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1. - INTRODUCTION

Clebsch-Gordan coefficients play an essential role in a variety of problems involv

(1-12)

ing addition of angular momenta and in general tensor manipulation . Apart from

more conventional applications in quantum mechanics Clebsch-Gordan coefficients are

(13,14) and in the statistical mechanics of con

now often employed in material science
densed phases and in particular of anisotropic fluids such as liquid crystals(ls). All
of these practical applications require knowledge of the explicit values of Clebsch-Gor
dan coefficients of integer rank, To this effect there are already, of course, both ge-
neral formulas and tables either of Clebsch-Gordan coefficients or of the closely re-

(20-22) as well as computer programs for their evaluation(23’ 24).

lated 3j coefficients
In principle it is therefore not too difficult to obtain a certain required set of Clebsch-
Gordan coefficients, In practice, however, this may still prove rather laborious. In

particular the use of most tables, even if available for the ranks of interest, may still
result in a somewhat time consuming and error prone exercise. For example the most

(22)

commonly available tables only go up to an in;egral angular momentum of two or

four(zo) and they either give the coefficients in floating point form or in terms of a



string of exponents of prime numbers whose product gives the desired coefficient, Mo
reover they tend to make full use of the varinus symmetries of which the Clebsch-Gor
dan symbols are endowed(l). While this can be advantageous for compactness, we think
that the aim of a set of tables should be that of giving coefficients quickly while limit-
ing the chances of trivial mistakes so that some redundancy is advisable. In the pres-
ent set of tables we have chosen therefore to list Clebsch-Gordan coefficients in the
most straightforward and immediately usable form, trading some extension in size
against convenience of the user. In the next section the notation employed here is de-
fined and contact is made with other widespread conventions. Some often used formu-
las of angular momentum and irreducible tensors technology are also listed for com-
pleteness and easy reference, Coefficients for integer angular momentum of rank up
to six are listed, since there is now a number of applications in molecular physics,

ranging from calculation of higher terms in intermolecular potentials(25'27)

(14)

to evalua

, where these are re-
(28)

tion of matrix elements arising in multiphoton spectroscopy
quired. We quote as an example the theory of hyper-Raman effect , where rotation
al averages of sixth rank tensors are involved. We shall give Clebsch-Gordan coeffi-
cients both in exact form i. e. as square roots of fractional numbers and in floating
point form, We are not aware of other tables listing Clebsch-Gordan coefficiente up

to this rank in this form.

2. - NOTATIONS

(29-41) for writing Clebsch-

There is an impressive number of different conventions
-Gordan coefficients, even though many of them only differ for the symbols employed.
We choose to here define a Clebsch-Gordan coefficient according to the phase conven-
tion of Rose(l) i. e. we write the coupling coefficient between two states of angular mo

mentum J; and Jo to yield a state |J3m3> as

J.om m_,m/)|[J m;>|Jom > (1)
mimy gi My Mg, mg) | Tymy> [Jom,

where C(abc;def) is a Clebsch-Gordan or vector coupling coefficient and Jl, J2, J3
can take non-negative integer or semi-integer values.

Clebsch-Gordan coefficients are real and can be generally written in terms of squa
re roots of ratios of integers. In the Tables given in section 4, reproduced from com-

puter printouts, we employ the notation

C(Jy,J,,J4;m ,my,mg) = R(NI/N2) = sgn(v1) {(v1)/(v2) Y2 (2)



where J;,J,,J3 and N1, N2 are integers and the function sgn(M) gives the sign of
its argument M, As mentioned before the results are also given for convenience in
floating point form rounded to eight decimal places, The angular momentum values

J1:J9, J3 are said to form a triangle A(J1 J2J3), in the sense that the following re-

lations hold for the allowed values

+ -J 2

Jl J2 JS—O (3a)
. - >

A(JI’JZ’JS) ¢ J1 J2+J3__O (3b)
- + >

J1+J2 J3__O (3c)

where (Jl +J2 +J,) is an integer. The triangular relation is symmetric in the three

3)
angular momenta, Clebsch-Gordan coefficients formed with combinations of angular

momenta not satisfying this rule are equal to zero and of course are not reported in
the Tables. The angular momentum projection values m,, my, M, can take the va-

lues

m =-J1,-J +1,..,d m

S - +
1 m I, J2 1,..,d

13 9 9 93 =-J ,-J3+1,..,J3. (4)

1 3 3

Other common notations for the same coefficients are listed below (cf. Ref. (2) and

(11)).

