coincides with Eq.(131). A generalization of this
expression to arbitrary linear continuous operators is the following: if

Mnin @d Ay ax denote respectively the lower and upper bound of the
positive part of the spectrum of the operator LL*, then ||L ||= ‘/Xr—nax and

IL* II= VAgin » SO that
- 172

The expression for the norm of L* comes from the following relationship
L= D O =LY (185)

which can be easily proved using Eq(i173), and from the spectral
representation of LL™,

When R(L) is not closed, then L* is not defined everywhere on Y, but
DIL*) = R(L) ® R(LY. As a consequence, the determination of the
generalized solution is an ill-posed problem. In fact it does not exist for
arbitrary data and it does not depend continuously on the data. In such a
case, as well as in the case of well-posed but ill-conditioned problems,
one must use the regularization techniques which will be discussed in the
next Chapter.



B C-Generalized Inverses

In some problems one is looking for a least squares solution
minimizing not the norm of X but some suitable seminorm defined on a
subset of X. Examples come from the theory of interpolation by means of
natural splines (Greville, 1969), from numerical methods for the solution
of first kind Fredholm integral equations (Phillips, 1962) and from certain
problems of computational vision (Hildreth, 1984; Bertero ¢f 4/, 1986 b).

We will consider a norm or a seminorm of the following type

p(f) = Jlct l; (186)

where C:X——>7 is a constraint operator, as defined in Chapt. 11, Section

A, and we will look for a generalized solution fC+ obtained by solving the

following variational problem

lcte*l; = inf {llcull; luesw@} (187)

When this problem has a unigue solution, this will be called the
C-generalized solution of EQ(S). This is also called by Morozov the
solution of the basic problem (Morozov, 1984).

We first consider the case where the constraint operator C
satisfies the conditions a), b) of Chapter II, Section A. In such a case, as
we know, Eq.(186) defines a norm and not a seminorm and the solution of
the problem (187) can be reduced to the solution of the problem (177) just
by redefining the space X, as explained in Chapter II. It follows that there
exists a unique solution of the problem (187) if and only if Pg € LD(C)
(image of the domain of the operator C under the action of the operator L).

The mapping g— f* defines a linear operator Lp*



fc" =L g (188)

which will be called the C-generalized inverse of L.
It may be interesting to give in this simple case, an explicit

representation of LC+ in terms of a suitable Moore-Penrose generalized

inverse. If we put f = C"¢, then, by means of simple computations, we
find that (Bertero, 1986)

Lt = chach . (189)

Notice that LC+ may not be continuous, even when R(L) is closed, because

LD(C) may not be closed. Examples are given in (Hildreth, 1984; Bertero e/
g/, 1986 b). In these cases a well-posed problem is transformed into an
i11-posed one but this transformation can be required by the introduction
of physical constraints. In other words, the Moore-Penrose generalized
solution is not meaningfull from the physical point of view and it must be
replaced by other generalized solutions.

We consider now the case where the constraint operator C does not
satisfy condition b) of Chapter II, Section A. In other words C is a closed
operator with a closed range but it may have a non trivial null space N(C).
A very simple example is provided by

llcell,2 = _flf""(x)F dx (190)

where f(k) denotes the derivative of order k. Then N(C) is the subspace of
the polynomials of degree < k - 1.

We assume now that condition b) of Chapter II, Section A, is
replaced by the following one

b') the range of C is closed, more precisely R(C) = Z, and the unique



solution of the set of equations
LfF=0 ,Cf=0 (191
isf=0,ie NL) NNC) = {0].

When this condition is satisfied, it is possible to prove (Groetsch,

1986) that there exists a constant m > O such that
Ieell2 + lleell2 > mo Jifll? (192)

for any f € D(C). Such a condition is called by Morozov the comp/etion
condition (Morozov, 1984) and it is taken as the basic assumption for the
solution of the problem (187). The inequality (192) is also proved in
(Bertero, 1986) using not only conditions a), b*) as in (Groetsch, 1986), but
also the assumption that N(C) is finite dimensional.

By means of the inequality (192) it is easy to show that D(C),
endowed with the scalar product

(f, ®)c = (Lf, L)y + (CT, CP) (193)
C Y A

is a Hilbert space, which will be denoted by X.. Analogously, the

restriction of L to X will be denoted by L.

Assume now that, for a given g, there exist least squares solutions
u € D(C). It is evident that this is true when Pg € LD(C). Then Eq.(175)

implies that, for those least squares solutions, we have : “U"C2 =

IPglly2+ llcull,2. Since, for fixed g, ||IPg ll,# is a constant, the solution of

the problem (187) is equivalent to the solution of the following one



it lle = inf {ulle lues@ no©} (194)

It follows that the C-generalized inverse of the operator L Is Just the

Moore-Penrose generalized inverse or the operator L C-
As an example we consider the case where L : X—Y is compact. If
we notice that, as follows from the inequality (192), any bounded set in X~

is also a bounded set in X, we conclude that the operator L. is also

compact. We can then introduce its singular system (0 ; Uc k. Vi)

which is the set of the solutions of the shifted eigenvalue problem

»*
LeYek = 9ck Vek o Lc Vek = 9ckYck - (195)

Wwhen this problem has been solved then fc“ is given by EQ.(179)

with (gy; uy, viJ replaced by {a¢ ;U k., Ve k-
We want to show now that the solution of the shifted eigenvalue
problem (195) can be reduced to the determination of the set of the

solutions [wk2;1hk} of the following generalized eigenvaiue problem
Ly =0 2CCl (196)

We notice that this problem is analogous to the problem encountered in the
investigation of the small oscillations of a mechanical system. In that
case L*L is related to the potential energy, while c*C is related to the
kinetic energy of the mechanical system.

The first step is the determination of Le in terms of L™. From the

relation

(f, Lo )¢ = (Lf,LL gy + (Cf,CLE Q) = (197)



=, "L+ 0Ly = (LT

which holds true for any f € D(C) - dense inX - andany g €Y, we obtain
that

L = WL+ oL . (198)
Therefore the second of the Eqs.(195) can be written as follows
L™ ve i = 0c i (L7L +C70) ug . (199)

Finally, if we apply the operator L* to both sides of the first of the

Egs.(195) and if we use Eq.(199) in order to eliminate v ., we obtain
(1- 0'2(: k) L*L UC kK= 0'2(: k C*C UC K s (200)
and this equation can be identified with Eq.(196) by putting

°C,k = Wy (1+ wk2)_ 15 s UC,k = ll!k . (201

Notice that, as a byproduct of this procedure, we have obtained that all the
singular values o , are smaller than one.

Similar resuits apply to inverse problems with discrete data. Since

in this case L is a finite rank operator, the C-generalized inverse LC" is
always continuous but it may be ill-conditioned, the condition number

being given again by Eq.(131), with g and gy_q replaced respectively by

UC 0 and UC N-1° r‘espectively.

As a concluding remark we point out that, in the case of the
interpolation problem in RKHS, as discussed in Chapter III, Section C, if



we look for C-generalized solutions associated with the functional (190),
then the result is the interpolation in terms of natural splines (Greville,
1969). We just notice that condition b') is satisfied whenever k <N,
where k is the order of the derivative in the functional (190) and N is the
number of points. For a discussion of the interpolation and derivation
problems in terms of C-generalized solutions see (Bertero ef a/, 1985 a).

C- The Backus-Gilbert Method ror Problems with Discrete Data

The Backus-Gilbert method (Backus and Gilbert, 1968; 1970) has
been proposed for the solution of an inverse problem which consists in the
determination of the structure of the Earth, using data related to
properties of the whole Earth such as mass, moment of inertia and
frequencies of elastic-gravitational normal modes. It has aiso been
applied to the Fourier transform inversion (Oldenburg, 1976), to the inverse
scattering problem (Colton, 1984) and to the Laplace transform inversion
(Haario and Somersalo, 1985). A relationship between the Backus-Gilbert
method and the Fejer theory of Fourier series expansions is discussed in
(Bertero et a/, 1988 a).

The Backus-Gilbert method can only be used in the case of an
inverse problem with discrete data, when the object space X is a space of
square integrable functions. In such a case the problem (115) takes the
form

I = ff(x) ¢n(X)* dx ; n=1..,N . (202)

It must also be pointed out that the method does not provide an exact but
only an approximate solution of these equations. It is discussed in this
Chapter because it shows some analogies with the method of generalized

solutions.



For introducing the basic idea of the method, let us reconsider for a
moment the Moore-Penrose generalized solution, or a C-generalized

solution, of the problem (202). When the ¢, are linearly independent and

the data values g, are exact, by combining Eq.(202) with Eq.(121) we obtain

f*(x) = IA* (x,x') f(x') dx (203)
where
N
A = 20 400 400 (204)
n=1

and therefore, at any point x, the generalized solution f*(x) is an average
of the true solution f(x). Moreover this averaged function lies in the

subspace spanned by the functions ¢,
A similar result holds true for any C-generalized solution fC+ if

we notice that fC+ belongs to the subspace spanned by the functions s,

which satisfy the relations
(f, ¢n)x = (f,\l!n)c s n=1...,N (205)

for any f € D(C). When the C-scalar product is defined as in Eq.(13), the

functions Vi, are obtained by solving the equations

*
CCpn = P . n=1 .. ..N (206)

while, when the scalar product is defined as in Eq.(193), the functions Vs,

are obtained by solving the equations



WL+ OV =y n=t...,N | (207)

Then, by introducing the Gram matrix of the functions i, and the dual
basis Y , one finds for f:* an expression similar to Eq.(121) with ¢"

replaced by . By combining this equation with Eq.(202) we find again

fC+ (x) = IAC+ (x,x") f(x') dx’ (208)
where
N
At () = 20 40 () (209)
n=1

The functions f* and fC+ are solutions of Eq.(202). The

Backus-Gilbert method consists in looking for an approximate solution of

these equations, let us denote it by ?BG(X), which is also an average of the

true solution f(x)

Tt = | At 000 ax (210)

and which linearly depends on the exact values of the functionals (202).
This condition implies that the kernel A(x,x’), called averaging kernel/ by
Backus and Gilbert, must have the following expression

N

AlX,x') = Z an(x) <I>n(x‘)*, (21)
n=1

with functions a,(x) which must be determined. By combining Egs.(210),



(21) and (202) we have

N

fag® = 2 gnan® (212)
n=1

and therefore F BG(x) is a function in the subspace spanned by the functions

an(x). It is obvious that the generalized solutions discussed in the

previous Sections have a similar structure. In that case the functions
an(x) are determined by requiring that the solution satisfies Eq.(202) and

by adding a variational principle for the solution (smallest norm, etc.) in
order to ensure uniqueness. Backus and Gilbert follow a different approach
and, in particular, they do not require that the function (212) satisfies
£q.(202). In fact they introduce a variational principle for the averaging
kernel itself, since they require that it must be the sharpest in a sense to
be specified. For this purpose, let J(x,x) be a function which vanishes

when x = x* and increases monotonically as x goes away from X. An

example of such a function is

J(x, x) = (x - x)2 . (213)

Then the unknown funtions a,(x) in Eq.(211) are determined by solving the

following minimization problem

8x) = fJ(x,x')l A dx = minimum (214)

with the constraint

J‘ Alx,x) dx =1 . (215)



In other words one looks for a kernel of the form (211) which gives a good
approximation of the delta distribution &(x - x).
If we introduce now the quantities

by =f¢n(x) d%  Spp®) =fd(x,x') On(X) ()" dx (216)

we find that the solution of the problem (214), (21S) implies the
minimization of the following quadratic functional
N

§%x) = 2 Snm(X) 2y () an(x)*=minimum, (217)
n,m=1

with the linear constraint

N
2 b % a0 =1 (218)

n=1

This problem can be solved in a standard way using the method of Lagrange

multipliers. If S(x) is the matrix with elements S (x), if this matrix is

not singular and if we denote by S"M(x) the elements of [S(x)I"!, then the
solution of the problem (217), (218) is

N

a0 = M0 2 SMGOb. ;=1 N (219)
m=1

the Lagrange multiplier A(x) being given by



N

N = (2 ™Mb b, (220)
n,m=1

The functions ap(x) depend on the choice of the function J(x, X).

As concerns the stability of the Backus-Gilbert method it should be
obvious that, for those problems where the generalized solution is

extremely ill-conditioned, the solution FBG(X) must also be unstable.
Numerical results obtained in the case of the Fourier series summation

(Backus and Gilbert, 1968) indicate however that FBG(X) is more stable

than f*(x) . This follows from the fact that the kernel (204) is more
narrow than the kernel (211) and therefore, using f* (x), one requires higher
resolution. The connection between resolution and stability will be
discussed in Chapter VI.

