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INTRODUCTION

A few magnets, designed for specialized duty, like the thin
magnets for High Energy detectors, some magnets for energy stor-
age and the beam magnets for proton accelerators, are wound in
one or two layers. Therefore the magnetic field varies across the
cable section by a large amount. We think that the conductor
stability must be studied and tested, in these cases, taking into
account the magnetic environment of the cable in the coil, and
not, as usual, with B as a free parameter.

As a consequence of the field gradient, the conductor, above
its critical current I , will divide in two or three zones, corre-
sponding to the super%onducting, current sharing and normal re-
gimes, and the current will distribute across the conductor in a
nonuniform way. The study of the conductor stability in these
conditions is quite complex, but becomes easier if the cable
cross section can be considered onedimensional, as for instance
when the cable is in the shape of a tube.

The calculations reported in this paper have been done to
study the stability of a forced flow conductor to be used in the
GEM magnet for the DELPHI detector at LEP (fig. 1). Our model is
appropriate to S/C cables having the following characteristics:
1) the S/C strands or filaments and the stabilizer, form a tube
of small thickness/diameter ratio; 2) the S/C components are
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helically wound; 3) the thermal conductivity and the thermal and
electrical contact between the components are good. We will study
the cryostability of the S/C cable under the assumptions made in
Stekly theory. A further simplification is indeed obtained since
the cable can be considered isothermal and the magnetic field
uniform along the cable length.

THE MODEL OF THE CONDUCTOR

Under the given assumptions and in a uniform magnetic field,
we describe the tube wall as an homogeneous composite with
non—-linear and anisotropic electrical properties.

We find, at first, the constitutive equations (E vs J rela-
tionship) in a frame which has a "1" (longitudinal) axis parallel
to the S/C filaments and a "t" axis transverse to it. In the
longitudinal direction the S/C component is electrically in paral-
lel with the matrix. We use the simple model of current sharing
which gives

E =0 J < J (1a)
L L c

E = J -J J > J 1b
L/’L(Lc) L c (1b)
E = J J <O 1
L /oL L c (1c)

where the J's are normalized to the total composite area. In the
transverse direction the nonlinearity is small and an ohmic law
(ET = /DTJ } can be used. If the cable is well stabilized we can
neglect also the difference between /3 and /OT. Indeed we can
define a reduced current density j = J JC and a reduced elec-
tric field e = E//O Jcoowhere JCOO is the critical current
density at some reference conditions.

We assume that the critical current density of the S/C
material has a linear J vs T dependence, and a B dependence as
given in ref. 5. In reduced.form we can write



jc(T,B) = Jc(’C,B)/JCOO = (1-T -YB)/(1 +YB) (2)

where T= (T -~ T )/(T_ ~T ) is the reduced temperature, T is the
bath temperature, T the critical temperature in zero magnetic
field, J 00 the critical current density at T and B=0 and Yy an
adjustable parameter of the order of 1/10 for NbTi.

We calculated in detail the magnetic field of a round tube
arranged in a winding of N layers, with a distance "a" between
adjacent conductors of outer radius "r". We verified that the
changes in the current distribution due to the cable transition
hardly influence the magnetic field at the outer radius of the
conductor. Here we have almost everywhere the maximum field on
any strand (at least for © > 60°) and we assume that JC depend on
the field modulus at this position. The field of the nth layer,
neglecting the small coherence between the disuniformity of diffe-
rent layers, can be written in complex form as:

J.
(2n-1) Tr im 2(n-1)
= i — - tg (——
B if [T 9y, ot O ) @
where j. is the imaginary unit. Other examples have been carried

im
out, like flattened and squared cables. In these cases we assumed
the field to have a linear gradient across the winding complex.

THE POWER DISSIPATION

To obtain the cable characteristics, i.e. the voltage and
the power dissipation as a function of the flowing current, we
must obtain the distribution of electric field and current densi-
ty in its section. As said before, due to the nonuniform magnetic
field, the conductor will be split, above I , in two or three
zones, which moves gradually towards the lg@er field side on
increasing the circulating current. Two possible paths are shown
in fig. 2, but the three regimes (way 2) can coexist only if the
J vs B dependence is very steep or if the overall current
dgnsity in the coil is very high. Under the assumptions of uni-
form temperature and no y-dependence for B, the fields e and j do
not depend on y and the problem is indeed one-dimensional. From
the continuity equation for the current density (§7.3=O) we
obtain that Jx(x) is a constant (Jxo) and

(I)Jy =i (4)
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Fig. 2. Possible zoning of the conductor.