C 33 Alder(32), Jahn(33a), Jahn and Hope(33b)
J,m_J. m
171722 -
J. J.J
17273 Biedenharn(35), Redmond(36),Simon(39)
m._m_m
17273
C (Jom_;m m_) Blatt and Weisskopf(g)
J,J. 7373 71 2
172
XJ,,m_,,J ,J, ,m._) Boys and Sahni(31)
3’312’
<J1J2m1m2|J3m3> Brink and Satchler(S), Matsen(40),
Lyubar skii(41 ), Jerphagnon( 14)

(J.J I m_|J J m m,)
17973317 My Condon and Shortley(6)

(JyTgmym | Iy ToTgm,g)

a939172
mom,m,

Eckart(37)



<J m ,J oM I J3m3> Fano(34)
J.J
C L2 (m,m_) Fox(38)
J.m 172
33
J
c 3 . Landau and Lifschitz(9), Van der
ml 2 Waerden(30)

)

(J m3|m m,

(m1m2|J3m3) Racah(16), Edmonds(z)

m,)

(JmeIJJ2J3 5

171722

CJ,.JJ. ;m m_m_)

1
123 23 Rogell)
C(J1J2J3;m1m2)

) (11) ) (12)
<J1J2m1m2|J1J2J3m3> Silver , Weissbluth
J.J

1°2 Wi (7)
T m.m igner
3712

Explicit relations for the calculation of Clebsch-Gordan coefficients have been de-

rived by Wigner( 1)

C(J,J,J,m,m ,m_) = ¢
+
1°7°2°73 1 3 mg.,m1 m2

3123121233333

(J 4T =T )T =T +T )T +T T )N(J +m )1 (J -m)! }1/2

le(2J +1)
3
(J1+J2+J3+1)!(Jl-ml)!(Jz-mz)l(J +m2) (J¢+tmq)!

+
(-)V J2+m2(J +J _+m _ -v)I(J, -m_ +v)!
x 3 2 3 1 1 1 (5)
- Y -v)! -J - 1
v v!(J3 J1+J2 V).(J3+m3 v).(v+J1 J2 m3).
and by Racah(16)
. = +
C(J |, Ty d s m,mymy) = & . m +m, {(2J 1)

(J1+J2—J3)!(J3+J1—J2)!(J3+J2-J1)!(J1+ml)!( l-ml) (J +m2) omm )' J +m3) rn3)!}1/2

!
(J1+J2+J3+1).

-1
xS (-)v{(J1+J2 T V)T, 10, ~v) 1 (J 4my -} (-0 4m ) (3 - - m2+v)!vz} (6)
v



In egs. (5),(6) the index v takes all the integral values leaving the argument of the va-
rious factorials non negative.
Clebsch-Gordan coefficients are related to the often used and more symmetric 3j

symbols introduced by Wigner(7)

~-J. +J _-m

172773 1/2
. = (- +
C(JI’JZ’JB’ml’mZ’mB) (-) (2J +1)

3. - SOME USEFUL RELATIONS

We report here (Sections 3,1-3,4) for easy reference some useful properties of
Clebsch-Gordan coefficients and (Section 3,5) a small collection of frequently employ
ed formulas involving vector coupling coefficients, Applications to Wigner matrices

and irreducible tensors are given in Sections 3.7 and 3.8,

3.1, - Symmetries

There are various symmetry relations that can be derived e. g. from the general

explicit expression for the Clebsch-Gordan coefficients given by Racah(l’ 16). We have
in particular:
C(J, Ty dgimy,my,my) =
. (-)J1+J2_J3C(J ,J.,3.;-m,,-m_,-m,) (8a)
172" 3 1 2 3
=(_)J1+J2-J c(J.,J,,J;m_,m_ ,m_) (8b)
2’71’73 77277173
=(-)J1-m1{(2J +1)/(2J +1)}1/2C(J J.,J,m,_,-m_,-m._) (8c)
3 2 1’73721 3’ 2
From these relations some other useful equations can in turn be derived
C(Jl,Jz,JB;ml,mz,mB) =
= (-)J2+m2{(2J +1)/(2J +1)}1 2C(J J.,J ;-m_,m_,-m_) (9a)
3 1 3'72 1 3' 2’ 1
= (-)Jl_ml{(ZJ +1)/(23 +1)}1 2C(J J.,J;m_,-m_,m,) (9b)
3 2 3’71023 1°72
J +tm 1/2
= (=) 2 2{(2J3+1)/(2J1+1)} C(Jg,Jg,J 5 -my, mg,m, ) (9c)



