
ISTITUTO NAZIONALE DI FISICA NUCLEARE

Sezione di Napoli

INFN/TC-99/06
4 Marzo 1999

COAXIAL WIRE TECHNIQUE: A COMPARISON BETWEEN THEORY

AND EXPERIMENT

D. Davino1,2, M.R. Masullo1, V.G. Vaccaro1,3, L. Verolino1,2

1)INFN-Sezione di Napoli, I-80126 Napoli, Italy
2)Dipartimento di Ingegneria Elettrica, I-80125 Napoli, Italy

3)Dipartimento di Scienze Fisiche I-80126 Napoli, Italy

Abstract

The measurement of the scattering(S) matrix inside the coaxial-wire technique is
an entry parameter for the calculation of the coupling impedance of an
accelerating machine.
In order to optimize the method of measuring S-matrices we propose, first, a
mathematical technique which allows us to know in advance the most precise
coefficients of this matrix for a simple and realistic case. Keeping this as
reference point we then describe a measuring procedure which gave results in a
very good agreement with the theory.
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1 INTRODUCTION
Both longitudinal and transverse impedances1,2,3) are key parameters for the design

of accelerators. Infact, in order not to trigger offensive instabilities, the machine impedances
must be kept, with a certain margin, inside the impedance budget. This budget is found by
means of stabilty criteria4), while the margin is chosen according to the reliability of the
prediction for the amount of impedance of all machine devices. Among the prediction
methods, the one based on bench measurements by means of stretched wire is the most
attractive because of its simplicity. This method resort to the measurement of the scattering
matrix which, by means of ad hoc manipulations5) , gives the value of the device under test
(DUT) impedance. We neglect for the moment the discussion and analysis of the procedure
which lead from S matrix to the DUT impedance. This argument has been widely treated in
the literature 15,16,17) and it will be the argument of a forthcoming paper.

In this work we want to compare the scattering matrix, theoretically derived, of a
simple and realistic device, ohmic losses are included, with the one measured with coaxial
wire method. This to the end of improving the measuremt techniques mainly in the range of
frequencies where the DUT length is comparable or larger then the wavelength. It has to be
underlined that, for a reliable comparison, we need also a very precise theoretical tool. The
choice of a simple test structure for the measure is due to this end both for experimental
reasons and for theoretical approach.

We will, therefore, present and use a new technique for finding the generalized
scattering-matrix of a DUT in which a thin wire is stretched on the axis for simulating the
bunch passing through. As it is well known, the concept of the generalized scattering-matrix
is very closely related to the scattering matrix of circuit theory or of the microwave network
theory 6). However, it differs from the conventional scattering matrix in that it is extended to
consider evanescent as well as propagating modes in the waveguides so that each elemnt of
the S-matrix it is an infinite matrix itself. This approach enable us to attack a class of
boundary-value problems of guided waves and in particular it is suitable for studying
structures in which are present two or more junctions. Their geometry is such that a
generalized scattering-matrix description of each of these junctions can be conveniently
derived. This enables one to express the solution of the problem in terms of a Neumann
series involving matrices of infinite order, the solution being formally exact 8).

Recently7), a complete analysis of the coupling between a rectangular waveguide and
an open cavity has been developed, considering the relevant eigenfunctions in the
waveguide and in the cavity. The mode matching technique proposed here represents an
extension of that analysis because the coupling between the feeding waveguide and the
cavity is treated in such a way to take into account all the longitudinal modes of the cavity.
Infact the factorized form of the field in a cavity can be used to calculate the series related to
the longitudinal modes and to obtain an accurate solution by truncating the infinite matrices
to a reasonably small size. Furthermore with the MMT we are able to introduce ohmic losses
in the test structure in a non perturbative way.

In order to test the technique, we examine a cylindrical pill-box cavity powered by two
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coaxial waveguides as shown in Figure 1. We suppose that, except the fundamental mode, a
TM electromagnetic field propagates along the waveguides and, as a consequence, in the
cavity. In this way we are able to investigate, without loss of generality, a structure useful in
accelerator physics, on which a coaxial wire bench measurement can be performed. The
scattering matrix is measured by introducing on the DUT axis a small conductive wire on
which a current pulse of the same shape of the bunch is riding 5).