As a concluding remark, we point out that a convergence result has
been recently proved for the Backus-Gilbert method (Schomburg and
Berendt, 1987). In this paper it is assumed that the problem (202) is a
finite section of a generalized moment problem (Chapter 1I, Section H)

satisfying the requirement of uniqueness, i.e. the span of the functions ¢n,
with n=1,2,3,...,00, is dense in X. Moreover it is assumed that for a
certain set of values g, of the generalized moments there exists a
solution f of the problem which is real valued and Lipschitz continuous.
Then let FN be the approximate solution provided by the Backus-
Gilbert method, using the exact values of the first N generalized moments
of f, the function J(x,x') being given by Eq.(213). The result is that FN
converges everywhere to f in the case of functions depending on one or two
variables while FN in general does not converge to f in the case of

functions depending on more than two variables.
It is evident that this convergence result can only be proved by



assuming that the values g, of the generalized moments are not affected

by experimental errors. It is interesting, however, to know that in this
case the method can provide an approximation of the exact solution. It
should also be important to investigate the convergence (or non-
convergence) of the Backus- Gilbert method when applied to problems such
as the moment discretization of a first kind Fredholm integral equation or

the Fourier transform inversion with limited data.



V. REGULARIZATION THEORY FOR ILL-POSED PROBLEMS

The method of the generalized solutions, discussed in the previous
Chapter, provides a satisfactory answer to the questions of existence and
uniqueness for Eq.(S) only when the generalized inverse is continuous and
well-conditioned. As we know, this means that the range of the operator L
is closed and that the condition number (183) is not much greater than one.
The method is not adequate when the generalized inverse is not continuous
or when it is continuous but the condition number (183) is too large. In the
first case the generalized solution may not exist because the data are
contaminated by experimental errors; in the second case the generalized
solution always exists but it may be deprived of any physical meaning as a
consequence of the dramatic error propagation from the data to the
solution. In both cases one must introduce methods for obtaining
physically meaningful approximations of the generalized solutions. As
already discussed in the Introduction, the basic idea is to constrain in
some way the solution in order to avoid the wild oscillations generated by
noise propagation. Several methods related to various kinds of constraints
have been introduced and most of them have been unified in a general
theory which is known now as regularization theory or also 7ikhonov
reguiarization theory . In this Chapter we sketch the basic ideas of the
theory and we provide the main references of the mathematical literature
which is grown very fast in the last years. Obviously our presentation will
be strongly biased by our personal experience in this domain.

A The /vanov-Phillips-Tikhonov KRegularization /Method

The so-called 77khonov régularization method was introduced
independently by several authors at the beginning of the sixties. The first



versions of the method were published in 1962 (Ivanov, 1962; Phillips,
1962) and a more general, unifying formulation - restricted however to the
case of first kind Fredholm integral equations - was later proposed by
Tikhonov (Tikhonov, 1963 a; 1963 b). Other important contributions are due
to Morozov (Morozov, 1966; 1968) and Miller (Miller, 1970).

In our presentation we first sketch the methods of Ivanov, Phillips
and Miller and successively we show their relation with Tikhonov
regularization theory.

For the purpose of providing a concise outline of these methods we
first give a few results concerning the minimization of the following
functional

g [ = |IL7 - gll? + o« [Ifll? (221)

where o can be any positive number. Let f, denote the function which
minimizes &, [fl Then, by annihilating the first variation of &, [f], it is

easy to show that f, must satisfy the following orthogonality condition
(Lfg =g, Ly + alf, )y =0 (222)
forany ¢ € X It follows that fa is a solution of the Euler equation
(LLr abfy =L7g . (223)
Then the inequality
WL ab) flly > aliflly : (224)

which holds true for any o > O, implies that there exists a unique



solution of £q.(223) which can be written in the following form
fo = Ry 9 (225)

where
Re = (LL+ aly'L™ . (226)

By simple algebraic manipulation one can also show that

Re = LT (LL™+ o)’ . (227)

This representation of R, implies that f, belongs to the range of

L* and therefore that it is orthogonal to the null space of L, as follows

from Eq.(18). An important consequence of this property is that f,

converges, in the limit o = O, to the generalized solution f* associated
with g , provided that Pg e R(L). Moreover, using the spectral
representation of the self-adjoint, positive semi-definite operator LL*, it

is easy to show that the function

€ 2=NLfy - g2 = a2+ any'pgi? + logh?  (228)
is a strictly increasing function of o, whose values at « = 0 and o = @
are respectively llQg IIY2 and Il gIIYQ. In a similar way one can show that
the function

Eo2 =T gll? = 0L (L o) gl 2 (229)

is a strictly decreasing function of a, whose values at a« = 0 and o = @



are respectively || f*llx2 (oo ,when the generalized solution does not exist)
and zero.

For the sake of clarity we give a more explicit representation of f a

and of the functions €a2 and Ea2 in the two particular cases already

discussed in the previous Chapters, namely compact operators and
convolution operators.
when L is compact, from Eq(225) and the singular value

decomposition of L and L*, one easily derives that f a admits the following

expansion

+00 Ok
Ty = Z — (g Vk)y Uy (230)
k=0 o l+a

which clearly shows that f,—f" (if f* exists, as given by Eq.(179))
when a —>0.Moreover we get

+00 CI.2
€l=2, — g vyl? + llaglly? (231)
k=0 (Uk2+ (1)2
and also 5
+00 Ok
E 2= — I(g,v\2 (232)

k=0 (g, 2+ @?

and the properties, stated above, of the functions €, E q are evident.

Analogously, in the case of a convolution operator, the function f

takes the following form



0= 1 | _Rxm_ B e Bag (233)
(2m" 2 | REIZ+

where Q is the support of R(E). Then, from Parseval equality, one gets

2
€l —— [ a |g(BI2dE  + (234)
em" € (R®IZ+a)?
I R B ¥ ¢ ST
em? RM/Q
and also
~ 2 ~
Eg2= L J_1R@®I  13BRdg (235)

em" 2 (RBPa)?2

and the properties of the functions €., E, are evident again. Similar

formulas apply also to problems which can be diagonalized by means of the
Mellin transform such as the Abel or the Laplace transform inversion-see
Chapt. 11, Section D.3 and Section G.

L [vanov Method (Constrained [ east Squares Solutions)

The basic idea of the Ivanov method (Ivanov, 1962) consists in

restricting the approximate solutions to some suitable subset defined by
physical constraints. Here we consider only the case where the subset is a

sphere of radius E in X



Sg = {f ex| Ufly <E} . (236)

This choice has a precise physical motivation when |f[? is an energy

density and X is a space of square integrable functions. Then the knowledge

of an upper bound E2 on the total energy of the signal implies that f e Sg.
When the constant E is given, it is quite natural to look for the
function (or the functions) ‘F(E)(-ZSE such that L fE) has the minimal

distance from g and this is equivalent to solve the following constrained
least squares problem

L FE - gy = inf CHLF-glly | Hflly < E3 . (@37)

Any solution of this probiem will be obviously called a constrained /easi
squares solution
We must consider separately two cases.

a) The generalized solution exists and satisfies the constraint : || f* |l x <E

In such a case the solution of problem (237) is not unique (except when
ne* lly = E ). The set of the constrained least squares solutions is the
intersection of the set S(g) of the unconstrained least squares solutions ,
Eq.(176), with the sphere S¢ (see Fig.6). Then there exists a unique

constrained least squares solution of minimal norm and this obviously
coincides with "

b) The generalized solution does not exist or, if it exists, it does not

satisfy the constraint, i.e. | f* lly > E. This case is the most likely when

data are noisy. Then the intersection of S with the set of the

unconstrained least squares solutions is empty (see Fig.6). Under these



s(g).ll ¢+lI>E

S(g);”f"'"<E

N(L)

Fig.6 Two-dimensional geometric representation of the constrained
least squares solution. In the case of data g such that If*ll <E,
3(g) intersects Sg and therefore f ) coincides with f*(see Fig.5).

In the case of data g such that [If*ll > E, S(g) does not intersect Sg

and therefore f ) lies on the circle of radius E and is orthogonal
to N(L).

circumstances it is obvious that the constrained minimum points of the
functional IILT - glly cannot be interior to Sg but must lie on the surface
of this sphere. Since these points satisfy the condition ll flly = E, one can

use the method of Lagrange multipliers for determining the solution of



problem (237). This method consists of the following steps:

1) for any a>0 minimize the functional (221);

2) since, for any a, there exists a unique minimum point fa of this

functional, then search for a value of a such that

I lly =€ | (236)

Fig.7 Graph of the function E 4, in the case E <|| f* lly <+ oo, illustrating
the determination of a(E).



From the properties of the function E,, £q.(229), stated above and

illustrated in Fig. 7, it follows that there exists a unique value of a, say
a(E), which solves Eq.(238). The corresponding solution f is just F(E)

and this is the unique solution of problem (237)

We conclude with a few results about the convergence properties
of the constrained least squares solution 'fv(E) in the ideal case of

experimental errors tending to zero. For this purpose we assume that a

family {gc)e~p Of noisy data functions is given and that, when € — 0,
g¢ converges to a noise free data function g, namely a function in the range
of L. Let Fe(E) be the constrained least squares solution associated with

gc and let "= L"g be the generalized solution associated with g.

Moreover, let us assume that, for any €, the case b) applies. Then the

following results hold true (Bertero, 1986) :

i) if Lt glly <E, i.e. the prescribed constant is overestimated, then Fe(E)

weakly converges to f* when € —>0 (for the definition of weak

convergence, see (Balakrishnan, 1976)) ;

i) if Bt glly = E, i.e. the prescribed constant is precise, then FE(E)
strongly converges to f* when e —0;

i) if L+gllx >E, i.e. the prescribed constant is underestimated, then
Fe(E) strongly converges to f(E) | the constrained least squares

solution associated with the noise free data g.

For problems with discrete data the case i) must be modified since,

for sufficiently small €, there is necessarily a transition from the case b)
to the case a) and therefore the constrained least squares solution



corresponding to noisy data is not unique. In such a case one can identify,
by definition, the constrained least square solution with the generalized
solution and therefore strong convergence applies also to this case. This
result must be evident since weak convergence and strong convergence
coincide in finite dimensional spaces.

2 Phillips rethod

This method was firstly proposed for the approximate solution of
first kind Fredholm integral equation (Phillips, 1962). A more general
formulation was given by Ivanov and Morozov (Ivanov, 1966; Morozov, 1966,
1968) while Reinsch (Reinsch, 1967) applied independently the same method
to the smoothing problem, a problem which replaces strict interpolation
when the values of the function are only approximately given.

The starting point is the assumption that an upper bound € on the

error is known. We denote by J.(g) the set of all the elements of X which

are compatible with the data g within the error €

Je@ = {f ex| Lt - glly <€) | (239)

This set is always unbounded when the problem is il1-posed. In the
case of a problem with discrete data, for example, it is a cylinder whose

basis is an ellipsoid in Xy (see Chapt.IlI, Section A). This cylinder is not

bounded in the directions orthogonal to Xy because the solution of the

problem is not unique. On the other hand, in the case of an operator whose

inverse is not continuous J.(g) is unbounded for the following reason : it
is always possible to find a sequence (f,} such that ||Lf [ly — 0 while

I, lly — . Notice that the example of Hadamard, discussed in the



Introduction, is just a particular case of this general result. It is easy to

prove, however, using the continuity and linearity of L, that JJg) is

always a closed and convex set.

Since J.(g) contains wildly oscillating and completely unphysical

approximate solutions, it is quite natural to look for the smoothest

element of Je(g), i.e. the element of minimal norm ,which will be denoted

by f(€) This leads to solve the following problem
I p = Nl [ULr-gly <€) . (240)

As remarkeq by Ivanov (Ivanov, 1966) this problem is just the dual
of the problem (237).

Since the set J(g) is closed and convex, from the general theorem

of functional analysis (Balakrishnan, 1977) already used for proving the
existence and uniqueness of the generalized solution, it follows that there
exists a unique solution of the problem (240). This solution is not the null

element of X provided that the data g satisfies the inequality IIgIIY > €.