3. 2. - Orthogonality

The Clebsch-Gordan coefficients are elements of a unitary transformation and they

satisfy orthogonality relations., These can be written as

. 1. 1 -
m12.:m2 Cl Ty d3my,my,m)CJ,, Ty, I my,my,m') = 00,0 (10a)
or
. - T, - =
H%’l C(Jl’Jz’J’ m,,m ml,m)C(Jl,Jz,J jm ,m-m,,m ) 6JJ' . (10Db)
We also have
. . 1 ! =
or
. - . 1 T_m! N = -
ZC(JI,JZ,J,ml,m ml,m)C(Jl,Jz,J,ml,m m',m') 6m m! 6mm' (11b)
J 1771
3. 3. - Sum rules
Some useful formulas are:
( .o - 1, T e - -7 =
% CJ.I',JZ,JI, m, 0, m)C(Jl, Tz,Jl,m M, 0, m-M)
(12)
172
~9.J! ' - 1 ! ! :
) (2)2MAT =20 1-20Y | (251 +1)(2T ) +1)(2T =T o) 12T 4T+ 1)1 (ot Ret 42)
-+ 1 _ i | ‘ )
(2J5%1) (2J1 Jz).(2J1+J2+1).
3  C(J..J.Tm.m.m)> = (27+1) (13)
mq,m,,m 1 1772
1/2
3 (™ ew, g, Lim,-m,0) = ()27 +1) o0, - (14)

Steinborn and Filter(43) have derived:

2 | _
o =1 +1 P ] i - -+
i{uJ 3,355 0000} % = (20 1] (30,0 IO ATF) Y T, T) 1 (4, sronf

123’
(15)
where (-1)!l =1 is implied. A few recent results are: Din's formula(4%s 45)
Jotdg )
3 (arp){c ,3,5000)] /{3, 0+ -kk+ D} = 0 (16)
PRl PP

Itk



where J3-J2§ k§J2+J3 and k+J2+J3 odd, and the following two obtained by Morgan
rr( #6)
1 I, 9
2 {(—) C(I, T (T{-T5); 000)} F(2J, -2J,+1) = {(ZJ )1 /i2d +1)!!} (17)
_ 172¥1 72 1772 1 1
J =0
2
J
1, J.-J
172 . 2 2
- { -2J +1) -
J{({)( ) C(1,7,J,-3,5: 000} /{(21,-25 +1)(23,-1) } (18)
2
1; if J, =0

_ 1

¥ ~an A2z +nn “1)d i iti
-{(ZJI)..(ZJ1 2),,}/&2.11 1)..(2J1 1)..}, if J1 is a positive

integer number.,

3. 4. - Recurrence relations

We give here two recurrent equations(l) that may prove useful in further extending

the present Tables if necessary. The first allows changing the angular momentum J

Jl(J1+1) -J (J +1 )+I(J+1)
{ml-m

2J(J+1 }CJ J 2 d; ;m,,m- ml,m) =

1 2 1
2

cC(J,J,J-1;m.,m-m_,m)
4J7(2J-1)(2J+1)

2 2 1/2
§(%m JT-T FT)(T+T =TI 4T AT 4T ~T+1) /
l e 1° 1°

1

2 1/2
+{[(J+1) -m?(J+1—J1+J2)(J+1+J1—J2)(J1+J2+J+2)(J +J2-J) } .

J,J  J+l:m_ ,m- m)
2 17 YooY ThiMy, M=, , M
4(3+1)2(257+1)(23+3) 2

(19)
The second relates Clebsch-Gordan coefficients with the same angular momentum

Jl’Jz’J but different components:
{341)-3, (0 #1)-3 T+ )-2m(M-m) § €3 1,7, T m, Mom, M) =

1/2
={(Jl-m+1)(J1+m)(J+1VI-m+1)(J -M+m)} 4 C(J;,J,,J;m=-1, M-m+1, M)

{(J1+m+1) (J,-m) J2 M+m+1)(J2+M m} 1/2 Jl,J J;m+1,M-m-1,M)

(20)
Recurrent relations especially useful for large (J ~ 30-40) angular momentum have

been obtained by Schulten and Gordon(lg) both for 3j and 6j symbols



3.5, - Some special formulas

Formulas giving certain classes of vector coupling coefficients in algebraic form
can be obtained specializing the general egs. (5) and (6). Explicit formulas for coeffi-
cients with one of the angular momentum rank J =1,2 can be found in the celebrated
book by Condon and Shortley(G). Asg for semi-integer ranks, formulas for J =1/2 are
reported, e.g. by Rose'l) while formulas for J = 3/2, 5/2 are given by Saito and Mo
rita(47). Here we present a small collection of relations mainly chosen according to

what we have found most useful,

C(3,3', 0 m, -m, 0) = (-)° ™ <5JJ./(2J+1>1/2 (21)
C(J;,0,J5m ,my,m, +m,) = 6J1,J om0 (22)
2 2
C(1,1,0;m, -m, 0) = (-) ™ /31/2 (23)
C(1,1,1; m, -m, 0) =m/21/2 (24)
C(1,1,2%m,-m, 0) = (1/2)Im! (5/3)1/2 (25)