From the Maxwell equation (6’x€=0) we find that e too is a
constant (e ) and y
()

§§exdx - 0 (5)

Indeed, only ex and j vary across the cable circumference;in the
superconducting zone {'e have:

2
e, tg© 1/cos © e
o
- v (6a)
j 0 —tg© j
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in the current sharing zone
e, 0 1 e sen ©
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N 1 0 j : -cos©
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and the same expression, with j (x) = 0, in the normal zone. So

we see that the x dependence is effective only in the current
sharing regime and is simply related to the j (B(x)) dependence.
Substituting the above relationships in (4)c and (5) we get a
linear system for j and e , whose coefficient depends both on
known parameters (f«gnd’t)y%md on the position of the borders
between the various zone, to be determined otherwise. This system
can be solved and we obtain:

(1—n12)i/2 - fjc(V[)dV[ sen©"

eyo(n12’yt23’ /(jc(md" i) = 2 (72)
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where q and q are the reduced coordinate of the separation
lines between S/C (1), current sharing (2) and normal (3) zones.
At the border between the S/C and the current sharing zone the
current dehsity in the S/C filaments direction is equal to the
critical current density

5T B0 ) 1) = 3 Ul (3.0 a1 (8)

while the critical current density is 2zero at the border between
current sharing and normal zones.

B(x) being fixed it is possible to solve (9) forrlzs, reducing
(8) to an equation in © 15 only.

From the above model we can get a picture of the distribu-
tion of currents and electric field in the cable at various circu-
lating currents. In the fully superconducting state the current
will flow parallel to the S/C filaments and in the normal state
parallel to the cable axis. When two or three zone are present
together, the current will flow at an angle € between € and
T1/2 in the S/C zone, where the electric field wf?gjbe perpendicu-
lar to the filaments. In the current sharing zone it will curve
gradually towards the cable axis and will flow again at fixed

angle E}n;>f}s/c in the normal zone.

The numerical results.

We solved the above model by computer. In fig. 3 we report
the reduced power vs T , with i as a parameter, for a round cable
with r/a=.35, Y =75°, wound in a single layer coil giving 2.4
Tesla at I . The graph is divided in three regions corresponding
to the coéiistence of S/C and current sharing regime, pure cur-
rent sharing and current sharing-normal regime. At low temperatu-—
re the power increases more than linearly, due to the reduction
of the S/C zone dimension; in the current sharing regime we get a
linear behaviour and then a leveling of the power due to the
spread of the normal zone. In fig. 4 we compare a round, a square
and a flat cable with the same characteristics given above. A
second layer is considered, and we note that the curves for the
inner layer group together, because the field gradient is less
effective.
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Fig. 4. Comparison between round, square and flat cable.



THE CRYOGENIC STABILITY

To find the cryogenic stability of the conductor we must
simply impose a balance between the calculated power dissipation
and the heat transfer to the coolant:

00
Cloo is the well known Stekly parameter calculated at zero field:
2
f)A J
a COO0
00 ~ hP(T_ -T
( Co b)

where A is the stabilizer cross section area, p the cooled perime-
ter and h the heat transfer coefficient in the nucleate boiling
regime. Unlike the standard model, X =1 is not the limiting con-
dition for complete cryogenic stability.

Results.

The curves of electric field vs circulating current are given
in fig. 5a for the 1lst and 2nd layer of the same coil as in fig.3.
We took ¢ =.5 and the three regions are clearly seen. The same
system, but less stabilized (<XOO=35)is shown in fig.5b. The main
feature that comes out is the existence of a solution partially
superconducting above I and a second one partially normal in the
same current range, eve% if we assume a linear heat transfer law.
In fig. 6a we show the stability plot for an Aluminum stabilized
conductor for the GEM coil” . The characteristics of this conduc-
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Fig. 5. Cable stability in 2 layer coil. a)c%oo=.5, b)(XOO= 3.5
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Fig. 6. a) Stability of the GEM cable, .b) assumed heat transfer
for two phases forced flow.

tor are: I =16 kA at 1.2 T and 4.4 K, stabilization by Al of
RRR=500 anJ:A=200 mm , cooled perimeter p=40 mm, winding angle-—

75°.The double layer coil will give B=1.2 Tesla at an oper-
ating current I=10 kA. The conductor will be cooled by forced
flow of subcooled He, at a pressure of 1.7 atm, so we use a
nonlinear heat transfer as shown in fig.6b.

CONCLUSION

A simple model has been developed to study the stability of
tubular composite cables used to wind coil of a few layers. The
effect of the cable shape has been shown. In general the cables
result stabler than from a standard analysis in a current range
just above their critical current. The characteristics in this re-
gion resemble the effect of current transfer and indeed we can
describe this way the current rearrangement inside the sample.
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