This inequality is quite reasonable since it implies that the norm of the
data is greater then the norm of the noise. If it is not satisfied, it means
that the data function (vector) consists only of noise and that it does not
contain any information about the unknown object f. Since we exclude this
case and we also assume that, if a nonzero component of g orthogonal to
the range of L exists, then this component can only be an effect of the
noise, we concludee that the following inequalities must hold true

IngIIY < € < IIgIIY ; (241)

A representation of the solution of problem (240), analogous to the

representation of the constrained least squares solution, can be obtained



If we notice that T €) must satisfy the condition liL f¢€) - glly = €. Then
we can use again the method of Lagrange multipliers in order to determine

£(€) we must minimize the functional (221) for any a >0 and then search

for a minimum point f , such that

] Lfg - gIIY = € ; (242)

From the properties of the function € £q.(228), and the conditions (241)

it follows that there exists a unique value of a, say a(E), which solves

Eq.(242) - see Fig.8. The corresponding solution f, is just F(e)’ i.e. the

E ______
|
|
1
”Q.g"Y ————— : ____________________________________
|
|
0 () P

Fig8 Graph of the function €,, in the case llQglly < € < liglly,

illustrating the determination of (),



unique solution of problem (240). We see that the difference between the
solution of problem (237) and the solution of problem (240) consists only
in a different choice of the Lagrange multiplier.

As concerns the convergence of F(e)’ in the case where the

experimental errors tend to zero, the situation is much more simple than

in the case of the constrained least squares solutions. If [g€]€>0 is the
family of noisy data functions introduced in Section Al, if Fe(e) is the

solution of problem (240) with g replaced by g, and if ' e Jlgp), for

any €, then it is possible to prove (Ivanov, 1966; Groetsch, 1984; Bertero,

1986) that FE(E) strongly converges to f* when € —0.

J Miller Method

The method of Section A.l requires a prescribed bound on the
solution while the method of Section A.2 requires a prescribed bound on
the error. In a paper of Miller (Miller, 1970) the case where both bounds are
known is also considered. Results similar to those of Miller were also
obtained by Franklin (Franklin, 1974).

Let us assume that two constants ¢, E are given and that one wants
to look for functions f such that

Ir-gly <e, Ity < E . (243)

The set K of all the functions satisfying these conditions is just

the intersection of the set Sg, Eq.(236), and of the set J.(g), Eq.(239): K

= Sg NJLQ). Any function f € K can be called an admissible approximate



solution.

In such an approach we must consider two problems: the first is to
assure that the set K is not empty, in which case we say that the pair (€,E}
ispermissible; the second is to extract an element of K in order to produce
one specific approximate solution.

As concerns the first question, it is easy to characterize the set of
permissible pairs. We first notice that /he set K 7s not empty if and only

ir both T8 ang 7€) pejong to k. The *if* part is trivial. The “only if”
part follows from the variational properties of F(E) and F(E) . For
example, the condition that K is not empty implies that there exist
elements of J.(g) whose norm is less than E. Since 7(€) is the element of

minimal norm of Je(g), it follows that the norm of F(E) must also be less

than E. Moreover ?(E) satisfies, by definition, the first of the conditions

(243), and therefore (&) e k. Similar arguments apply to f(E)
The remarks used for proving the previous result also imply that,

when K is not empty, then

nrep, < 1@y, (244)

and

Ir®-gny < uerl®-gn, (245)

Moreover, if we recall that E is a decreasing function of a (or that €4 is

an increasing function of a) we also have

olE) < € . (246)

Finally, since the previous results imply that, when K is not empty,



then |l }(e) "X <E and |IL ?(E) - glly <€, it follows that the set of the

permissible pairs in the plane { ¢,E } is just the set of all the pairs which

are to the right and above the curve described by { €4,E, 14+ (Se€€ Fig.9).

||f']|x

0]

—

e — e, e, e, ————
~

lagl, g, ¢

Fig.9 Representation of the set of the permissible pairs (€,E]} in the case
where the generalized solution f* exists. When f* does not exist,
the line € = IlQglly is an asymptote of the boundary curve {€,E ).



We also conclude that all the functions f a with a between a(E) and

a'€) belong to K.

As concerns the problem of determining an element of K, it is
obvious that both ?(E) and ?(e) provide an answer to this question.
Another possibility, however, is to take the function f, with a= (c/E)2.

This function will be denoted by f (). In fact it has been proved by Miller
(Miller, 1970) that, when K is not empty, f(0) satisfies the inequalities
(243) with {¢,E) replaced by {v2'¢, v2E). It is easy to find, however, a
sufficient condition which assures that £(0) e K. Let us denote by d>(0)[f]
the functional (221) with a = (e/E)2 and by K(©? the following subset of X

KO = { fek] 80 [f] < €2} (247

Then, since £(0) minimizes the functional 0], it is obvious
that K{©) is not empty if and only if the following condition is satisfied

(b(O)[ ?(0)] < €2 (248)

(notice that this condition can be easily verified in a numerical
application of the method). Finally, using the inclusion

k(0 k (249)

which follows from the remark that any element of K{O) satisfies the
conditions (243), we conclude that when condition (248) is satisfied, the
set K is not empty and fl0)ek.

Moreover the following inequalities are a trivial consequence of the

inequalities (244) - (246) and of the fact that f, € K if and only if a



belongs to the interval [ alE), al€)

I 79Ny < 17O, < || (250)
It fB-glly < fle f@-glly < lL /1€)- gy (251)
aB) < (e/E)2 < o€ . (252)

We see therefore that the Miller solution 0) has a degree of

smoothness which is intermediate between that of F(E) and that of F(E).

Finally, as concerns the convergence of £10) to the true generalized
solution f* when the error of the data tends to zero, this approximate
solution has properties similar to those of the constrained least squares
solution f(E) (Bertero, 1986).

4 Extensions and Comments

The method of contrained least squares solutions can be considered
as a generalization of the pioneering works on ill-posed problems for
partial differential equations (Pucci, 1955; John, 1955; Fox and Pucci, 1958,
John, 1960). In these papers, already mentioned in the Introduction, one
looks for approximate solutions satisfying a prescribed bound and this
condition is replaced, in the method of Section A.l, by the condition of
looking for approximate solutions in the sphere (236). An extension of this
condition is provided in the same paper of Ivanov (Ivanov, 1962) and is
based on a topological lemma, due to Tikhonov (Lavrentiev, 1967; Tikhonov
and Arsenine, 1977) which in our context can be formulated as follows:
Let H be a compact subset of the Hilbert space X and /et assume that the



linear, continuous operator L: X — V¥, when restricted to H hHhas an
Inverse. Then the inverse operator Is continuous .

The result of Ivanov can now be formulated as follows: /f A4 /s a
compact and convex set of X and if the restriction of L to H aomits an
inverse operator, then, for any g € ¥, there exists in H a unique /east
squares solution F of £q.(5) Moreover the mapping g —> F IS Continuous.

It is obvious that, in this way, one is not obliged to restrict
solutions to a sphere (in fact, a sphere is not a compact set). An important
example of an application of the Theorem above is the case where the
function to be restored is the distribution function of a random variable,
and therefore it is an increasing function with values in the interval [0,1].
Then, according to Helly theorem (Titchmarsh, 1958, pg.342), a set of
increasing and uniformly bounded functions, defined on a bounded interval
{a,b], is compact in L2(a,b) and therefore Ivanov theorem can be used
whenever the inverse operator L™! exists.

As a second comment we point out that the methods outlined in the
previous Sections provide approximations of the Moore-Penrose
generalized solution. Then one can also look for approximations of the
C-generalized solutions introduced in Chapt.IV, Section B. In fact the
method of Phillips (Phillips, 1962) applies to this case, since it provides
an approximate solution of a first kind Fredholm integral equation such
that the L2-norm of its second derivative is as small as possible. Also the
smoothing method of Reinsch (Reinsch, 1967) corresponds to this case.

Approximations of the C-generalized solutions can be obtained if
we replace the functional (221) with the following one

@ o 1= JIf - glly? + a flcr [l (253)

where the constraint operator C satisfies the properties assumed in
Chapt.lV, Section B and, in particular, property b’). Then one can prove
(Groetsch, 1984; Morozov, 1984; Bertero, 1986) that, for any o > 0O, there

exists a unique function fr . € X which minimizes the functional (253)



and which can be obtained by solving the functional equation

("L + «COfc o =L7g (254)
Moreover, the mapping g— fC,cx , given by
feo =Re,o 9 (255)
with
Re o = (L + a0 L (256)

is continuous. This operator can be written in the standard form (226) by

introducing the adjoint of the operator LC with respect to the scalar

product (193) (Groetsch, 1986). Then, using Eq.(198), by some simple
algebraic manipulations, from Eq.(256) one obtains

Reo =B (L L * BaD™ L™ (257)

where B = (1 - o In particular, when L is a compact operator (or a
finite rank operator as in the case of inverse problems with discrete

data), it follows that f- , has a representation, in terms of the singular

values o ., Eq. (195), analogous to the representation (230) of f .

We also notice that, when L is an integral operator and C is a
differential operator such that the scalar product (13) is given by Eq.(12),
then the solution of EQ.(254) implies the solution of a boundary value
problem for an integrodifferential equation (Tikhonov, 1963 a). The latter
is equivalent to the solution of the functional equation (223) in the
Sobolev space defined by the scalar product (12) (Groetsch, 1984).

If one introduces now the functions



cco=ILtooaly Eco= ot ol (258)

one can easily prove that €c . is an increasing function of o while Ec

is a decreasing function of «. As a consequence, all the results proved in
the previous Sections and concerning the operator (226) can be extended to
the present case. More precisely, there exist a unique value of «

minimizing €c o with the constraint E:, < E and conversely there

exists a unique value of a minimizing Ep , with the constraint € , <e.

A final comment about the Backus-Gilbert method, which can also
be affected by numerical instability. No regularization method has been
developed for this algorithm. Backus and Gilbert, however, have introduced
two methods in order to improve stability (Backus and Gilbert, 1970), even
if rigorous results have not yet been proved for these methods.

If the covariance matrix € of the noise is known, then from
Eq.(212) one easily derives that, at any given point X, the variance of the

error induced by the noise on FBG(X) is

N
a2x) = > Cam 3m(X) an(x)* : (259)
n,m=1

Then the two methods introduced by Backus and Gilbert are the following:

1) Minimize the functional a2(x) with the constraint (218) and also the
constraint 82(x) < E2 ( §2(x) is defined in Eq. (217) ). The latter constraint

prescribes an upper limit on the desired resolution.

2) Minimize the functional 82(x), Eq.(217), with the constraint (218) and

also the constraint oz(x) < €2 The latter constraint prescribes an upper
1imit on the desired error affecting the reconstructed solution.



Both problems can also be solved by means of the method of
Lagrange multipliers and we do not give the details here. Let us just
remark that these two problems are one the dual of the other and that they
are similar respectively to the Ivanov and to the Phillips method for the
regularization of the Moore-Penrose generalized solution.

B General Formulation of Regqularization /Methods

The common feature of the methods presented in Section A is that
they provide different criteria for selecting a specific element from the

same family of approximate solutions, namely fo = Ry 9, defined by

Eqs.(225) and (226) - or (227). This family describes a trajectory in the
Hilbert space X and in order to have a clear picture of this trajectory we

need some further properties of the operators R, . More precisely we want

to show that :

i) for any a >0, Rq: Y —X is alinear, continuous operator whose norm

is bounded by

"Ra" <_1 ,- (260)
Vo

ii) if g belongs to the range of L and f* is the generalized solution
associated with g, then

lim [[R,g- [l =0 . (261)
all

The proof of i) follows from Egs.(229) and (224). In fact Eq.(229)



implies that
IR@ 12 = (L™ + a g, (LL* + at) Tgly (262)

Then, if we notice that the norm of the operator LL*(LL* + ctI)'I is
smaller than 1 and that, according to the inequality (224), the norm of the
operator (L™ + al)7! is smaller than a", we obtain the inequality (260).

As concerns i1), if g € R(L), then g = LT* and from Eq.(226) we get
IRqg- k= IRGLF - [ =all™ s ay T el . (263)

Then property ii) follows from the spectral representation of the
self-adjoint, positive semi-definite operator L*L and from the dominated
convergence theorem (Groetsch, 1984; Bertero, 1986).

Properties i), ii) can be verified in an elementary way in the case
of a compact operator or of a convolution operator, using respectively
Eq.(230) or £q.(233).