As a matter of fact these applications need a reliable and effective description of both
the resonant modes and the coupling between the cavity and the feeding system.

2 REPRESENTATION OF THE FIELD IN THE CAVITY
The electromagnetic field inside a cavity can be expressed in terms of a set of basis

functions 9)

E(P) = Vi Ei(P)∑
i

 , H(P) = Ai Hi(P)∑
i

 , (2.1)

where the coefficients Vi and Ai are independent of the coordinates. If the dielectric filling
the cavity is homogeneous and isotropic and the expansion functions, Ei, Hi, are orthogonal
it can be shown 9) that the expansion coefficients are given by

Ai = 1
k2 - ki

2
 jk n × E ⋅Hi

*
 dS

S

 + ki n × H ⋅Ei
 *

 dS

S

     Vi = 
-jki

k
 ζ0 Ai (2.2)

where S is the cavity surface, whose normal versor n is, as usual, oriented outside the
integration domain, * denotes the complex conjugate, ki are the cut-off propagation
constants and ζ0 is the characteristic impedance of medium filling the waveguide

Due to the symmetry of the structure only TM modes are considered. The rotational
symmetry implies the use of two indexes in the expansions (2.1)

E(r,z) = Vps Eps(r,z)∑
p,s

 , H(r,z) = Aps Hps(r,z)∑
p,s

 , (2.3)

where the subscript p characterises the transverse modes, whereas s defines the longitudinal
ones. For a closed cylindrical cavity of length 2L, it is well known that 9) the expansion
functions assume the factorized form

Hps(r,z) = εs
2L

 Φp
c(r) cos ksz  ϕ  , (2.4)

where the Neumann's symbol εs = 1 if s = 0, εs = 2 if s = 1, 2, 3,  .and

ks = πs
2L

 , s = 0, 1, 2,  have been introduced; the transverse modal functions Φp
c
(r) are

related to transverse eigenvalues (the apex c stays for cavity) and have the functional form1

for a coaxial guide with c and a respectively outer and inner radii :

1 The subscript 1 indicates the fundamental mode, whereas p = 2, 3, ... indicates the higher order modes.
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Φp
c(r) =  

1
r 2π ln(c/a)

p = 1 ,

xp π
2a

 
J1(rxp/a)Y0(xp) - J0(xp)Y1(rxp/a)

J0
2(xp)/J0

2(cxp/a) -1
   p = 2, 3,  ,

(2.5)

The cut-off propagation constants are given as

kps
2  = 

xp

a 

2
 + ks

2 (2.6)

and xp is the p-th solution of the equation

x J0(αx)Y0(x) - J0(x)Y0(αx)  = 0 , (2.7)

with α = c/a. Moreover the expansion coefficients assume the simplified form 9)

ζ0 Aps = 
jk

k2 - kps
2

 n × E ⋅Hps
*

 dS

S

 ,     Vps =  - 
jkps

k
 ζ0 Aps . (2.8)

Note explicitly that the tangential electric field appearing in equation (2.8) is the actual
field over S. It is not given by the first of expressions (2.3), which, differently from the
expression for the tangential magnetic field, does not provide a representation for the
tangential component uniformly valid up to cavity boundaries.

3 REPRESENTATION OF THE FIELD IN THE WAVEGUIDES
It is well known that the study of the electromagnetic field inside a propagating

structure can be performed by a separation of the electromagnetic field according to the
longitudinal (along z) and transverse components (the subscript t stays for transverse) 9,10)

E(P) = Et(P) + Ez(P) z , H(P) = Ht(P) + Hz(P) z . (3.1)

Introducing a polar system of coordinates (r,ϕ) in the transverse section and referring
to TM modes (Hz = 0), we can write the electromagnetic field by means of the following
modal expansion

Et(P) = Vn(z) en(r,ϕ )∑
n

Ez(P) = 
ζ0

jk
 kn An(z) Φn(r,ϕ )∑

n

Ht(P) = An(z) hn(r,ϕ )∑
n

Hz(P) = 0 ,

(3.2)

where en(r,ϕ) and hn(r,ϕ) are the vector mode functions, whereas Vn(z) and An(z) are the
scalar ones, kn is the transverse eigenvalue, k is the propagation constant 9,10). The scalar
mode functions have to obey the ‘telegraphers’ equations and therefore the transverse fields
can be rewritten 9,10) as
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Et(P) = Vn
 +(z) + Vn

