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ABSTRACT: this paper deals with the TE modes of propagation
in parallelogram-shaped waveguides, In particular, some theo-
retical considerations suggest that the dominant mode is at a
lower frequency than that considered, for some parallelo-
grams, in the current literature. This fact, tested through
an experimental measure and a numerical simulation, has been

found true.



INTRODUCTION

Suppose we have a wavegquide, uniform in z direction, in
which the modes of propagation vary as exp(jwt-pz).

Assume the metallic surfaces are made of perfeect conductor
and the guide is filled with isotropic ideal dieletric,

The expression governing the behaviour of the electromagne-
tic fields in this type of waveguide is the well known Hel-
moltz equation

(1) ( Ve + ka2 )9 =2 0

where ¥ represents either E. or H. for TM and TE modes res-
pectively, while k. is the cutoff wave number and V.Z is the
transverse laplacian operator,

Representing with k the free-space wave number, this quan-
tity is related with k- and p through the formula

(2) ke = k2 + p=2
where k¥ = w2¢p and p and € are respectively the
permeability and pern:ttiv1ty of the dieleatric,

To properly determine a solution of (1) it is necessary to
give the correect boundary conditions, i.e,

(3) Y =0 at the conducting surfaces
in the case of TH modes; or
(4) a9 /an = 0 at the conducting surfaces
in the case of TE modes,
The latter condition, which in this work we are more inte-

rested to, is the more complex to handle, as we shall see,

Having solved (1) for ¢ and k., the other fields components
are obtained with simple operations of derivation.
For TE modes we have

Ee = jwpZ X Ve ¥/ ko2 and He = =p Ve 9/ ko2

if 2 is the unit vector directed along the z-axis,



THEORY AND EXPERIMENTAL RESULTS

The literature on this topic deals only with particular
cross-sections where the solution is available in terms of ve-
ry elementary functions C11.

Solutions are known for the rhomb (fig, 1) with an acute an-
gle of 60° [2]1, which one can think derived from the equila-
teral triangle [3], and for the parallelogram (fig. 2) with a
base twice as the height and an acute angle of 45° [41, which
can be considered as derived from the isosceles triangle with

a right angle [51.
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In the case of the parallelogram is considered as the domi-
nant TE mode the following:

(%) H: = Ho ¢ cos(mx/b) + cos(mny/b) }
(6) e = 2b

where Xgiis the.aut-off wavelenght.

Neverthéless - the following theoretical considerations seem
negate . the fact that (5) and (é) really represent the domi-
nant mode. By b i i

In fact an examination of the distribution of the transver-
se electric field (fig, 3a), suggests that the same field
distribution (ecould be obtained exeiting in the TEo: mode a
rectangular waveguide with sides 2b and VZ b (fig. 3b), and
then shaping-the cross section, by a parallel displacement of



the top of the guide, in order to obtain a parallelogram as
in fig, 3a, In this case the cut-off wavelenght is changed
from 22 b to 2b.

If we now excite the TE.o (dominant) mode in the rectangu-
lar guide so that A. = 4b and modify the cross section in
the same way, the electromagnetic field distribution, for
continuity reasons, must modify only as much is necessary to
satisfy the new boundary conditions,

That is, because the main characteristic of this mode must
remain unchanged then the vertical component E, of the elec-
trie field on the cross section of the uaveguide must not un-
dergo any change of sign. In the previous case, in fact, E.
did not change sign, Then it is expected an increase of the
cut-off wavelenght,

Effectively this mode is the dominant one and then has the
largest cut-off wavelenght. It is not considered in the known
literature and till now the field equations are not known in
terms of elementary functions.

2b 3

Fig. 3a - Transverse electric field pattern ( TEq. ) of
the parallelogram waveguide with «=45°, obtai-
ned shaping the rectangular guide as indicated.
The cut-off wavelenght is A.=2b,

2b %

Fig. 3b - Transverse electric field pattern of the im-
perturbated rectangular guide excited in the
TEo: mode. The cut-off wavelenght is A.=2b\2 .



A piece of brass waveguide has been built to verify the cor-
rectness of the previsions, Some hinges, which allow the rec-
tangular cross section to be changed into the parallelogram
cross section, changing the acute angle « down to 30°, have
been put along the corners of the guide.

The two ends of the waveguide have been short-circuited
with two brass plates. The cavity thus obtained can be put in
resonance in many ways, We are interested in those modes
which are related to the longitudinal propagation.