In the case of noisy data, say g, where ¢ is an estimate of the norm

of the error, i.e. of the distance between g and the exact data g € R(L)

lge-glly <e , (264)

the approximate solution Ra ge may have no limit when « — 0 or, as in
the case of problems with discrete data, the limit is the generalized
solution f.* and the distance between f.* and f*=L*g, [|[f.* - f*]ly, can
be extremely large. There exists however, a value of «, say cx(ODt), such

that the distance between R, g, and * is minimum. If we write



Rede ~ T'=(Rug- )+ Ry (g - 0) (265)
from Eq.(260) and the triangular inequality we have

IRqe - 'l < IIRga- i+ _e . (266)
va

Then, since the first term in the r.h.s. is an increasing function of

«, as follows from EQ.(263), while the second term is a decreasing one,
there exists a unique value of o which minimizes the r.h.s. of £q.(266). It
is obvious that this optimum value of a, o'®Pt) cannot be determined in
practice because its determination requires the knowledge of the true
solution f*.It is important however to know that such an optimum value
certainly exists.

We can now describe the trajectory of the approximate solutions
fo, e = ReJe In the case where the set K, defined by the inequalities (243),
is not empty - see Fig.10. The trajectory starts at the origin (null element)
of X when o = oo and for large values of a it lies inside the sphere S,
Eq.(236). Then, for a = a(e), the trajectory crosses the surface of the
ellipsoid J.(g), Eq(239) and for values of o between o€ and ofE) it goes

through the set K. In this part of the trajectory we have the point
corresponding to the optimum value of o discussed above and also the
point corresponding to o = (e/E)2 (at least when condition (248) is
satisfied). Finally, for all the values of o smaller than «‘E) the trajectory

always lies inside the ellipsoid J€(g) and its end point, for a = 0, will be
the centre of JJ(g), ie. f€+, when there exists the generalized solution

associated with g.. Otherwise it goes to infinity.

These comments on the methods of the previous Section justify the

general definition of a regu/arizing algorithm (in the sense of Tikhonov)



Fig.10 Two-dimensional representation of the trajectory described by
Rq e @ a increases from O to co. It is assumed that there exists

a generalized solution associated with noisy data. Otherwise the
trajectory goes to infinity when a —0.

which will now be given and discussed.

We say that a one-parameter family of operators [Ra)a >0 defines



a regularizing algorithm for the approximate determination of the
generalized inverse L* of the linear operator L if:

i) forany a>0, ch :Y —X is a continuous operator;

ii") for any g e R(L)

lim [[Ryg-flk=0 . (267)
al0

When the operators R, are linear, then we have a linear

regularizing algorithm. 1t is possible however to introduce nonlinear
regularizing algorithms for the solution of linear problems. We will give a
few examples of such algorithms in Section D.

The parameter « is usually called the regu/arization parameter
and, in general, it is a positive real number. In some cases, however, it
may be convenient to introduce a discrete variable which take only integer
numbers. In such a case we have a sequence [R(”)] of regularizing
operators and the limit a —— 0 is replaced by the limit n — 0. If we

want a unified notation then we can put R, = R when [ (integer
part of aly=n
The meaning of condition ii’) is obvious. It implies that,

when g € R(L), it is possible to obtain arbitrarily accurate approximations
of f* by means of continuous operators. Moreover, in the case of noisy data

g » satisfying condition (264), we still have an inequality analogous to

(266) and precisely
IRe e - Tl < IReg -1l +ellrgll . (268)

The first term in the r.h.s. can be called the "approximation error”, which
is introduced when the non-continuous (or ill-conditioned) operator L,
acting on exact data, is replaced by the continuous (or well-conditioned)



operator Ra. This "approximation error” tends to zero when « tends to

zero. The second term in the r.h.s. represents “error propagation” from the
data to the solution and it becomes exceedingly large when o tends to
zero. Therefore it is clear that the choice of a will be based, in general,
on a compromise between approximation error and noise propagation.

As in the case of the specific example provided by Eq.(226), given a

noisy data function g. and given a regularizing algorithm {Ry}, -, the

family of approximate solutions f, . = Rgyg. will describe a trajectory

in the Hilbert space X and, in general, there will be a point on this
trajectory which has a minimum distance from the true solution f*.

A similar definition can be introduced for the regularization of
C-generalized inverses. Condition i) is not modified, while condition ii) is
modified as follows:

ii") for any g € LD(C)

lim |Ryg-fc" [k = 0 (269)
o 40

where fC+ is the C-generalized solution associated with g.

It is easy to show that the family of linear continuous operators

(Rc o} >0 defined by Eq.(256), is a regularization algorithm for LC+- In

fact, the representation (257) of these operators coincides with Eq.(226),
except for the factor B. Then, since p——>1 when a —0, Eq.(269) can be
proved in the same way as Eq.(261).

Finally, a few words as concerns linear inverse problems with
discrete data. In this case the definition of a regularization algorithm
needs some modifications (Bertero et &/, 1988 b). In the case of an
ill-posed problem, indeed, a regularization algorithm is a family of
continuous (bounded) operators which approximate an operator which is



not bounded. But, for a problem with discrete data, the generalized inverse
is always continuous since it is a linear operator on a finite dimensional
space. The problem must be regularized when the norm of L* is much
greater than 1/L|| (ill-conditioning) and therefore a regularization
algorithm must provide an approximation of L* which has a norm smaller
than the norm of L* . For these reasons we say that a one-parameter

family of operators {R, )y >q iS @ regularization algorithm for an inverse

problems with discrete data when:

i) for any o >0, the range of R, is contained in Xy, the subspace spanned
by the functions ¢p,;

ii) for any o > 0, the norm of Ry is smallier than the norm of L, ie.

IRl < ¥l = 170y ; (270)

iii) the following limit holds true in the sense of the norm of bounded
operators

lim IR -L* || = 0 | (271)
o 0

A similar definition can be given of a regularization algorithm for a
C-generalized inverse (Bertero ef g/, 1988 b). In condition i) the subspace

X\ is replaced by R(LC*), which is the orthogonal complement of the null
space of L and coincides with the subspace spanned by the functions U,

Eq.(205), while in condition ii) the norm of L* is obviously replaced by the

norm of L¢".



C. Spectral Windows

For a fixed « >0, consider the function of X, F, (X) = (X + a)'],
defined on (0,+c0). Then the Tikhonov regularizer (226) can also be written
in the form R, = Fa(L*L)L*, where the operator Fa(L*L) is obtained

from F,(X\) using the spectral representation (Yosida, 1966) of the

self-adjoint, non-negative operator L™L. Moreover, if the operator R, is

applied to a noise free image g = Lt , one obtains

fo = Rgd = Wo (LU (272)

where Wy (A) = M) + a1, This function is small in the neighborhood of

the spectral point A = 0 (notice that this point belongs to the spectrum of
L*L if and only if the problem is ill-posed) and therefore the effect of the
regularizing algorithm is a windowing (or filtering) of the spectral
components of f* related to the ill-posedness of the problem. For
example, in the case of a compact operator, using Eq.(230) and the relation

(gVidy = (LFF vy =7 LoV )y = g (1" u, )y, we obtain

o X
fa = Z — (f+, UK)X Uk (273)
k=0

N+ a

where we have introduced the notation A = okz. Analogously, in the case

of a convolution operator, from Eq.(233) we obtain

fe®= _1 f [R@P__ r*(®el® Sk . (279
em" @ | RENZea



In this case the spectrum of L*L is the set of the values of the function
NE) = [ RBNZ, EcQ.

The previous remark suggests the idea of looking for regularization
algorithms of the following form

Ry = Fo(L'DIL™ (275)

where now (F (M}, 5 denotes a suitable family of functions defined on

(0,+o0) and again Fa(L*L) is given in terms of F, (X) using the spectral
representation of L™L (Bakushinskii, 1965; Groetsch, 1980; 1984). The

problem is now to find sufficient conditions on { F, (X)}4 q assuring that
{ Ry ) >0 15 @ regularization algorithm. These conditions can be given on

the wingow runctions Wy (X)= AF 4 (X).

For example, it is not difficult to prove (Groetsch, 1980; Bertero,

1986) that, if (W (M), g is a family of real valued; piecewise continuous

functions defined on (0, +00) and satisfying the following conditions:

i) foranyax>0, 0 < W,(\) <1,

ii) forany A >0,

lim Wq()\) =1; (276)
o 0

iii) for any a > 0, there exists a constant c, such that

Wo (M) < cq X (277)

then, the family of operators defined by Eq.(275), with F 0[()\)=)\" W, V),



is a regularization algorithm.

Conditions i)-iii) are satisfied by the Tikhonov window W (X) =

M\+a)”!. Another important example is the following one
We(M)=0,0<h<a ; Woe(M)=1, A >« (278)

which corresponds to a truncation of the spectral representation of L*L.
This regularization algorithm is very important both in the case of
compact operators and in the case of convolution operators.

In the case of compact operators, however, it is more convenient to
define spectral windows in terms of singular function expansions as
follows

00
RCX g = Z O'K—] Wa’k (g,VK)Y UK (279)
k=0

and therefore one must introduce a family of window sequences rather
than a family of window functions. The conditions 1),ii) above are
unchanged (the variable \ is replaced by the index k), while condition iii)
must be replaced by the requirement that, for any o > O, there exists a

constant ¢, such that: W, , <c, . Then the use of the window function

(278) is equivalent to the use of the following window sequence

Wy =1, k<le™ ; Wgep=0, k>l . (280)

ok
The corresponding regularization algorithm is the well-known method of
truncated singuiar runction expansions (Twomey, 1965; Miller, 1970;
Groetsch, 1984), which is also known as numerical filtering.

Analogously, in the case of a convolution operator it is convenient
to define spectral windows in terms of the Fourier transform as follows



(Rg@0)= _1 f W E_gE e g (281)
(2mh @ K(E)

Again, conditions i) and ii) above are unchanged (the variable X\ is

replacedby the variable E), while condition iii) is replaced by the

requirement that, for any a > 0O, there exists a constant Co such that

W (E) < calk\(g)l. Then the use of the window function (278) is

equivalent to the use of the following one
Wo ) =1, [El<a ; we® =0, [E]>a (282)

or, in other words, it is equivalent to the use of a cut-off in the Fourier
integral.
we point out that, in the case of a regularization algorithm defined

as in Eq.(281), the operator W, (L*L) is a convolution operator given by

[w L floo = [ Ay -3 r0) ax (283)
Rn

where Ay (x) is the inverse Fourier transform of W, (). For example, in

the case of functions defined on (-, +o0), and of the window functions
(282) we have

Ay (X) = (rra)”! sinc(x/ma) . (284)

It follows that, in the case of noise free data, the regularized solution is
an average of the true solution over a distance of the order of «.
Other interesting window functions for the inversion of convolution

operators in one dimension are the following:



a) The friangular window

we®=-aleh, ] <o« we®=0, el > o (285

which is related to the approximation of Fourier integrals in the sense of
(C,1)-summability (Titchmarsh, 1948). In this case the averaging function

Ay (X) is given by
Ay (X) = (2no)”! sinc?(x/2ne) . (286)

Notice that this averaging function is positive and therefore, in the
absence of noise, the corresponding regularization algorithm provides
positive approximations of positive functions (Bertero efa/ , 1988 a).

b) The Hanning window

Wy (8) = 4 [1+ costmat)], el < o715 we® =0, [l > (287)

which is well-known in the theory of signal processing (Kunt, 1980). The
corresponding averaging function is

Aa(x)=(4na) -1 {sinc[(x-noc)/noc]+251’nc(x/noc)+sinc[(x+noc)/noc] } (288)

and this is not positive. The negative parts, however, are quite small and
the side-lobes are smaller than the side-lobes of the function (286), so
that the use of this window can be very convenient in practice.



¢) The gaussian window
W (8) = exp (-ag2/2) (289)
with the corresponding averaging kernel
Ag() = @na) V2 exp (-x%/20) . (290)

Notice that this kernel is also positive and that side-lobes are absent. The

disadvantage is that it can be used only in the case where IQ(E) tends to
zero at infinity less rapidly than any gaussian, while the band-limited
windows introduced above can be used for regularizing the inversion of an
arbitrary convalution operator.

The method of spectral windows, based on the use of Fourier
integrals, includes also the method of /7/fered backprojection (Natterer,
1986) which is presently the most important reconstruction algorithm in
computerized tomography.

As a final remark we point out that the methods outlined above can
also be used for the inversion of Laplace transform, and more generally for
the inversion of integral operators of the type (62), as well as for the
solution of Abel equation (Bertero, 1986; Bertero ef &/, 1988 a). In these
cases the Fourier transform is replaced by the Mellin transform. Then the
analysis runs parallel to that performed in the case of convolution
operators.