 -(z)∑
n

 en(r,ϕ) , Ht(P) = 1
ζ0

 
Vn

 +(z) - Vn
 -(z)

ζn
w∑

n
 hn(r,ϕ) , (3.3)

namely as a superposition of a forward wave Vn
 +(z) and of a backward one Vn

 -(z); the modal
impedance ζn

w
 is given by

ζn
w
 = 

(ka)2 - wn2

ka
    wn ≤ ka ,       ζn

w
 = - j 

wn2 - (ka)2

ka
    wn ≥ ka , (3.4)

where the apex w stays for waveguide and wn are real zeros of the equation

x J0(αx)Y0(x) - J0(x)Y0(αx)  = 0 ,     with     α = b/a . (3.5)

with a the inner waveguide radius and b the outer one.
For simplifying the mathematical treatment of the problem, we examine an axial

symmetric case, so the functional dependence by φ will be omitted in the following. As a
consequence, using the property of the vector mode orthogonality for en and hm one can
evaluate these functions for a coaxial cable 10)

em(r) = r Φm
w

(r) ,   hm(r) = ϕ Φm
w

(r) , (3.6)

where Φm
w

(r) is the linear combinations of Bessel functions

Φm
w

(r) =  

1
r 2π ln(b/a)

m = 1 ,

wm π
2a

 
J1(rwm/a)Y0(wm) - J0(wm)Y1(rwm/a)

J0
2(wm)/J0

2(bwm/a) -1
   m = 2, 3,  .

(3.7)

Let us finally note that the expression (3.7) for th ewaveguide is similar to the
equation (2.5) for the cavity.

4 WAVEGUIDE-CAVITY COUPLING
In the above field expression, equ. (2.8) and (3.3), the coefficients Aps and Vn

 ± are
unknown quantities, which can be resolved by imposing the field matching, namely the
continuity of the tangential component of the magnetic and electric field on the coupling
apertures, S1 (z = 0 and a ≤ r ≤ b) and S2 (z = 2L and a ≤ r ≤ b). This cannot be explicitly
done for the tangential component of the electric component because of the non-uniform
convergence of the first expansion (2.3) on the cavity boundaries: the tangential component
of the electric field in the cavity vanishes on the boundaries. Instead the continuity of the
tangential component of the magnetic field over the coupling aperture
S1 (z = 0 and a ≤ r ≤ b) gives

εs
2L

 Aps Φp
c(r)∑

p,s
 = 1

ζ0

V1q
 +  - V1q

 -

ζq
w∑

q
 Φq

w(r) , r ∈  S1 , (4.1)

where expansion (3.3) of the tangential component of the magnetic field in the waveguide,
and representation (2.3) of the magnetic field in the cavity have been used. We put for
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brevity Vq
 +(0) = V1q

 +  and Vq
 -(0) = V1q

 - . Similarly the matching over the aperture
S2 (z = 2L and a ≤ r ≤ b) gives

(-1)s εs
2L

 Aps Φp
c(r)∑

p,s
 = - 1

ζ0

V2q
 +  - V2q

 -

ζq
w∑  Φq

w(r) ,  r ∈  S2 , (4.2)

where Vq
 +(2L) = V2q

 +  and Vq
 -(2L) = V2q

 - . Both relations (4.1) and (4.2) are valid for a≤r≤b;
so we can project them on the complete set of the modes of the coaxial cable Φq

w
(r),

obtaining the following system of equations

Yq
w V1q

 +  - V1q
 -  = ζ0 Cpq∑

p=1

∞

 εs
2L

 Aps∑
s=0

∞

 = ζ0 Cpq Ap
E + Ap

O∑
p=1

∞

(4.3)

Yq
w V2q

 -  - V2q
 +  = ζ0 Cpq∑

p=1

∞

 (-1)s εs
2L

 Aps∑
s=0

∞

 = ζ0 Cpq Ap
E - Ap

O∑
p=1

∞

(4.4)

where the coefficients Cpq defined and evaluated in the appendix A take into account the
coupling among the waveguide and the cavity modes and Yw = diag ζp

w  -1 . Furthermore
the two series ApE and Ap

O defined in equations (4.3) and (4.4) can be expressed ina closed
form.