_ . . 1/2
C(J,1,J; 0,m,m) = -C(1,J,J;m,0,m) = -m/2 ; J>0 (286)

C(J,1,J+1; 0,m,m) = C(1,J,J+1;m, 0, m) ={(J+2)/(2(2J+1))}1/2; m#0 (27

cJ,1,J-1; 0,m,m) = C(1,J,J-1; m, 0, m) ={(J-1)/(2(2J+1))}1/2; J=>0,m#0

(28)
C(2,2,0;m, -m,0) = (-)/5"/2 (29)
C(2,2,2m, -m, 0) = (-)™C(2,2,2 0,m,m) = () (m>-2)/14"/ 2 (30)
C(2,2, 4, m,-m,0) = 24/{701/2(2+m)1(2-m)!} (31)
Cc(2,2,J;0,0,0) = (-12)J/2{(2J+1)(4-J)! /(5+J)!}1/2 s (32)
if J=0,2,4 and zero otherwise
C(4,4,2 m,-m, 0) = (<) (5/9) " 2C(4,2,4;m,0,m) = ()™ (3m>20)/(693'/ %2) (33)

1 1 1 1
(J1+2)(J +3)(2J1+2)(2J1+3)(2J +5)(27,+1)

C(J.

1’

5(J+m+3)(J+m+2)(J.-m+3)(J.-m+2)(J.-m+1)(J. +m +1) }1/2
1 1
3,J;m, Om) = 5

1 1 1

. =74
1fJJ13



(J+m +6)(J,+m_ +5)(J +m +4)(J +m +3)(J +m +2)(J +m_+1) 1/2
. _ 171 171 171 171 1 1
C(J,,3,J;m;,3,m) = ; (35)
1 (2J1+1)(2J1+2)(2J1+3)(2J +4)(2J7+5)(2.7,+6)
if J= J1+3
Eqgs. (34), (35) have been given, albeit incorrectly, in Ref, (48).
1/2
(2J )1 (2T )1 (J+J+m+m2 (J+J -m m)'
B 1 2’ 1721
Cc(J,,J (J+J m,, rnl+rn = (36)
172 v (2J,+2J_ )1 (J+m Vi J+m )!
17%9% Ip-my (T g
( - .
0, if J1+J2-rJ3 is odd
C(J1 J2 J3OOO) = £ /
+ 1/2 +J +
(_)(J1+J.+J3)/2{ 2751 } T 3H,)
+J +J + -
L J1 J2 J3 1 F(J1+J -J }F(Jl J2+J3)F( J1+J2+J3)
1/2 (37)
where I'(x) = (x/2)1/(x!)°/ %, if .]1+J2+J3 is an even integer,
3. 6. - Asymptotic results
; (49)
A classical result due to Brussaard and Toloehk :
J1+J2-J J1
C{Jl,J2 J;m, mz,m) =(-) d_ J_J('ﬂ}; (38)

1’ 2

where the small Wigner matrix ernn is defined in (1) and cos®# =m/J; J>>1, J,<<J

= +
and of course m my mz.

3.7, - The coupling of Wigner rotation matrices

Wigner rotation matrices or generalized spherical harmonics DrJnn(a B 7) represent
matrix elements of the operator performing a coordinate system rotation of Euler an-

gles (a B y) in an angular momentum basis. Thus following Rose(l) convention
J . . .
Dmn(a By)=<Jm |exp(-1aJZ) exp(-1BJy) exp(-l}'Jz)lJn> , (39)

where 0La=<2m, 0= B=m O0=Z7Y<L2m The Wigner rotation matrices form an ortho

gonal basis set in the Euler angles space. As such they are often used for writing down

(14)

expansions of anisotropic quantities in the molecular theories of crystals , liquid

(15) (13),

crystals and polymers

Clebsch-Gordan coefficients arise naturally when we want to rewrite a product of
Wigner rotation matrices (1) of the same argument and of rank Jl’ J2 in terms of a
single rotation matrix, The coupling rule for these matrices can be written as



-10 -

J 3,
aB7v)D (@ B 7)
myny Moly
J
? (J1sTgp Jimy,my,m)CT,, 5, Jiny, 0y, R)D m, n+n2 apr)  (40)