0 [terative Methods

Iterative methods are frequently used for the solution of n x n
linear systems. The Jacobi method and the Gauss-Seidel method, for



example, are well-known since a long time. Complete account of iterative
algorithms can be found in any text-book on numerical analysis (Ralston,
1965; Marchuk, 1975).

The most simple iterative process can be obtained by writing the
linear system Ax =y inthe form x = (I-A)x + y which suggests the

iteration X,y = (I-A)x , +y. The latter can also be written in the form

Xn+) = X ~ (AX, - y) and it must be, in general, modified as follows :

X X, - T (Ax, - y), in order to have convergence. The arbitrary

n+1
parameter T is called re/axation parameter and the vector rp = AX, -y

is called the resiaual of the iterative process (Marchuk, 1975). Moreover
the iterative process is called stat/onary if the parameter T does not
depend on a particular iteration, while it is called non-stationary if

T = T, IS changing from one iteration to another. The methods of steepest

descent and conjugate gradient are examples of nonstationary iterative
algorithms.

The interesting feature of some of these methods is that they can
be extended to functional equations such as Eq.(5) and that they have
regularizing properties in the sense specified in Section B. In other words
the approximate solution provided by a finite number of iterations is a
stable approximate solution and the number of iterations (or more
precisely, the inverse of the number of iterations) plays the role of a
regularization parameter.

The extension of the simple stationary iteration method mentioned
above to the solution of first kind Fredholm integral equations is due to
Landweber (Landweber, 1951) who also proves the convergence of the
algorithm in the case of noise free data, using however too strong
restrictions on the kernel (or, equivalently, on the relaxation parameter).
An extension of this method, obtained by replacing the relaxation
parameter with a fixed linear operator, was proposed by Strand
(Strand,1974).

The results of Landweber and Strand apply essentially to Eq.(S) or,



more precisely, to £q.(173), in the case where L is a compact operator. The
extension to the general case of a linear continuous operator is given by
Bialy (Bialy, 1959) who also proves convergence for the correct range of
values of the relaxation parameter. A survey of these results with
applications to least-squares linear signal restoration is given in (Sanz
and Huang, 1983). Finally we mention that also the methods of steepest
descent and conjugate gradient have been extended to Eq.(5) or Eq.(173)
(Kammerer and Nashed, 1971, 1972) and that also in this case convergence
of the algorithm has been proved for certain classes of noise free data.

Iterative reconstruction of distorted signals has also received
much attention in the engineering literature (Schafer er &/ ., 1981).
Examples are the recovery of the input to a linear shift-invariant system
from its output (deconvolution), the restoration of a multidimensional
signal from its projections and the extrapolation of a signal from a finite
segment of that signal. These problems can be classified as linear inverse
problems and, in fact, their mathematical representation is given by Eq.(S).
In particular, for the problem of extrapolating a band-limited signal,
which is equivalent to the problem of Fourier transform inversion with
limited data, a very attractive algorithm was proposed by Gerchberg and
Papoulis (Gerchberg, 1974; Papoulis, 1975). The convergence of this method
in the case of noise free data was proved by De Santis and Gori (De Santis
and Gori, 1975), using expansions in terms of the prolate spheroidal
wavefunctions. The main interest of the method is that it can be easily
implemented on a computer and that it can achieve a rather good
super-resolution in the case of noise free data. It was later recognized
(Maitre, 1981; Sanz and Huang, 1983) that this algorithm is just a special
case of the Landweber-Bialy iteration with t = 1.

In this Section we give the main results concerning Landweber-
Bialy iteration, steepest descent and conjugate gradient and we indicate
why they can be considered as regularization algorithms for the
approximate determination of the generalized solution. Therefore the basic
equation is not Eq.(S) but Eq.(173).

The approximation of f* given by the n-th iteration will be indicated



by f, and the corresponding residual r,, will be defined by
* *
=L Llf-Lg . (291)

It 1s evident that the approximation f, and the residual r, belong to

the Hilbert space X. This is not convenient in the case of inverse probiems
with discrete data, since in this case one must essentially compute
N-dimensional vectors. A very simple modification of the equations is
however possible (Bertero et al., 1988 b) by putting

*

*
fa=L'f Py =L r, (292)

n > n

so that (assuming that the ¢y, are linearly independent) we have

Y

= LWLH-g ) (293)

where f. is the matrix associated with the operator LL™ and related to the

Gram matrix of the functions ¢, by Eq.(128). Then all the algorithms can be

formulated in terms of the vectors fn, M and of the matrix f.

\. Landweber-Bialy iteration

The sequence of the approximations is given by
fo =0 ) fn+l = fn ~TTlp (294)

where T is a fixed value of the relaxation parameter. Then, using £q.(291) it



is easy to show that

n-1
f,=RMg = go (1 -t DKL g (295)

and therefore this algorithm has the general structure (275) with

n-1
WO =2 FMOn=tx S a-Ttak=1-0-t" . (296)
k=0

This window function satisfies the conditions i)-iii) of Section C for
values of A in the spectrum of L*L (which is interior to the interval
{o, ||L||2]) when the relaxation parameter t satisfies the following

conditions
0 <t <2]|L|f? | (297)

These are precisely the conditions assuring that, if Pg € R(L), then the

sequence (f,} converges to the generalized solution f* of Eq(5) (Bialy,

1959). It follows that the sequence [R(”)] defines a regularization
algorithm. Then the problem of choosing an “optimum value” of the
regularization parameter is equivalent to the problem of choosing an
"optimum number” of iterations. In fact, in the case of noisy data, the
first iterations improve the accuracy of the solution but, after a certain
critical value, the noise induces instability and the quality of the solution
is rapidly degraded.

Finally, it is not difficult to prove that the following inequalities
hold true

Irner e < lmpll (298)

and also



Ml > lfalk (299)

These properties are analogous to properties proved for the regularization

algorithm (226) and precisely to the fact that €., Eq.(228), is an

a’

increasing function of o while E, £q.(229), is a decreasing function of «.

2. Steepest descent

In this case the iteration scheme is given by
fo =0 ; fn.,_] = fn - tnrn (300)

where

= M2/ e h2 (301

It has been proved that, when Pg € R(LL™) (this condition is obviously

stronger than the condition Pg € R(L)), then f converges to f* (Kammerer

and Nashed, 1971). Therefore, if we put T, = R‘™g, the family of operators

{R(M) defines a regularization algorithm. Notice that the operator RM is
continuous but it is not linear. Moreover the inequalities (297) and (298)
hold true also in this case. We have mentioned this algorithm for
completeness but we do not know applications of it to the solution of
inverse problems.



3. Conjugate gradient

In this case the iteration scheme is given by

fo =0 s fn+1 = fn - ‘Cnpn (302)
where
DO = ro = 'L*g ¢ pn= rn+ Un_] pn_l (303)
and also
T = (M. PRy / I Lpp, ”Y2 ,Gp-1 = = (P, LPy—yy / IILpn_| IIY2 . (304)

It is known that, for an N-dimensional problem, this method is a
finite iterative method, in the sense that a theoretical convergence in N
steps is guaranteed. This theoretical result holds true, for example, in the
case of inverse problems with discrete data. In practice roundoff errors
prevent the achievement of this theoretical convergence. Moreover, in the
case of a functional equation in an infinite-dimensional space, the number
of iterations required for convergence is infinite.

The convergence of f,, as given by Egs. (302)-(304), to f* has been
proved when Pg € RILL®L) (Kammerer and Nashed, 1972). This conditfon s
stronger than the condition required for the convergence of the steepest

descent method. Again, if we put f, = R™g, the sequence (R"™) defines a

regularization algorithm. The operators RN are continuous and nonlinear.
A comparison of the Gerchberg-Papoulis (or Landweber-Bialy)

method and of the conjugate gradient method has been performed in the

case of the extrapolation of a signal of finite extent (Maitre, 1981). The



result obtained by means of numerical simulations is that the conjugate
gradient produces the same accuracy of the Gerchberg-Papoulis algorithm
but that the number of required iterations is much smaller. In some cases,
using the conjugate gradient, a factor of 5000 in the number of iterations
was gained in order to obtain the same accuracy as the
Gerchberg-Papoulis algorithm.

In fact, both Landweber-Bialy iteration and conjugate gradient
method compute first those parts of the solution which belong to the large
singutar values. The conjugate gradient however seems to be more
efficient in this procedure as indicated by arguments developed in
(Natterer, 1986 c). An impressive example has been found in the case of
Laplace inversion in a weighted space (Bertero ef a/, 1986 c); the
approximate solution given by the n-th iteration of the conjugate gradient
method practically coincides with the approximate solution obtained using
the first n terms in the singular function expansion, at least for small
values of n.

£ Choice of the Regularization Parameter

A regularization algorithm provides a one-parameter family of
approximations of the unknown generalized solution f*. This family
describes a trajectory in the Hilbert space X and, as follows from the
inequality (268), there exists a unique point of this trajectory which has
minimum distance from f*. This implies the existence of an optimum value

of the regularization parameter for a given noisy image g.. The

determination of this optimum value, however, requires the knowledge of
the unknown generalized solution and therefore it cannot be performed in
practice. It follows that the solution of a practical problem involves two
essential steps: the first is the choice of the regularization algorithm and
the second is the choice of a criterion for selecting the regularization



parameter.

From this point of view, the methods presented in Sectio A can be
considered as methods for selecting the regularization parameter in the
case of the regularization algorithm (226). The typical feature of these
criteria is that some additional information about the solution and/or the
error is required. An extension of some of them to more general
regularization algorithm can be performed as follows.

We introduce in the general case two functions of the
regularization parameter which have been already introduced in the case
(226) and, precisely, the norm of the regularized solution

Ee = IR, ally (305)
and the discrepancy runction
o = ILRLa - glly . (306)

The latter is the distance between the data computed using the

approximation foc = Ro[g and the real data.

Then we assume that these functions have the properties proved in
the case of the algorithm (226) and precisely:

(a) E is a strictly decreasing function of o whose values at « = 0 and «

= o are respectively ||f*|l? ( co, when the generalized solution does

not exist) and zero.

(b) €, is a strictly increasing function of «, whose values at « = 0 and «

= oo are respectively ||Qg[ly and [|gll.

One can easily check that these conditions are also satisfied by the
examples of spectral windows given in Section C and by the iterative



algorithms of Section D.
We consider now two criteria for selecting the regularization
parameter. The first criterion is based upon the assumption that a bound E

for the norm of f is known, i.e. f € S, Eq.(236). If the prescribed constant
E is smaller than the norm of the generalized solution f*, then property (a)
implies that there exists a unique value of «, say oc(E), which solves the

equation Ea=E. For a > a(E) we have E, < E and therefore all the
corresponding regularized solutions belong to the sphere Sp. Moreover,

from condition (b) it follows that, for o > oz(E) , the discrepancy €, is

greater than the discrepancy corresponding to o = «E). we conclude that
a = a  js the vaive or the regularization parameter providing a
regularized solution which is compatible with the prescribed constraint
and which minimizes the discrepancy between the computed and the
measured data. Then it is obvious that the method of constrained least
squares solutions of Section A.l gives a value of the discrepancy function
which is smaller than the value provided by any other regularization
algorithm, for a given value of the prescribed constant E.

The second criterion is based upon the assumption that a bound € on
the error is known. Then, if € satisfies the inequalities (241), property (b)
implies that there exists a unique value of «, say « = or(E) which solves
the equation €,= €. For a < oc(E) we have €, < € and therefore all the

corresponding regularized solutions are compatible with the data within
the accuracy €. On the other hand, property (a) implies that, for a < oz(e),

the norm of fq increases. We conclude that a = a (€) 1s the value or the

regularization parameter providing a regularized solution which Is
compatible with the measured data and which has minimal norm. Notice
that the method of Section A2 gives a solution whose norm is smaller

than the norm of any other regularized solution, for a given value € of the

error estimate.



This second method is also known as the daiscrepancy principle
(Morozov, 1966; 1968). From the results given in Sect.A.2, it follows that,
in the case of the regularization aigorithm (226) this method always
provides a regularized solution which strongly converges to the true
generalized solution f* when the error of the data tends to zero. Then the
question arises whether the same property is true for other regularization
algorithms and, in particular, for spectral windows and iterative methods.
The answer is, in general, negative if the discrepancy principle is
formulated as above. But if the discrepancy principle is slightly modified,
in the sense that it is required to find a value of o such that

ILReg-ally = pme (307)

where p > 11is a given (but arbitrary) constant, then it is possible to prove
the convergence result for a large class of regularization algorithms,
including, for example, the method of truncated singular function
expansions and the Landweber-Bialy iterative method (Vainikko, 1982;
Defrise and De Mol, 1987).