In order to investigate the electromagnetic coupling between the waveguides and the
cavity, we have to evaluate the expansion coefficients Aps given by the integrals (2.8) and
therefore to know the electric field on the cavity surfaces. If we assume that both the cavity
and the waveguides are perfectly conducting, the contribution to the coefficient value (2.8)
comes only from the coupling apertures, that is

ζ0 Aps = 
jk

k2 - kps
2

 n × E ⋅Hps
*

 dS

S1+S2

 . (4.5)

As already noted above, the tangential component of the electric field cannot be
obtained on the cavity boundary by means of the representation (2.3). This difficulty can be
overcame by the modal expansion (3.3) and because of the continuity of the tangential
component of the electric field it is

ζ0 Aps = 
jk

k2 - kps
2

 εs
2L

 (-1)s V2t
 + + V2t

 -  - V1t
 + - V1t

 -   Cpt∑
t=1

∞

(4.6)

where, as before, the coefficients Cpt are in the Appendix A. The relation (4.6) delineates an
explicit dependence from the index s of the coefficients Aps.. This fact implies that we are
able to get for the two series appearing in (4.3) and (4.4) the following expressions 11)

Ap
E = j 

cotg kLζp
c

2 ζ0 ζp
c  V2t

 + + V2t
 -  - V1t

 + - V1t
 -  Cpt∑

t=1

∞

(4.7)

Ap
O = j 

tg kLζp
c

2 ζ0 ζp
c  V2t

 + + V2t
 -  + V1t

 + + V1t
 -  Cpt∑

t=1

∞

(4.8)
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In this way, from a physical point of view, we have taken into account all the
longitudinal modes of the cavity. Substituting the sums (4.7) and (4.8) into relations (4.3)
and (4.4) respectively, we get a system containing only the powering waves

 
Yw + O - E  V1

 - + O + E  V2
 - = Yw -O + E  V1

 + - O + E  V2
 +

 
O + E  V1

 - + Yw + O - E  V2
 - = - O + E  V1

 + + Yw -O + E  V2
 +

(4.9)

where for the sake of simplicity we called

E = 
j
2

 CT Yc cotg kLZc  C     O = 
j
2

 CT Yc tg kLZc  C (4.10)

and we defined the following matrices and vectors

C = Cpq  ,Yw = diag ζp
w  -1 , Zc = diag ζp

c  , Vm
 ± = Vmp

 ±  , m =1, 2 ,  Yc = Zc
-1 

Before going on we have to point out some features of our formulation. In eqs. (4.9)
the resonant behaviour of the cavity appears straightforward and it is included in the two
terms O and E : Yc goes to infinity in the case of transverse resonances, meanwhile the
cotangent (tangent) terms go to infinity for the longitudinal ones. Our use of field
expansions in normal modes has brought us to the useful series (4.7) and (4.8) containing
the resonant cavity modes and leading to closed forms.
Furthermore, the term Yw contains all the information on the waveguides behaviour.

5 SCATTERING MATRIX
We are now ready to evaluate the generalized scattering matrix. Taking into account

that our device under test is symmetric (S11=S22) and reciprocal (S12=S21), we have to
compute only S11 e S12.

We start by getting the difference V1
 - - V2

 -, and the sum V1
 - + V2

 - from the system
(4.9), obtaining

 
V 1

 - - V2
 - = A - E -1 A + E  V1

 + - V2
 +

 
V1

 - + V2
 - = A + O -1 A - O  V1

 + + V2
 +

(5.1)

As a consequence, it is simple to define the generalized scattering matrix

 
V 1

 - = S11 V 1
 + + S12 V 2

 +

 
V2

 - = S21 V 1
 + + S22 V 2

 +
(5.2)

where the reflection matrix is defined by

S11 = S22 = 1
2

 A + O -1 A - O  + A - E -1 A + E (5.3)

and the transmission matrix is given by

S12 = S21  = 1
2

 A + O -1 A - O  - A - E -1 A + E (5.4)
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It is obvious that the reflection (5.3) and the transmission (5.4) matrices are of infinite
dimension. In practice, the order of these matrices depends upon the modes propagating
through the structure. Performing a numerical elaboration, one has to truncate these matrices
to a finite dimension (N), which indicates how many transverse modes propagate in the
structure. This dimension is related to the maximum working frequency and goes up on
increasing this frequency. We have verified by means of numerical experiments hereafter
proposed that in practical cases only a few modes are useful to describe the propagation in
our structure.

