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SUMMARY

The numerical solution is discussed of a two-point boundary value problem, aris-
ing in RF superconductivity, for the steady-state one-dimensional heat conduction equa
tion with thermal conductivity depending on temperature and boundary conditions non-
linearly involving temperature and heat flux. The numerical method employed attains a
great computational saving in comparison with standard ones by taking advantage of the
particular features of our problem and can be likewise applied to other problems. The
general mathematical form a problem must have for being solved by the aforemention-
ed method is then laid down.

1, - INTRODUCTION

In our work in RF superconductivity we have met a problem of heat conduction

through a cylindrical plate of superconducting material which can be stated as follows

d dT . = K(T) dT _
dr (K(T) dr )+ r dr 0. )
KT S| L = e(T), (2)



) (3)

where T is the temperature, K the thermal conductivity, r; and ry are respectively

the internal and the external radius of the plate, TI = T(rI), TE = T(rE)
2 -Y/T
p(r) = B2 (ar £/, (4)

w(q) = (6+na)/%, (5)

and a,8, 7,0,M and B are constants, this latter meaning magnetic field on the internal
surface,
Computational techniques mostly used to solve problems like that above mentioned

(1, 2). In shooting methods the boundary va-

are shooting and finite-difference methods
lue problem is transformed in a sequence of initial value problems; in finite-difference
methods a nonlinear algebraic system ensues which is then reduced to a sequence of
linear systems,

In this work a method is discussed that computes temperatures at boundary points
by solving a single nonlinear algebraic equation and then requires the independent solu
tion of one more nonlinear algebraic equation for each additional interior point at which
temperature must be found, This method is much less general than standard ones but,
in our opinion, proves profitable whenever it can be applied. In our case it turnes out
especially well suited because we were mostly interested in just finding Tq and TE
versus B. In fact to this aim this particular problem must be solved several times
for different B values and, constant feature, we have no interest in finding T versus
r,

If the aforementioned standard methods were used, we could not take advantage of
the above feature to get computational saving, as our method does, because T should
be computed anyway for several r values to obtain T; and TE' In section 2 the ma-
thematical development of the method is carried out for the problem under considera-
tion. In section 3 we discuss features and performances of our numerical implementa

tion. In section 4 we state the class of mathematical problems that the described me-

thod, or a slight adaptation of it, can solve.

2. - REDUCTION OF THE DIFFERENTIAL PROBLEM TO ALGEBRAIC EQUATIONS

If we indicate heat flux by q, i. e,

dT

q = -K(T) ar



eq. (1) can be rewritten as

dq |
dr
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1
o
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and then solved by separation of variables to give
.
Q= T 9 (8)

and, for r = '@

1
de. = T 19 (9)
E rE T

where q; = q(rI) and qp = q(rE).

Now by substituting eq. (6) into eq. (8) and then integrating the latter we have

Tg ro
f K(T')dT' = -I‘IqI 1n - (10)
T

which we rewrite as follows

r
- _ E
(T - TIK(T, Tp) = -rp9pIn — (11)
where
1 Tz
=2 ——— 1 1
K(Tl’ T2) T - T K(T')dT (12)
2 1 "7
1
and finally as
r-q r
T=TE+_II In E. (13)
K(T, Tg) g

At this point by successive substitutions of egs. (12), (3), (9) and (2) into eq. (13)

for r=r; we obtain a nonlinear algebraic equation having the form

(14)

which must be numerically solved to get TI; once this latter found d; dp and TE
are easily computed too if we use in turn egs. (2), (9) and (3). Then heat flux tempera
ture at any interior point can be independently calculated by respectively direct appli-

cation of eq. (8) and numerical solution of eq, (13) for a suitable r value.



3. - NUMERICAL SOLUTION OF THE ALGEBRAIC EQUATIONS

Several different methods could be used to solve eq. (14)(3’ 4). We have used the
iteration
+1
T§n ) . f(Tgn)) (15)

which converges only to that solutions for which the condition

’ f'(TI)|< 1 (16)

is satisfied(3’ 4).

The method above was chosen because by graphical solution of extreme cases of
our problem we verified that in our problem condition (16) is always satisfied except
just for all that solutions which cannot occur in practice being physically unstable.
However our choice is perhaps the simplest but by no means neither the sole possible

nor the best,

For sake of preciseness we report below the iteration (15) written in full,

(n) _ (n) (n) _ I (n) (n) _,, (1)
(n) )
n
T§n+1) = T(En) - IESI o In I;E :
(T, Ty I

Also to compute temperature at interior points by eq. (13) the same method has

been used; the corresponding iteration reads as

R 1n ) (18)

The computation of K has been fastened by calculating and storing values of

T
f K(T'")dT' (19)
0

at the beginning of the program ; then during iteration K is obtained as difference
between two interpolated values of (19).

To obtain T; versus B we solve the problem several times by increasing each
time B by a fixed amount up to a maximum value and by using as initial approxima-
tion for iteration (17) the solution obtained for the previous lesser B value., The so-

lution for B=0, i, e. TI = 61/4, which is easily found by analytical tools provides a



suitable starting point for the whole process. Computations for the same values of B
are then carried out in the reverse order (this time by using as iniyial approximation
the solution for the just greater B value) to obtain the other branch of the T versus B
curve if hysteresis occurs.

In our experience convergence of iteration (17) within a relative variation of 1079
between subsequent approximations requires few cycles only except near to some cri
tical B values where a few tens of cycles are needed. However the CPU time consum
ed in a whole computation with 100 B values never exceeded 2 or 3 seconds on a CDC
170/ 835 computer, Although T versus r for fixed B was of no interest in our prob-
lem we nevertheless have checked also iteration (18). With the initial approximation
obtained by linear interpolation between Tj and Tg the iteration converged within

relative variations up to 10~ 10 in a very few cycles: 2 typical, 8 the worst case.

4, - SOME POSSIBLE GENERALIZATIONS

The method previously described for our particular case can be directly applied

to solve a problem provided this has the following mathematical form

F(u, ', x) = 0 (20)
u = 1) 5 (21)
uy = glvy) (22)
u, = hluy) (23)

and eq. (20) must be such that it has a closed form solution integrable by analytical
tools in the range of interest.

In solution of (20) is closed form but not analitically integrable the method can be
used too but a numerical integration must be carried out in the iterations solving equa
tions corresponding to (13) and (14). Again at the cost of an additonal computational
effort we can still apply our method when boundary conditions cannot be fitted into

forms (22) and (23) but have the more general forms
G(ul, Vl) =0, (24)
H(uz, vz) = 0. (25)
To do so numerical iterations for solving (24) at a fixed vy and (25) at a fixed uy

have to be nested in the outer iteration which solves equation corresponding to (14).

Finally let us point out again that other numerical methods than that of section 3



can be used as well to solve the algebraic equations; moreover the numerical method

should be carefully chosen in each particular case,

5. - CONCL USIONS

The numerical method for two-point boundary value problems which we used in
this work although much less general than usual ones is simpler to implement and
requires less calculations too whenever it can be applied. Moreover once a problem
has been solved for the boundary points the solution can be computed at any interme
diate point independently each from other. As a consequence the solution can be ob-
tained at grid points of unevenly spaced and coarse grid without increasing either
computational complexity or error and without computing it at not even a single un-

necessary point.
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