In the case of truncated singular function expansions it is possible
to introduce a method for the selection of the regularization parameter, or
equivalently of the number of terms in the expansion, which is analogous
to the method of Section A.3.

If we assume that the solution satisfies the constraints (243) and
if we keep in the expansion (179) only those terms which correspond to
singular values fulfilling the condition

Oy = €/E (308)

then the resulting truncated singular function expansion satisfied the
constraints (243) except for a factor of ¥2 (Miller, 1970). Notice that the
quantity controlling the truncation of the expansion is a kind of
signal-to-noise ratio and therefore we have here an extension of the



method of numerical filtering (Twomey, 1965). The criterion given by
Eq.(308) applies, of course to the case of compact operators but it can also
be extended to the general case of a continuous operator, when the
regularization algorithm is defined by the'spectral window (278) (Miller,
1970).

In the case of an ill-conditioned problem with discrete data the
regularized solution always converges to the true generalized solution
when the error of the data tends to zero. For example, it is obvious that,

when € — 0, both oz(E) and oz(E), as defined in this Section, tend to zero.

Moreover one can always use the method of truncated singular function
expansions and the criterion (308) for the choice of the optimum number
of terms.

Finally it is important to mention a method which has been
proposed for the regularization algorithm (226) and which can be used only
in the case of problems with discrete data. This is the method of
cross-valiaation which was essentially suggested in the context of
smoothing spline functions (Wahba and Wold, 1975a; 1975b) and later
extended to more general problems (Wahba, 1977). This method does not
require any upper bound on the solution and/or data error and is based upon
the idea of letting the data themselves choose the value of the
regularization parameter. More precisely it is required that a good value of
the regularization parameter should predict missing data value.

If we consider an inverse problem with discrete data, formulated

as in Chaptlll, Section A, we denote by f, | the minimizer of the

functional

ol = Nl - gy 12« alflr (309)
n#k

where (Lf), is defined by Eq.(124). This functional is just the functional

(221), in the case where the data space is the usual Euclidean space, with
the k-th data missing. The extension to the case of a weighted norm inY is



easy. Then the cross-validation function Vp(a) is defined by

=z

Vola) = N1 kzl:l(Lfa,k W - l? (310)

and the cross-validation method consists in determining the unique value
of o« which minimizes Vp(a). The computation of the minimum is based on

the relation (Golub ef a/, 1979; Craven and Wahba, 1979)

N
Vo((!) = N-l Z h - Akk(cx) |—2'(Lfa )k - gk|2 (31m
k=1

where foz is the minimizer of the functional

N
o 111 = N7V Do Jwny - g% + a7 fly? . (312)
n=1

which is a special case of the functional (221), and Ay (x) is the kk-entry

of the NxN matrix

A=l w™ + o (313)

Notice that LL™ is essentially the Gram matrix of the functions ¢y, since,

in this formulation, W = N™'1.
It has been shown (Golub é¢ 4/, 1979; Craven and Wahba, 1979) that,
from the point of view of minimizing the predictive mean square error, the

minimization of Vn(a) must be replaced by the minimization of the

generalized cross-validation runction, defined by



viw = (N1l - A])72 (NI - AT g]l?) (314)

where the norm is the usual euclidean norm. An important property of V(o)
is its invariance with respect to permutations and, more generally, with
respect to rotations of the data values.

The problem of the choice of the regularization parameter has been
the subject of several papers and it is impossible to give in this review a
complete account of all the criteria which have been suggested and of
their main mathematical and computational properties. The criteria we
have outlined are the most general and most significant in our opinion. Our
feeling, however, is that it is not possible to find a criterion which can
work for any ill-posed problem. Therefore, given an ill-posed problem one
must investigate the various algorithms and criteria which have been
proposed and perhaps invent a new one in order to take full account of the
specific characteristics of the problem.



VI. INVERSE PROBLEMS AND INFORMATION THEORY

The results presented in the last Chapter indicate that there are
plenty of algorithms for solving ill-posed or ill-conditioned inverse
problems. This situation can be confusing but it is unavoidable. After years
of theoretical investigations and of computational work, a rather
generally accepted point of view is that no general method exists and that,
even in solving a specific problem, it is convenient to use different
algorithms for different classes of solutions.

The basic reason of this difficulty is that, very often, the data
contain rather poor information about the solution. In the case of a
compact operator, for example, this is related to the fact that the singular
values tend to zero so that the data components corresponding to small
eigenvalues are completely contaminated by noise. In more general cases
it is a consequence of the fact that the exact image can be much more
smooth than the corresponding object. The problems discussed in Chapt.Il
provide several striking examples of this situation. It follows that two
completely different objects can produce very similar smooth images.
Then the noise contribution h to the real image, Eq.(9), hides the
smoothness of the exact image and it becomes impossible to distinguish
between the two different objects.

A Tirst consequence is that, in designing an algorithm for solving
an inverse problem, one must never forget a general principle formulated
by Lanczos (Lanczos, 1961, pg.132). "..@ /lack of information cannot be
remedied by any mathematical (rickery . In other words, clever
algorithms cannot produce miracles. The first basic point is to understand
the information content of the data and the role of the available @ prior/
informations about the solution.

Several concepts introduced in the theory of inverse and
il1-posed problems go in this direction: stability estimates, resolution
limits, number of degrees of freedom and so on. In this Chapter we
attempt a presentation of these ideas with the scope of showing the



various relationships between them. We do not think that the result of this
effort is already a completely satisfactory theory. We hope however that
the main features of a future, complete theory can emerge from all these
ideas.

A. Moaulus of Continuity and Uncertainty of the Solution

Given a regularization algorithm and given a criterion for the
choice of the regularization parameter, one has a recipe for computing an
approximate solution of an inverse problem. Then one can try to have an
answer to the following questions: a) the stability, or robustness of the
algorithm; b) the convergence of the approximate solution to the true
solution when the noise tends to zero.

The first is a typical problem of numerical analysis which can be
solved by looking at the condition number or at other estimations of
numerical stability. The second seems to be a purely mathematical
question since, in practice, the noise is never zero. However, when the
convergence result holds true, one knows that, by reducing the noise, one
can get a better solution and therefore the proof of the convergence of an
algorithm is also interesting from the practical point of view. For example
the method of Chapt.V, Section A.2, which corresponds to the choice of the
regularization parameter given by the discrepancy principle, provides a
stable approximate solution which converges to the true generalized
solution when the error of the data tends to zero.

We must point out, however, that, even if convergence is assured,
the convergence can be arbitrarily slow since no rate of convergence can
be found for arbitrary solutions. In fact, if we want to have a rate of
convergence we must restrict the class of admissible solutions by means
of some kind of gor/or/ information. Then one can introduce a moau/us
of continuity which, as we will show, is essentially a measure of the
uncertainty of the solution. An upper bound for the modulus of continuity



is also called a stability estimate (John, 1960; Miller, 1964; 1970).

We will assume, for simplicity, that the inverse operator L]
exists and that, in general, it is not continuous. Several results, however,
can be easily extended to the case of the generalized inverse L* just by

restricting L to N(L)L, i.e. by taking N(L}L as the new object space.
We first define a comvergence rate of the regularization

algorithm [RQ]CX)O in the case of exact data associated with functions f

of a prescribed set H

wp() = sup { Ry LT - 7l |f eH} . (314)

An estimate of wy(a), combined with inequality (268), can be used for

obtaining a value of the regularization parameter which is optimum for the
set H (Groetsch, 1984). In fact one can look for the value of « which

minimizes the function wyy(a) + € [[Ry ||

Moreover, in the case of noisy data g, corresponding, within an

error €, to solutions in the set H, we define a moau/us or convergence of

the regularization algorithm {R, } 4,0 as follows (Franklin, 1974)

ay(€,®) = Sup { IRq 9c - 1 lly lf e H, Jltr - gelly <el . (315)
Then, the inequality (268) implies that
gy€,0) £ wyla) + € ||Rq|| : (316)

Finally we introduce the moaulus or continuity of the operator
L™! when restricted to LH:



wie =sup LIt |f e, el <e . 317)

If the set H contains a neighborhood of O, then wy(€) /s @ continuous,

Increasing function of €. Moreover, if the set H is compact, then the
topological Lemma of Tikhonov, mentioned in Chapt.V, Section A.4, implies

that p(e)—0 when €—0. We point out, however, that the

compactness of H is only a sufficient condition for this result: it is easy
to find examples of bounded sets H which are not compact and such that

pyl€)—>0 when € —0. Examples are given, for instance in (Bertero,

1982; 1986)

The relationship between the modulus of convergence and the
modulus of continuity is clarified by the following result (Franklin, 1974):
Ir the set H contains a neignbourfivod or O, then ror any linear

reqularization algorithm (R, /., , o andany «

uyte) < oayle,a) . (318)

The relevance of this result is obvious: given a set H of
solutions, no regularization algorithm and no choice of the regularization
parameter can provide a modulus of convergence which tends to zero more
rapidly than the modulus of continuity and therefore the last one is the
best possible convergence rate for the approximation of elements of the
set H when data are noisy.

We point out that this optimum converge rate is obtained in the
case of contrained least squares solutions, as defined in Chapt.V, Sect.A.4.
In fact it is proved by Ivanov (Ivanov, 1962) that: /7 the set H s

closeq convex and symmetric with respect to 0 and Ir uH(e)—>0

when € —> 0, then, ror surficiently small €



IT-rlk < po (319)

where F and F are the constrained least squares solutions associated
respectively with data g and g' satisfying the conaition || 9- ¢'lly < € .

Very often the set H can be characterized as a level set of a
functional of the kind (13), i.e.

H=1{ re D(C) ‘ lcrll; < ) . (320)

Then, if the constraint operator C satisfies the conditions of Chapt. II,
Section A the set H is closed, convex and symmetric with respect to O.
Moreover H is also compact when C has a compact inverse ¢! and in such a
case all the assumptions of Ivanov theorem on the convergence rate of
constrained lest squares solutions are satisfied.

Another approximate solution which has the optimum convergence

rate is provided by Eq.(255) with a = (e/E)2. If we denote this solution by
fo then it has been proved (Miller, 1970) that

Ito-flly < v2 w0, (321)

for any arbitrary f € K,the set K being defined by

K={fex|feH, ILe-glly <€ | (322)

We stress now another interpretation of the modulus of continuity
(317). The set K defined in Eq.(322) is a generalization of the set
introduced in Chapt.V, Sect.A.3. In that case H is the sphere of radius E in
X. It is obvious that K is the set or all the aamissible approximate

solutions compatible with the data rfunction g within the error €. Any



element of K is an acceptable approximate solution of the problem and
therefore the diameter of K is a measure of the uncertainly of the
solution for a given g priori information (the set H) and a given noise
level (the value of €).

When the set H is convex and symmetric with respect to zero -
conditions satisfied by the set (320) - the diameter of K can be easily

estimated in terms of uH(e) and therefore the modulus of continuity is
also an estimate of the uncertainty of the solution. In fact, if f, f' € K,

then fy = (f - £')/2 belongs also to H. From the inequality : ||Lfylly <

b(|lLf-g ||y +]|Lf - g ||y) < ¢, it follows || fi | < py(€) and therefore

diam (K) = sup { || f- ||X|f, fek} < 2pe . (323)

In other words, when uH(e)—>0 for e —0, the uncertainty of the

solution tends to zero in the case of vanishing noise. We also notice that
the modulus of continuity provides an estimate of the uncertainty which is
independent of the data function g.

Finally we consider the problem of estimating the modulus of

continuity (), 1.e. the problem of determining stability estimates. we

restrict ourselves to the case of a set H defined as in Eq.(320) since only
in this case it is possible to give rather general methods. A first remark is
the following: if we introduce the quantity

|.Lc(e)=sup{||f||x| lerll, <1, fierlly <el (324)
then we have

b€ = E ple/E) , (325)



and therefore we can restrict the attention to the estimate of pc(e).