Nevertheless we verified, by numerical experiments, that the inversion procedure of
the truncate matrices is well behaved and stable: we shall say that a Nth order inverse has
been found if the elements of an Nth order matrix formed by truncating the inverse matrix of
an (N+M)th order solution does not change appreciably as M increased.

Finally we observe that if only the fundamental mode propagates in the waveguide
(w1 = 0) and in the cavity (c1 = 0), the previous formulae can be simplified, and the
reflection and transmission matrices becomes the scalar quantities, given by

S11(1,1) = 1
2

 
1 - jα tg(kL)
1 + jα tg(kL)

 + 
1 + jα cotg(kL)
1 - jα cotg(kL)

 ,   S12(1,1) = 1
2

 
1 - jα tg(kL)
1 + jα tg(kL)

 - 
1 + jα cotg(kL)
1 - jα cotg(kL)

 ,

where α = ln(b/a)/ln(c/a).

6. OHMIC LOSSES

Till now we have considered the contribution to the integral in eq. (2.8) due to the
coupling apertures only, because the other terms are null for a perfect conducting material. If
we want to complete the study of the electromagnetic coupling between the waveguide and
the cavity , ohmic losses are to be introduced in the cavity walls: the tangential component of
the electric field will be no more vanishing there and one can evaluate the expansion
coefficient (2.8) also on the cavity surfaces. The definition of these coefficients needs the
knowledge of the electric field on the cavity. surface. The Leontovic boundary
condition9,10)

n × E = 
1 + j

σδ
 n × (H × n) = 

1 + j

σδ
 Ht (6.1)

wherein σ is the electric conductivity of the metallic regions and δ = 2/(ωµσ) is the
penetration depth, can be used to express the (tangential) electric field over the metallic
surfaces in terms of the magnetic field, given by expressions (2.3). In this case we include
ohmic losses in a non perturbative way. The ohmic losses change the cavity eigenvalues,
acting as a sort of source diffused on the cavity walls.

Regarding the coefficients Aps, we note that they depend on the electric field and on
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the inner cavity surface S. The integral can be evaluated by dividing the surface S according
to the following sub-domains :

• the lateral surface Sc of the cavity (r=c and 0≤z≤2L);
• the surrounding surface Sa of the wire (r=a and 0≤z≤2L);
• the lateral surfaces of the cavity B1 (z=0 and b≤r≤c) and B2 (z=2L and b≤r≤c).
Following the geometrical scheme listed above, the integration (2.8) can be considered

as the superposition of four contributions where the first one is related to the coupling
through the apertures and has been discussed in the previous section. The other ones will be
discussed and evaluated below, using Leontovic condition (6.1) for the different cases.

• All along the lateral surface Sc of the cavity n = r  we get

r × E(P)⋅Hps
 *

(P) dS

Sc

 = ζ 2πc Amq∑
m,q

Hmq(c,z)⋅Hps
 *

(c,z) dz
0

2L

 .

where ζ  = 
1 + j
σδ

 is the surface impedance.