Moreover, expressing (2) in terms of wavelenghts we can ob-
tain the well known equation

) 1/ha? = 1A% - 12,2

where A, is the guide wavelenght.

Measuring the resonant frequencies and using (7) we can cal-
culate the parallelogram shaped guide cut-off frequencies,

The cavity was coupled to the signal generator and to the
measuring device with very small loops that didn’'t apprecia-
bly affected the guide characteristics,

The signal, after demodulation, was displayed, together
with the frequency marks, on the screen of a Polyskop IV
Rhode & Schwarz, with the sweep sinchronized with the signal
generator.

The inner design dimensions of the rectangular cavity reso-
nator were of 400, 564 and 700 mm and the mechanical realiza-
tion introduced errors of only few millimeters, that however
affected the parallelism of corresponding sides.

The TE;o propagation mode corresponds to the resonance
TEio: and, as is expected, the resonant frequency decreases
when the angle « decreases. This is the dominant mode for the
parallelogram waveguide,

The TEo: corresponds to the resonance TEg::.

For « = 45° the measured frequency is 564.8 % 0.25 MHz,
while the one calculated with (&6) and (7) is 564.3 % 1.8 MHz,

The errors are large because of the poor parallelism, but
the separation with further resonances is significant and so .
the previous hypothesis about the pattern modification of the
electromagnetic fields seems to be very probable,

In the fig. 4, 5, 6 there are graphs of the cut-off wave-
lenghts, normalized to the corresponding ones of the rectan-
gular guide, shown for different ratios of the sides in the
cross section of the waveguide, versus the angle «, for the
modes derived from TEio, TEg: and TE.:.
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Fig. 4 - TEio derived cut-off wavelenghts A, of the paral-
lelogram waveguide, normalized to the cut-off wavelenghts An
of the rectangular guide for various ratios of the sides of
the cross-section., The dots are experimental points. The
error is*0,.5°;X0.005 .
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Fig., 5 - TEo: derived cut-off wavelenghts A, of the paral-
lelogram guide, normalized to the cut-off wavelenght Anx for
various ratios of the sides of the cross section. The dots
are experimental points. The error is £0.5°; £0.005 .
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Fig. 6 - TEi: derived cut-off wavelenghts A\, of the paral-
lelogram guide, normalized to the cut-off wavelenght Am for
two ratios of the sides of the cross section. The dots are
experimental points, The error is*0,5%°; +£0.00% .
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NUMERICAL SOLUTION

A computer program written in FORTRAN on a VAX/11-750 has
been made to simulate the electromagnetic fields into the wa-
veguide, and so to obtain another independent proof of the
theoric argumentations,

The numerical method followed is that of finite-difference,
with positive-definite successive over-relaxation (FDSOR)
61, [9]; see also [12] for a review of various methods.

First a square mesh is superimposed over the section as in
fig. 7. This is made in a way to obtain a perfect fit on the
lower side of the parallelogram and to have a symmetrical si-
tuation on the diagonal sides.

The wupper side is approximated to the nearest row of nodes
of the mesh, while some diagonal cases are showed in fig, 8
(note the perfect fit for 45°).

Fig. 7

The method of successive mesh halving is used, so the ini-
tial mesh is a large one, This procedure seems speed the con-
vergence of the process.

Referring to fig. 7, equation (1) written in his fini-
te-difference form becomes

(8) (4-',\)?,:—?2—‘Pb_~pd_tpe=0
having put
(?) A= Ch k:.)=
i
1
/
- L
o | ko' Abs*
ﬂ s~ J e

Fig. 8



(B) is often referred to as the five-point operator equa-
tion, because in it appear the central node and the four a-

djacent ones.

It is clear that this equation represeﬁts an eigenvalue pro-

blem of type
(10) (A-AINE =0

where § is the column vector formed by the values of ¥, at
the various nodes,
Let us put

(11) B=A-Al

To solve (i1) we use a direct standard method on a coarse
mesh, In this manner we obtain an initial estimate of the
eigenvalues and eigenvectors. At this point, (B) is applied
subsequently to all nodes of the mesh for a small number of
iterations with X fixed, then we use the actual value of 8 to
compute a new value of A through the formula (see (7] pp.
74-7%)

(12) ATEY = (FT QG )/ FoT Feoror )

where r is the progressive iteration number and T indicate
the transpose of a matrix,

This process is repeated to obtain a new estimate of § and
S0 On.