If we introduce now the quantity

00 = sup (Il | e 2 + e2ller 2 <€} (328)

and the sets

KO = {tex | ILrlh2 + e2]ler ]2 <€?} (327)

D= {rex|fLrh2 +e2lof |2 < 2¢2) (328)

from the inclusions
KO ckck, (329)

(here K is defined by Eqs.(322) and (320)), we derive the inequalities

0o < pete) < v2 O (330)

We find that p{OXe) is a good stability estimate of the modulus of
continuity. Moreover uC(O)(e) can be easily computed. In the case of a

finite dimensional problem, K®) s an ellipsoid and pc(O%e) 1s the

maximum length of the semi-axes of k() Therefore it can be determined
by solving an eigenvalue problem. This result holds true in general, i.e. the

computation of uc(O)(e) can always be reduced to the solution of a

spectral problem for the operator L*L + e2 c*C . This operator is positive



definite and therefore its spectrum has a positive lower bound 82(6) which
can be determined by solving the following variational problem

y2(e) = inf {||Lr 2 + €2|cr |},2 ‘ Ielh =11 . (331)
Then, by comparing this equation with Eq.(326), we have
O = erpte) (332)

For more details see (Bertero ef g/ , 1980).
The relation (332) can be used for computing stability estimates
in several important cases (Bertero ef &/, 1980; Bertero, 1982; 1986).
Finally we comment an important remark due to John (John,
1960). We say that we have Ao/ger continuily in the dependence of the
solution on the data when there exist constants A, x with 0 < a < 1such
that

1{0e) < A (333)
while we say that we have /Jogarithmic continuity when

1) < Aline (334)

with a arbitrary.

When Holder continuity holds true John calls the il1-posed
problem we//-behaved . In such a case only a fixed percentage of the
significant digits is lost in determining f from g and therefore the
uncertainty of the solution is not very severe. On the contrary, in the case
of logarithmic continuity, even an improvement in the noise level of
several orders of magnitude does not induce a significant reduction of the
uncertainty of the solution. In other words, the information content of the



data is practically noise independent.

It is important to realize that the kind of continuity does not
only depend on the problem, i.e. the operator L, but also on the set H. For
the same problem we can have Holder continuity for certain sets H and
logarithmic continuity for others.

For certain ill-posed problems one can have Holder continuity
when one prescribes bounds on a finite number of derivatives of the
unknown function f. In such a case the problem is also called m//dly
/1/-posed . Examples are tomography, Abel transform inversion and
numerical differentiation (Bertero ef &/, 1980; Louis and Natterer, 1983).

On the other hand, when prescribed bounds on a finite number of
derivatives only imply logarithmic continuity, the problem is also called
severely I//-posed. Examples are the Laplace transform inversion (Bertero
et a/, 1982), the problem of bandwidth extrapolation and, in general, the
solution of a first kind Fredholm integral equation with an analytic kernel
(Bertero ef a/, 1980). As we already pointed out, however, one can have
Holder continuity also in the case of a severely ill-posed problem just by
choosing an appropriate set H of admissible solutions. For example, in the
case of Laplace transform inversion, we have Holder continuity when the
set H is a bounded set of functions having suitable analyticity properties
(Bertero et a/,1982).

B. Functional Estimation and Resolution Limits

In several applications one is not directly interested in
estimating the solution of the problem but rather the value of some
suitable functionals of the solution. These functionals can be, for example,
a moment of a given order (the average radius or the average occupied
volume in the problems of particle sizing described in Chapt.II, Section
C.3) or, in general, a linear continuous functional, i.e. a generalized



moment. Several examples related to the applications of Abel equation are
described in (Anderssen, 1986).
Stated in a precise form the problem is the following: given an

element ¢ € X, estimate the value of the functional
F¢(f) = (f, ¢)X (335)

where f is a solution or a generalized solution of Eq.(5).

The important feature of these problems is that some of them
are much more stable than the problem of determining the solution f
itself. In fact for a certain class of these functionals the evaluation
problem is well-posed. Since this class can be characterized for any given
linear inverse problem we have here a precise answer to a question
succintly expressed by Sabatier (Sabatier, 1984) as the need to identify
and ask , within the framework of indirect measurements, well-posed
questions about the phenomenon of interest.

In general, however, the problem of estimating the functional
(335) is not well-posed and therefore it is necessary to use regularization
theory. A modulus of continuity can also be defined for this problem and by
considering special classes of functionals one can find along these lines a
rather precise definition of the resolution limits achievable in a given
inverse problem.

1. Well-Posed Functional Estimations

Consider a functional of the type (335) with ¢ € R(L™). Then

there exists a function § € Y such that ¢ = L*Ill and, by replacing this
relation in £q.(335), we find



Fo(D = (LU = (LE, Wy (336)

In such a case F¢ is a linear continuous functional of Lf and therefore it is

obvious that, given the data function g, the estimation of the value of the
functional is

ap= @¥y (337)

In other words these functionals can be estimated directly from the data
without any need of solving for the unknown function f. It is also obvious

that the dependence of the value of F¢ on g is continuous. If &g is a

variation of g and 6a¢ the corresponding variation of Agy then, from

Eq.(337), using Schwarz inequality we get

o2 < Il loall < < el - 538)

It is obvious, however, that the problem can be ill-conditioned because
the error 6a¢ can be exceedingly large when “ll!"y is too large.
It is also important to notice that Eq.(336) characterizes all the

functionals which depend continuously on Lf and therefore it also

characterizes all the functionals which can be directly estimated in terms

1

of g. Assuming again, for simplicity, that the inverse operator L™ exists,

this result can be proved as follows. If the functional F¢ has the property

|F¢(f)| < clielly (339)

where ¢ is a constant independent of f, then, given feX, it is always



possible to find geR(L) such that f = L"g. It follows, using the
inequality (339), that

rgn] = [onl - lctaoy] <claly e

Therefore (L”! g,$)y is a linear and continuous functional on R(L) and it can

be extended, by continuity, to a linear and continuous functional on R(L) .
This implies, thanks to Riesz representation theorem, that there exists an

element ¥ € R(L) such that

L lg b = (g Py . (341)

If we put now g = Lf, we have

(f,d)y = (LF, Yy = (F, L™y (342)

and therefore ¢ = L*IIJ.

As an example, consider the case of the integral operator (87),
whose adjoint is just the bandlimiting operator (80) when the values of x
are restricted to the interval [-1,1]. It follows that, in the inversion of the
integral operator (87), a linear and continuous functional can be estimated

directly from the data whenever the function ¢ is the restriction to the

interval [-1,1] of a band-limited function.

2. [11-Posed Functional £stimation

When ¢ ¢ R(L), the functional (335) cannot be estimated



directly in terms of the data g and therefore the use of regularization
theory is required in such a case. It is obvious that if f is some
regularized solution of the probiem, then the corresponding regularized
value of the functional is

ap= (1.0 (343)

Also for this problem one can define a modulus of continuity as follows

med = sw Lol | fen, ILrlly <el (344)

and the analysis runs parallel to that outlined in Section A. In particular,
in the case where the set H is of the type (320), one can introduce the
stability estimate

uc{®ed) = sup {|(f,¢)xl| ey« e2flcrll 2 <21 345

and inequalities analogous to the inequalities (330) hold true also in this

case. Moreover it is possible to compute uC(O) (;$). The result is (Miller,

1970; Bertero et 4/, 1980)

) = € (UL + 27T o, )2 (346)

Using this equation it is not difficult to prove that pC(O)(e;cb)———)O for

€ —>0 and ¢ arbitrary, whenever the constraint operator C has a bounded

inverse (Bertero, 1982).



As a conclusion we can state that regularized solutions provide
also stable estimations of linear and continuopus functionals and that the
corresponding stability estimates can be easily computed.

3. Resolution limits

We apply now the analysis of the previous Sections to the
investigation of resolution limits. We restrict ourselves to the case where
X 1s a space of square integrable functions. Then the functional (335) takes
the form

(f,d)y = ff(x) G(x) dx (347)

(for simplicity we consider only the case of real functions of one
variable). Moreover, let us assume that the function ¢ is positive and
peaked upon the point x, (and, for example, symmetric with respect to xo),

that its integral is 1 and its second central moment is 02, ie.

f(b(x) dx =1 , f(x -x )2 dx)dx =gZ . (348)

Then the value of the functional (347) can be considered as a blurred value

of f at the point x = x,. In other words we want to estimate a local

average of f over a resolving length a. It is quite natural to predict that
the estimation error (for a fixed noise level €) will grow for decreasing
values of g, i.e. for increasing resolution and therefore the achievable
resolution will be obtained by fixing the acceptable value of the
estimation error.



Consider the case C = I, then, as follows from Eq.(346) the
absolute error in the estimation of the functional (347) is bounded by

|
Eaps (€0) = € (IL°L+ €217 ¢, 12 . (349)

It is more interesting, however, to introduce relative errors. This
approach is quite natural in the case of stochastic regularization (Wiener
filters). Here we can proceed along the lines indicated in (Bertero et a/,

1980). The absolute error (349) is the maximum value of |(f,¢)x| under the
constraint [ILflk2 + €2 [Iflly? < €2 . This & posteriori constraint is

compatible with the 2 pr7or/ constraint ||f ”X < 1. Then it is easy to see

that the maximum value of |(f,<b)X| under this & prior/ constraint is just

||¢ IL( . Therefore we can define as an estimate of the relative error the

ratio between the @ posteriori and the & prior7 maximum value of

KF,d)l, ie.

(IL*L + €271 ¢, <I>)><lé
Era1 (€:0) = € : (350)
o lly

It is immediate to show that &.,)(€;¢) < 1.

We can consider now a family {¢5)gyq Of functions having

different values of the variance 02 (for instance, gaussians of variance
a2). Then the relative error (350) is a function of € and g, let us say

Ere1 (€,0) . Since ¢g is an approximation of the Dirac delta function, the

L2-norm of ¢ tends to infinity when o — 0. Without loss of generality

we can assume that this norm is a decreasing function of g. Then from



Eq.(350) one can derive the following properties of the relative error:

(a) For fixed g, are, (€,0) is an increasing function of €;
(b) For fixed €, &, (€,0) is a decreasing function of g and it tends to one

(100% error) when g — 0.

The typical behaviour of €.y (€,0) as a function of g is indicated in Fig.Il.

(€.0)
rel

Fig.11 Ilustration of the trade-off between relative error and resolution.
It is assumed that the unit of resolution is some typical length
related to the problem ( for instance, the Rayleigh resolution
distance in the case of an imaging system).



Numerical computations of these curves for various inverse problems are
presented in (Bertero ef¢ 4/, 1980 a; 1980 b; Abbiss ef /., 1983).

We comment these results. The plot of arel (e,0) as a function of @

represents the trade-off between resolution and error. If we fix the
acceptable error on the averaged solution, for instance 10%, then from the
curve we can deduce the corresponding resolution and viceversa. As also
indicated in Fig.ll, if we reduce the error on the data, say €' < ¢, then we
have an improvement in resolution. However, when the inverse problem we
are considering is affected by logarithmic continuity, the change in the

plot of arel (e,0) is imperceptible even when we have a change in € of

several order of magnitude. This effect is clearly shown by the
computations presented in (Bertero ef 2/, 1980 b) and concerning the
inversion of the Slepian operator (84). In all the problems which exhibit
this behaviour, we have a resolution limit which is practically noise
independent and which represents a fundamental limitation in the
possibility of recovering details of the unknown object. In the problem
considered in (Bertero ef &/, 1980 b), for example, this limit is just the
classical Rayleigh resolution distance. A possibility of going beyond this
limit is indicated in (Bertero and Pike, 1982) when:

1) the full image is measured, so that the data contain more information
about the solution;

2) the value of ¢ is small and this is essentially a limitation on the size of
the unknown object (which is an important & pr/or/ information).

In general, the resolution limit, as defined by the previous approach,

depends on the point X (see Eq.(348)) and therefore we do not have a

uniform resolution over the domain of the variable x. In the inversion of a
convolution operator, however, due to the translational invariance of the
problem, the resolution does not depend on x.