Performing the trivial integration on z 11), we finally have

r × E(P)⋅Hps
 *

(P) dS

Sc

 = ζ 2πc hp
 c

(c)⋅ Ams hm
 c

(c)∑
m

 . (6.2)

• Repeating the same considerations along the surounding surface Sa of the wire
n = - r , we obtain

r × E(P)⋅Hps
 *

(P) dS

Sa

 = ζ 2πa hp
 c

(a)⋅ Ams hm
 c

(a)∑
m

 . (6.3)

Summing relations (6.2) and (6.3) we get

r × E(P)⋅Hps
 *

(P) dS

Sa+Sc

 = ζ Lpm Im(s)∑
m

 , (6.4)

where the generic element of the matrix L  = Lpm  is given by

Lpm = 2π   c hp
 c

(c)⋅hm
 c

(c) + a hp
 c

(a)⋅hm
 c

(a)  . (6.5)

• The contribution of the two lateral surfaces of the cavity B1 (where n = - z) and B2 (where

n = z) can be computed using the modal expansion of the fields (A.3) and the Leontovic

condition (5.1) again, namely

n × E(P)⋅Hps
*

(P) dS

B1+B2

 = ζ Am(q)∑
m,q

 
εqεs

2L
 1 + (-1)s+q  Bpm , (6.6)
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where the symmetric matrix B = Bnm  is defined and evaluated in the Appendix B.
Summarising the previous results and representing the symmetric matrix 12)

diag (kp)2  + j 
ζ
ζ0

 k L  = U D U-1, (6.7)

by means of the eigenvalue diagonal matrix, D = diag λp
2

 , which corresponds to the
eigenvector matrix U  = Upm , the elements of the scattering matrix can be written in forms
similar to eqs. (5.3) and (5.4), following the same scheme outlined in the previous section;
new matrices have to be defined that take into account the losses

E  =  
j
2

  CT U Zc tg(kLZc) U-1 + j   
ζ
ζ0

 B
-1

C ,

O  =  
j
2

  CT U Zc cotg(kLZc) U-1 - j 
ζ
ζ0

 B
-1

C ,

Zc = diag 
k2 - λp

2

k
  .

(6.8)

It is worth noting that these new matrices (6.8) give again the old ones (4.10) in the
case σ = ∞ (perfectly conducting case) and the eigenvalues λp fall back in the transverse
eigenvalues kp. The ohmic losses change the cavity eigenvalues, acting as a sort of source
diffused on the cavity walls. It has to be noticed that, in this way, the coefficients Aps

contain all the information regarding the losses and the apertures.

7 NUMERICAL RESULTS AND APPROXIMATIONS
We started the numerical experiments with a cavity defined by the following inner and

outer diameter, length and external waveguide diameter

2a = 0.75 mm 2c = 25.7 cm 2L = 38.7 cm 2b = 6.87 cm ;

with all the metallic regions exhibiting an electrical conductivity σ = 58 MS/m.
We decided to examine the spectrum of some elements of the scattering matrix up to 4

GHz. Therefore we studied the convergence of the proposed method around the 1 GHz and
the maximum working frequency in order to estimate the minimum order of the scattering
matrix. The procedure establishes with a very small dimension of the matrix (N ≈ 8), as the
Figure 2 distinctly indicates. This implies that we are able to examine the transmission
element S12(1,1) up to 4 GHz with high accuracy by inverting a matrix of dimension four.
Similarly around a resonance frequency for S12(1,1), Figure 3 shows that 10 elements
establish the numerical evaluations with a good accuracy.

8 EXPERIMENTAL RESULTS AND COMPARISON
The coaxial wire method13,14,15,16) is a well known technique used to characterize

electromagnetic structures, which have to be inserted in particle accelerators, by measuring
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their transmission scattering matrix. The Device Under Test is transformed in a coaxial
structure by introducing a wire on its longitudinal axis.

In (Ref.5) a general relationship between the scattering matrix and the coupling
impedance is given in which the S12 coefficient is calculated as referred to the DUT
characteristic impedance and not to the external measurement apparatus and with no
approximation in the formula.

Even if this method is usually used to evaluate the unknown coupling impedance of a
bunch travelling the same structure, some care has to be taken in the result evaluation,
because the wire presence modifies the electromagnetic field behaviour. The validity of the
coaxial wire method has been investigated in some cases 17).

In order to look for an experimental validation of the MMT we apply the method to the
cavity shown in figure 1 using a wire of 0.375 mm radius. In particular we perform our
measurements in the frequency domain 16,18), acquiring the transmission scattering matrix
of the device (DUT) and of a reference line (REF), which has the same length as the cavity
and radius equal to the small aperture shown in Fig. 1. The simulation runs have been
performed on a cavity with the same geometry of measured one.