A theorem [8] ensures correct convergence of this method if
and only if B is a positive semidefinite matrix,

So, in general, successful iterations of (11) are guaran-
teed only for the fundamental mode, because for higher order
modes B isn’'t a positive semidefinite matrix yet (see L[?] p.
427) .

To avoid this, a new matrix

(13 c=B"p

is defined.
Since

det( C ) = det( BT ) det( B ) = ( det( B ) )2
the following equation
(14) cCg=0

is satisfied by the same eigenvalues and eigenvectors that
satisfy (11),

It is possible to demonstrate C[10]1 that the symmetric
matrix C is positive semidefinite for correct eigenvalues and
positive definite elsewhere,

From the practical point of view, the reliability of using
(14) instead of (11) arises from the fact that the rows of C
can be generated one at a time, in the moment they are nee-

11
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ded,

More exactly, as well explained in (101, the only nodes
involved in computation of the coefficients c., are the cen-
tral node and the twelve adjacent ones (fig. 9).
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Thus .in this case we have

(15) cga ?: + c.b?b + L] ] ] + C¢n‘P- = 0

instead of (8).

The coefficients ¢.g of the matrix C appearing in this
equation are easily calculated from the coefficients of B, as
illustrated in [101,

However, since we use the relaxation method to speed the
convergence, equation (15) is not really used., Instead it is
replaced by

(15) gP-(r--l-i) = ( 1 —w )lP-"-’ - c'ﬂi gPan-q-;: +
+ [ | ' c’f "Pf‘r*-l’ + cgh?htr’ o P g, Sy +
+ cgn"Pn“‘, ¥ .7 Coa

where w is the accelerating factor that varies in the range 0
to 2,

In casew = | equation (14) reduces to (15). IfwW{ 1 we
speak of under-relaxation, that doesn’'t however take place in
our case, So, because in general 1 (W ( 2, the method is
called over-relaxation, ‘

Equation (14) converges rapidly for an appropriate choice
of the parameter L, but doesn’t exists an analytical way to
find this value. So we performed various trials, after which
we chose the procedure indicated by Carré (111,

There are some controls to prevent the appearance of oscil-
lations of the eigenvalues or eigenvectors around the solu-
tion; we have found good to putw =1 for a few iterations
when the solution shows some tendency to oscillate,

The process is terminated when the differences between suc-
cessive estimates of A and § , calculated respectively with
(12) and with a computation of a term R called “"residual”
C10], are simultaneously smaller than prefixed constants.

Notice that the thirteen-point operator defined by (15) can



be treated as composed by five operators of five-point type
(fig. 9). So the boundary conditions problem reduces to that
of five-point operators.

In our case the manners in which such operators can stand
with respect of the borders are showed in fig. 10,

y b
a | i 2
b Jc d ]L b ‘b c |d

Ha + N Ci ; le
& b ¢
a a //(
S e id __.i d »b_?h
e le e
yd
d e F
Fig., 10

For each case the introduction of condition (4) in (8) has
been treated by the following equations (in order a to f):

(4")\)?:

P2 - 2P - P = O
(& =29, - 29, - 29, = 0
(& = XN)P. - 29, - 2P, = 0
(4 =AW =¥, ~Pq - 29, = 0
(4= A)Pc - 3P4 - Pe = 0
(2

1)?0:-2Pd-0

The eriterion used to obtain these equations is the
following: for each point outside the border (marked by a
'x' in fig., 10) we have defined its image-point, i.e. the
point symmetrical with respect to the border.

For instance, in case b, the image-point of point b is e;
in case e, point d is the image-point of both points a and b,

Hence, the boundary condition (4) is simulated assigning to

the external point a value equal to its image-point,

Notice that in case f, the laplacian operator reduces only
to the x-component.

If we had considered the TH modes, the condition (3) would
have been much easier to simulate,

In fact in this case it is only necessary to put equal to
zero all the boundary nodes.

Implementing these ideas in the computer program we have
obtained the following results,

13
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NUMERICAL RESULTS

The following tables contain the data obtained from the pro-

gram for various angles and for three ratios between sides,
refer to the fundamental mode
two modes immediately following,
see, because the TEp,

These data

you’11

i.e.
increases in

TEox

( TEyo ) and the
and TEs..
frequency while

As

TEis diminishes when the acute angle of the parallelogram get
that the

smaller, it is possible, below a certain angle,

second mode becomes the TEis instead of TEas,

Furthermore,
mode TEzo

has a lower

for high side ratios, it is possible that the
cutoff frequency than TEoy and TE,,;
this is the case for example of a/b = 2,

The symbols Xe and \n indicate respectively the cutoff wa-
velenghts for the parallelogram and

rectangle.

a, of course,

The percent error e« reported in the tables is the ratio

(l-lt)/lt

for the

corresponding
These values must be multiplied by the major side

that is the difference between the approximated height of the

parallelogram '1’

itself.