The most simple example of a problem with non-uniform resolution



is provided by the inversion of an integral operator of the form (62). Since
such an operator can be transformed into a convolution operator by taking
as new variables the logarithm of the old ones, it is obvious that in this
case we have a uniform resolution in the log-variable. This implies that
the resolution distance increases for increasing values of the variable r
which appears in Eq.(62). In fact it is more appropriate to introduce a

resolution ratio 80 rather than a resolution distance (McWhirter and Pike,

1978). The meaning of this resolution ratio is the following : given two

delta pulses at the positions ryandr, , it is impossible to resolve these

pulses unless ro > 8y ry. A general method for the estimation of 8 is

discussed in (Mcwhirter and Pike, 1978)

C. Mumber of Degrees of Freedom

The concept of number of degrees of freedom was first
introduced in Optics in terms of the sampling expansion and successively
clarified in terms of the basic properties of the PSWF (Toraldo di Francia,
1969 a). The typical step behaviour of the eigenvalues of the prolate
spheroidal functions indicates that, while the object can have an arbitrary
number of degrees of freedom, i.e. an arbitrary number of large components
with respect to the PSWF, the image has always a finite one. This number,
which is also called by Toraldo di Francia the Shannon number, is given
by S = ¢/m and it is proportional to the space-bandwidth product. In fact
the Shannon number is approximately equal to the number of sampling
points interior to the geometric image and it is essentially a
characteristic parameter of the optical instrument, giving a measure of
the information transmitted by the instrument itself. In subsequent work
(Toraldo di Francia, 1969 b) it was recognized that this number is in fact
noise-dependent. The dependence however is so weak that the original
conclusion was correct in practice. An interpretation of this result was



later given in terms of the theory of ill-posed problems by showing that
the problem of inverting the Slepian operator is affected by logarithmic
continuity (Bertero et &/, 1980 a).

The concept of rumber of degrees of [rreedom or, more
precisely, the concept of a noise dependent number of degrees of freedom,
can be generalized to all inverse problems which can be treated in terms
of singular systems, i.e. problems corresponding to the inversion of a
compact operator and inverse problems with discrete data (Twomey, 1974;
Bertero and De Mol, 1980 a; Pike et &/, 1984).

As discussed in Chapt.V, an acceptable regularized solution of
these problems can be provided by a truncated singular function expansion.
When the noise level € is known and the @ prior7 information on the
solution is represented by a prescribed bound E on the norm of the
solution, the truncation rule is given by Eq.(308). This condition has also a
nice statistical interpretation. Assume that the data is represented by
Eq(9) and that both f and h are representatives of Zzero-mean ,
uncorrelated  random processes . Moreover assume that the signal f is
from a white noise process with power spectrum EZ and that h is also
from a white noise process with power spectrum €2. Then the variance of

any given component of f with respect to the basis {u.] is: <], Uk)XF >
- 2, Analogously the variance of any given component of h with respect

to the basis {v,} is: <|(h, Vk)YF > = €2 From the relation, (g, vy =

(LT, vidy + (h, vy = g (F, gy + (h, v )y, we get

<|(g v P> = 0 %2+ €2 (351)

This equation shows that the variance of a given component of the
data consists of two terms: the first is the contribution of the object
while the second is the contribution of the noise. The first term tends to
zero when k—> o0, or becomes very small for large k in the case of
ill-conditioned inverse problems with discrete data; the second term is



constant. Moreover the first term is a decreasing function of k. Therefore
for k greater than some critical value, the variance of the noise is greater
than the variance of the object contribution and the corresponding data
components do not contain any information about the object. Eq.(308) is
just the requirement that the variance of the object contribution must be
greater than the variance of the noise.

If we introduce the guantity

N(e/E) = max [k |oy 2 €/E) (352)

then, in the case of the inversion of the Slepian operator, it is
approximately equal to the Shannon number and therefore it is quite
natural to call it the number or degrees or freedom (NDF) also in the
case of a more general problem. The NDF is a function of the
signal-to-noise ratio E/€ and it gives a measure of the /n/ormation
content of the data. It is a very useful parameter for estimating, in
general, how many distinct elements one can resolve with the available
data. From the examples discussed in Chapt.III it follows that for some
important inverse problems with discrete data, such as the moment
problem or Laplace transform inversion, the NDF can be quite small (of the
order of 3 or S, in any case less than 10). For other problems such as
tomography the NDF can be very large. We find here another way for
introducing a distinction between mildly and severely ill1- posed problems.

In general, in the case of a mildly ill-posed problem, where it is
possible to restore Holder continuity by means of prescribed bounds on a
small number of derivatives of the solution, the NDF depends rather
strongly on the signal-to-noise ratio and it is possible to obtain a
significant increase in the NDF by an increase of E/€. On the contrary, in
the case of a severely ill-posed problem, affected by logarithmic
continuity, the NDF is nearly independent of the signal-to-noise ratio, at
least in the case of reasonable values of this quantity. This usually

happens if the singular values g, tends to zero exponentially fast when



k—> oo (this is the case, for example, of the Slepian operator). Then, if N,

is the value of N(e/E) corresponding to some preassigned value of the

signal-to-noise ratio, say E,/€,, one can easily deduce that

N(€/E) = (Ny = 1) + € 10gy (E€y/€E ) (353)

where c is a constant (Bertero and De Mol, 1981 a). Therefore, if N, is very

large, even when improving the signal-to-noise ratio by many orders of
magnitude, we do not get a significant improvement in the NDF. This is
what happens in the problem discussed by Toraldo di Francia and
mentioned at the beginning of this Section, where the NDF can be

considered as practically noise independent and equal to N,

It is important to point out that the NDF can always be introduced
(and computed) in the case of an inverse problem with discrete data, since
in this case one can always use singular function expansions, as indicated
in Chapt. III, Section A. Then the NDF can depend not only on the signal-

to-noise ratio E/€ but also on the number N of data points. This is true,

for example, in the case of the finite Hausdorff moment problem (Chapt.
III, Section D). If we define the NDF as the number of singular values
greater than 1073 (we recall that the singular values are just the square
roots of the eigenvalues of the Hilbert matrix), then we have NDF=4 for
N=4, NDF=6 for N=10, NDF=8 for N=50, NDF=9 for N=100. As we see
the NDF depends on the number N of given moments, even if the dependence
is rather weak. This dependence, however, is related to the fact that the
(infinite dimensional) Hausdorff moment problem does not correspond to
the inversion of a compact operator and therefore the singular values and
singular functions of the finite Hausdorff moment probiem do not have a
limit when N—> 0.

The situation is different when the problem with discrete data is a
finite version of an infinite dimensional problem corresponding to the
inversion of a compact operator. In such a case the NDF can be defined for



the infinite-dimensional problem and the NDF of any finite version of it
cannot be greater than the limiting NDF. But, when the number of points of
the finite version is sufficiently large, its first sihgular values are good
approximations of the corresponding singular vbalues of the compact

operator. It follows that, for N greater than a suitable number N of data
points, the NDF is independent of N and equal to the NDF of the compact

operator. An illustration of this behaviour, in the case of the Poisson
transform inversion, is given in (Bertero and Pike, 1986).

-osl

Fig.12  Reconstruction of two delta pulses in the case of Laplace
transform inversion in a weighted space, using 32 equidistant
points (dotted line) and 4 geometrically spaced points (full line).



We have also some indications that, in the case of the inversion of a
compact operator, satisfactory results can be obtained using a finite
version of the problem with a number of (suitably placed) data points
which just coincides with the NDF of the infinite dimensional p[roblem. We
give an example taken from the inversion of the Laplace transformation in
a weighted space, using as a weight the gamma distribution (Bertero et 2/,
1985 ¢). In such a case the Laplace transformation is compact and the NDF,
defined as the number of singular values greater than 10'2, is 4. In Fig. 12
we give the reconstruction of two delta pulses having the same mass, i.e.
0.5. As we see, using 4 geometrically spaced data points, it is possible to
obtain a reconstruction which practically coincides with the
reconstruction obtained using 32 uniformly spaced data points. Of course
the position of the four points must be optimized (in such a case the
criterion is the minimization of the condition number).

As a conclusion, we find that this example provides a strong
indication of the fact that the NDF can coincide with the optimum number
of data points. In other words one needs a number of data points just equal
to the maximum number of pieces of information which can be extracted
from complete (infinite dimensional) noisy data.

LD Impulse Response Function . Another Approach to Kesolution Limits

Given a regularizing operator R,, with a fixed, and given an

exact (noise free) data g = Lf, the corresponding regularized solution is

fa = RaLf. Since foz converges to f, when the operator L has an inverse

L™!, and to f*, when L has a generalized inverse L*, the operator
oL (354)

is an approximation of the identity operator in the first case and of the



projection operator over N(LY- in the second case. This is the

mathematical interpretation of the operator T,, emphasizing the fact

a!
that, In the noise free case, the regularized solution f, is just a (stable)

approximation of the true solution f (or generalized solution f™).
There exists, however, an interesting physical interpretation of

the operator Toc- Since the operator L describes the transmission of the

signal by the instrument in the absence of noise while the operator R,

describes the processing of the data by the computer in the absence of

round-off errors, the operator T, describes the total effect of both the

transmitting instrument and the processing computer (in the absence of
any kind of error).

If Ty isan integral operator

fo(¥) = (T F)x) = an(x, X f(x') dx (355)

the averaging kernel Aa(x, X') is the /mpulse response runction of the

system consisting of the instrument plus the computer. Moreover if, for a
fixed X, Aa(x, X') as a function of x' has the form of a central lobe flanked
by decreasing side-lobes, the width of the central lobe may be used as a
measure of the resolution achievable at the point x by means of the
algorithm R, .

Notice that the form (355) for the approximate solution is just
the starting point of the Backus-Gilbert method. Moreover, in the case of

inverse problems with discrete data, assuming that X is a space of square
integrable functions and that the regularized solutions are defined by

means of windowed singular function expansions, the kernel Aa(x, X') is

given by



N-1
Ag6X) = 20 a1 W) U (%) U (x) . (356)
k=0

In this approach it is obvious that the resolution is determined by the
choice of the regularization parameter. This choice, however, can be an
important point in the case of mildly ill-posed problems, while in the case
of severely il11-posed problems the choice of the regularization parameter
depends very weakly on the noise and we find again a resolution limit
which is practically noise independent.

It is obvious that the form and the width of the central lobe depend,
in general, on the regularization algorithm. We think, however, that the
width does not strongly depend on the algorithm since it is a measure of
the achievable resolution and therefore a measure of the information
which can be extracted from the data. We must never forget the principle
formulated by Lanczos and emphasized at the beginning of this Chapter.
Even if this question must still be carefully investigated, we give here an
example in support of our statement.

The example is taken from the inversion of Fraunhofer diffraction
data. This corresponds to the inversion of an integral operator of the form

(62) with K(x) = Jl(x)2/x. The corresponding first kind Fredholm integral

equation can be conveniently approximated by means of the so-called
exponential sampling method (Ostrowsky efa/, 1981). When the problem
has been discretized in such a way, one can compute the singular values
and singular functions. For example, using 32 geometrically spaced data
points and assuming that the support of the unknown function is interior
to the interval [7,130] (the wavelength of the incident radiation is taken as
a unit of the radius of the particles), one finds 18 singular values greater
than 1072,

In Fig. 13 we give various reconstructions of a delta pulse of unit
mass obtained using various regularization algorithms. The radius of the
particles is represented on a logarithmic scale, in units of the
wavewlength of the incident radiation. In all the reconstructions the



maximum number of used singular functions is 18. In the figure we have
superimposed 10 different reconstructions corresponding to 10 different
contaminations of the exact data by means of random errors of the order
of 1 % In this way a clear picture of the robustness of the solution is
obtained.

In Fig. 13 a) we plot the reconstruction obtained by means of the

b)

a)
4 q 27

c) i d)

Fig.13  Reconstruction of a delta pulse in the case of the inversion of
Fraunhofer diffraction data. a) Truncated singular function (TSF)
expansion. b) Tikhonov regularization with o = 1073 ¢) TSF
expansion with triangular window. d) TSF expansion with Hanning
window.



truncated singular function expansion. This provides the maximum
resolution achievable by means of 18 singular functions, but this
resolution is obtained at the cost of very large side-lobes. In the other
parts of the figure we plot the reconstructions obtained by means of
various filterings of the previous truncated singular function expansion. In
particular, Fig. 13 b) corresponds to the Tikhonov window, Fig. 13 c)
corresponds to the triangular window and Fig. 13 d) corresponds to the
Hanning window. In all these cases we have a loss in resolution of
approximately a factor of 2 with respect to the reconstruction of Fig. 13 a)
but the side-lobes are always much smaller than in Fig.13 a) and the
reconstructions are nearly positive.

The previous example seems to indicate that we can obtain positivity
at the cost of a loss in resolution, a result which is in conflict with a
rather diffuse opinion about the beneficial effect of the constraint of
positivity in the solution of inverse problems. This question, however,
goes beyond the scope of this paper, which is essentially devoted to linear
methods for linear problems. We just mention it here as an example of the
many questions which are still open.
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