In particular, since spherical harmonics YJrn are just special cases of Wigner rota-

tion matrices

o(@B80)= {4N/(2J+1)}1/2Y (a B), (41)

Jm

we have the useful coupling relation for spherical harmonics,

1/2
= + + +
Yo ( B)YJ m (@ B) 2{(2,11 1)(2J 1)/(4m(2J 1))}
11 2 2 J
X C(J1 J2 J; m1 mz,m)C(Jl,Jz,J; 0, 0, O)YJm(a B) (42)
Remembering that DgO(OBO) PJ(cos B) we also find at once the coupling relation for
the Legendre polynomials PJ i. e.
2
PJl(cos B) PJz(cos B) = ? C(Jl‘ J2, J; 0,0,0) PJ(cos B) (43)

Notice that the coupling of even rank polynomials only gives even rank PJ since (cf.
eq. (37)) the Clebsch-Gordan coefficient C(Jl,Jz,J3, 0,0, 0) is zero unless (J1+J2+J3)
is even,

Conversely we can decompose a Wigner rotation matrix as a linear combination of
products of Wigner functions of lower rank,

J J

J 1 2
D = ZC(J,J,J;m,m,m)C(J J J: ,n)D 8 5
+ +
mn 1°°2 172 1"1 T mln1 m2n2 m1 m2,m n] n2,n
J1 J, (44)
3 (45)

= ¥ C(J X 2,J ml,m-ml,m)C(Jl, J2, J;nl,n-nl,n)Dmlnle_ n-n,

where the sum is extended to all indices not appesring on the left hand side,

3. 8. - Irreducible tensors coupling

An irreducible tensor operator of rank J can be defined as a set of (2J+1) quantities

TJ’m, (m =-J, -J+1,...,J) which transform under the (2J+1) dimensional represen-

tation of the full rotation group 0™(3) as



- 11 -

_ Jx J,n
) = iDmn(M-L)(T )

(TJ,m

MOL LAB (46)

where the LAB and MOL subscript refer to laboratory and rotated or "molecular" fra

me, The components TJ»™ of a rank J irreducible tensor verify the Racah(16) rela
tions
pXpl ™ e (47)
J,m S 1/2 J +1
Iy ™ e Gim)(Ftmn) ) T (48)

where the x superscript indicates the commutation superoperator : A¥*B = [A,Blwhile

J,, J4 are the usual angular momentum projection operators. Eqgs. (47), (48) can be

ZJ

written more concisely as

1/2 +
J;‘TJ’m = (-)"C(J,1,7; m+n, -n,m){ g+ } TP n= 0, 1y (49)
A tensor of rank J can be constructed from two tensors of rank J; and J2 when they

are coupled as follows :

m Jl’ml Jz,m-ml
(Al’Az) = 3 C(Jl,J2 Jm m-m, , m (AI)T (Az) (50)
my

where the symbols A1 and A2 represent all the variables upon which the tensors dep

end.,

3.9, - Wigner-Eckart theorem

The calculation of matrix elements <J m1 |T |J m > of an irreducible tensor

operator TJ,m over an angular momentum basis set is s1mp11f1ed by the Wigner-Ec

1)

kart theorem( according to which

J,m _
<J1m1|T 'J m, > KJIJZC(JZ,J,JI, ,m, ml) (51)

where the quantity K often written as (J1 “TJ ”Jz), is called a reduced matrix

J1J2’
element of the set of operator TJ and is independent on the angular momentum pro-

jection numbers., Notice that the Clebsch-Gordan coefficient implicity contains a

6m I which in turn g rantees conservation of angular momentum,
2 71



-12 -

3,10, - Gaunt formula

This gives the integral of three Wigner rotation matrices as

2m /n fzn 3 7, Ty N
da/ dB sinf dyD (e B7)D (@ B7)D (@ B7r)y =
jo 0 0 h oty Mafla
2
=8m ¢ 6 C(J,,J ,J ;m_,m_m_ )C(J,J,J_ ;n, )/(2T+1). (52)
m1+m2,m3 nl+1'12,n3 Uy Myt rUvs iyt 3

4, - TABLES OF CLEBSCH-GORDAN COEFFICIENTS FOR INTEGER ANGULAR
MOMENTUM J = 0:6

Here we employ the notation

| : 1/2
C(3;, 7y, T m ,my,m) = R(N1/N2) ssgn(Nl){(Nl)/(Nz)}/

where Jl,J ,J3 and N1, N2 are integers and the function sgn(M) gives the sign of

its argument M, As mentioned before the results are also given for convenience in

floating point form rounded to eight decimal places,



- 13 -
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