This

sides '’

error alters above all the
influence can
tions: if, referring for
caleculate the cutoff
a' and 'a(l+€q) /27,

and the true height

instance to
frequency of a rectangular
we find the

'lt', divided by le
Naturally, €= greater than zero means an excess ap-
proximation of the height and conversely.

the case

nodes TEn; and TE., .
be estimated through the following considera-

a/b = V2, we

His

guide with

result 1.4286a for

the cutoff wavelenght TEo,; this number is not much close to
the theoric result ( V2 ); note however that it is very good
when compared with the value in the table 2,

TE 10 TE o1 TE 1.

L €n (X) Ap e/ Ap Ap Ae/ Ak Ae Ae/Ar

90 0.00 1.99995 | 0.99998 | 1.99995 | 0.99998 | 1.41418 | 0.99998
85 0.38 2.07294 | 1.03647 | 1.92745 | 0.96372 | 1.41631 | 1.00148
80 1.54 2,15371 | 1.07690 | 1.85900 | 0.92950 | 1.43602 | 1.01542
7% 3,53 2,20385% | 1.10192 | 1.79228 | 0.8%414 | 1.44288 | 1.02027
70 -1.18 2.28290 | 1.12645 | 1.66545 | 0.83283 | 1.45583 | 1,02943
65 0.31 2,32848B | 1.16424 | 1,58823 | 0.79412 | 1.48863 | 1.05262
60 -1.03 2.36243 | 1.,18121 | 1.,4B657 | 0.74328 | 1.49767 | 1.05%02
55 -0,11 2.41373 | 1.2068B6 | 1.39546 | 0.69773 | 1.52628 | 1.07924
50 0.42 2.44769 | 1.22385 | 1.29985 | 0.64992 | 1.54562 | 1.09292
49 1.02 2.47868 | 1.,23934 | 1.19901 | 0.59951 | 1.56486 | 1.10652
40 0,01 2.18042 | 1,09021 | 1.01236 | 0.50618 | 1.42622 | 1.00849

TARELE 1 - Numerical results for various angles and modes, and

for a ratio a/b=1,
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TE 10 TE o1 TE 11

&®° Ern (%) Ar Ae/An As Al AR Ap Ar/Ar

?0 1.02 1.99995 | 0.99997 | 1.428%4 | 1.01014 | 1.14624% | 1.00671
8% 1,40 2.003641 | 1.00171 | 1.42546 | 1.0079% | 1,16728 | 1,0108%9
80 -0.58 2.0179% | 1.0089% | 1.37241 | 0.97045 | 1,17153 | 1.01458
75 1,36 2.04135 | 1.02068 | 1,36431 | 0,96471 | 1.20%62 | 1.04410
70 0,33 2.06806 | 1.03403 | 1.3017%9 | 0.92051 | 1,22278 | 1.058%94
65 0.31 2.09861 | 1.04930 | 1.24833 | 0.88270 | 1.24440 | 1,077648
40 0.49% 2.125346 | 1.06268 | 1.19303 | 0.84360 | 1.,26209 | 1.09300
55 0.71 2.15197 | 1.07599 | 1.12503 | 0.79552 | 1.28689 | 1.11448
50 -0.59 2.15956 | 1.07978 | 1.,04855 | 0.74144 | 1.2%9211 | 1,11%900
45 0.00 2.18453 | 1.,09226 | 0,9990% | 0.70643 | 1.30913 | 1.13374
40 0.01 2,12%21 | 1.06261 | 0.97184 | 0.68719 | 1.,30528 | 1.13041

TABLE 2 - Numerical results for various angles and modes, and
for a ratio a/b=VZ between sides,
TE 10 TE 20 TE o1 TE 11

e Er (%) Ap e/ Ar Ap Ap Ap Ar/An

20 0.00 1.99994 | 0.99997 | 0.99999 | 0.99999 | 0.89441 | 0.99998
8% 0,38 2.00172 | 1.00086 | 1.00086 | 0.99895% | 0.88904 | 0,99398
80 1.5¢4 2.00667 | 1.00333 | 1.02148 | 0.99945 | 0.874%91 | 0.98042
7% 3,53 2.01448 | 1,00724 | 1.04722 | 0.96248 | 0.85976 | 0.96124
70 -1.77 2.02249 | 1.01124 | 1,05549 | 0.92834 | 0.80462 | 0,89959
65 0,31 2,03731 | 1.01866 | 1.08173 | 0.91899 | 0.78236 | 0.87471
60 -1.03 2.04360 | 1.02180 | 1.09287 | 0.88123 | 0.74511 | 0.83306
55 1.73 2.05818 | 1.02909 | 1.11420 | 0.87548 | 0.72410 | 0.80957
50 0.42 2,05996 | 1.02998 | 1.12409 | 0.85197 | D.6922% | 0.77394
45 1.02 2.06370 | 1.03185 | 1,13748 | 0.8518% | 0.67292 | 0,7523%
40 3.71 1.99710 | 0.9985% | 1.12760 | 0.85243 | 0.6329% | 0.7074é

TABLE 3 - Numerical results for various angles and modes, and

for a ratio a/b=2,

The modes TEzo and TEg, have Ag
equal to one. The TEz,, not reported here, below 40°
becomes the fourth mode instead of TE,, that shows
now a decrease of his A when x diminishes,

A comparison between numerical and experimental data can be
done through the

represent the computed

following diagrams.
results

Here the
and the curves

small circles

are those

previously seen in figg. 4, 5 and 6.

Apart from the height imprecision, there is another source
of error. In fact below 45° the boundary conditions approxima-
tion -can give rise to an erratic behaviour of the fields near
the acute angles. This affects mostly the TE.o and TE., modes.
To avoid this it would be necessary to introduce much more
complex approximations of (4); see for instance [13],
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Finally the graphics below show the behaviour of the
transverse electric field for various cross-sections,.

Notice that some graphs are composed by dotted lines too. In
this case the continuous curves represent a field going toward
the top of the parallelogram, while dotted lines are those in
which the field goes toward the bottom,

In other graphs there are some arrows to indicate the
direction in which the lines flow,

Fig. 14 - TEso for a/b=1 and 80° Fig. 1% - TEso for a/b=1 and 40°

Fig, 16 - TEo: for a/b=1 and 40° Fig. 17 - TEo: for a/b=1 and 4%°
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Fig. 18 - TE., for a/b=1 and 80° Fig. 1% - TE:y for a/b=1 and 45°

=

Fig. 20 - TEio for a/b=V{2 and &%° Fig. 21 - TEos for a/b=V2 and 80°

S

Fig. 22 - TEo: for a/b=\Z and 45° Fig. 23 - TEo: for a/b=\Z and 40°
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Fig, 24 - TE;, for a/b=\Z and 80° Fig. 25 - TEss for a/b=\Z and 45%°

Fig, 26 - TE.: for a/b=yZ and 45°

Fig, 27 - TE.io for a/b=2 and 40°

N

Fig, 28 - TEg: for a/b=2 and 45°

Fig, 29 - TEzo for a/b=2 and 50 °
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CONCLUSIONS

In spite of some occasional problem, the results obtained
are significant. A theoretical confirmation appears from the
graphs of figg., 16 and 22, too. The latter case is the mode
governed by (%) and (&) and vyet illustrated in fig., 3a; the
former mode derives from the equilateral triangle and is ruled
by the following equations:

He = - 2 cos(ny/h) cos(n/3-nx/hV® - cos(n/3+2nx/h V@)
)\c = 1|5 ]

where h is the height of the parallelogram.

So we can tell to have achieved in this work two principal
results: first, both the experiments and the numerical
iterations have revealed the existence of a previously unknown
dominant mode; now remains opened the problem to find
analytical solutions in terms of elementary functions for it,
and even for a generic mode, if possible,

Then we've got an idea about the fields pattern inside the
waveguide, and how it changes varying the acute angle of the
parallelogram. At this purpose very interesting is the shape
of the TEi: mode.

Moreover note that the correct knowledge of the cutoff
frequencies for the dominant and the first two higher modes
can be interesting for the use of this kind of guides as mode
filters,

At last the authors want to thank prof, Mario Puglisi for
some helpful eriticism on this topie, and all the other per-
sons that in some manner have helped our job to be completed.
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