A Network Analyzer Hp 8720C (50MHz – 13.5 GHz) has been used for the
measurements in the range 0-4 GHz . The Network gives directly in output the scattering
parameters. A Power-Mac is connected through a HP-IP bus to the instrumentation for its
control and for the acquisition of the data, real and imaginary parts of the Sij parameters
(Labview enviroment). An accurate calibration has been performed for the entire band of
acquisition including all the cables and the connectors.

Both the REF and the DUT structures have geometrical and electrical impedance
adapters in order to minimize the reflections and to improve the signal to noise ratio.
Because some resonances could be really small and because we want well characterize the
sample structure, we need a "clean" signal. For this reason the adaptor system, mechanical
and electrical, has to be carefully setted up.

The wire thickness of 0.75 mm was for us a good "compromise" between the
possibility of acquire a good signal and the modification of the bunch case e.m. field
distribution.with respect to the wire case.

Figure. (4) shows the comparison between the experimental data and the simulations
performed in the same range of frequencies The agreement is really good also for some
small resonances. Longitudinal and transverse resonances could be recognized varying
some geometrical parameters in the simulations.

In order to better understand the quality of the agreement, level and frequency values,
we studied some resonances in particular, 1st and 4th. In fig. (5) the comparison is reported
between the simulation and experimental data, different runs have been performed changing
the waveguide radius. Again the agreement is satisfactory also because we can recognize the
same frequencies value and the same pick level. The comparison on the resonances level
gives us a tool to understand how precise the measure is.
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9 CONCLUSIONS AND PERSPECTIVES
The analysis of the coupling between a feeding coaxial cable and a coaxial circular

cavity has been developed by taking into account all the modes in the cable and in the cavity.
An explicit formula has been obtained for the scattering matrix, which provides a simple and
accurate tool for studying the coupling, and for allowing the design of such a structure
without using a cumbersome numerical analysis.

Finally, the comparison with the experimental results has shown both the reliability of
the implemented theoretical tool and the possibility to performe very precise bench
measurements of the scattering matrix. At the same time we got a good starting point for the
understanding of all the existing differences between impedance measurements with the
bunch and with the coaxial wire method.
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Appendix A
Aim of this appendix is to discuss the evaluation and some properties of the

coefficients

Cpq = Φp
c
(r)

A

 Φq
w
(r) dS = 2π Φp

c
(r)

a

b

 Φq
w
(r) r dr , (A.1)

which take into account the coupling due the apertures among the modes of the waveguide
and of the cavity. Using the remarkable integral [RG]

α2 - β2
 x

r

 Zp(αx) Bp(βx) dx = βr Zp(αr) Bp -1(βr) - αr Zp-1(αr) Bp(βr) (A.2)

where Zp(x) e Bp(x) are linear combination of Bessel functions, we have (p,q≥2)

Cpq =
π cp2 J0(wq) / J0(bwq/a)

J0
2(wq)/J0

2(bwq/a) - 1 J0
2(xp)/J0

2(cxp/a) - 1
 
J0(bxp/a) Y0(xp) - Y0(bxp/a)J0(xp)

wq2 - xp2 (A.3)

where wq and xp are the transverse eigenvalues of the waveguide and of the cavity
respectively, namely they are solution of the equation (2.7) with α = b/a and α = c/a.
The elements of the first row and the first column of the matrix C are related to the
fundamental mode (TEM). We get for the first row and the first column

C1q = 2π
ln(c/a)

 Φq
w
(r) dr

a

b

 = 0     for q = 2, 3, 4,  , (A.4)

Cp1 = 2π
ln(b/a)

 Φp
c(r) dr

a

b

 = π 
J0(xp) Y0(bxp/a) - J0(bxp/a) Y0(xp)

2 ln(b/a) J0
2(cp)/J0

2(cxp/a) - 1
   for p = 2,3,4 ..(A.5)

Finally C11 is given by

C11 = 1
ln(b/a) ln(c/a)

 dr
r  

a

b

= 
ln(b/a)
ln(c/a)

 . (A.6)
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Appendix B

In this appendix we perform the evaluation of the coefficients Bnm

Bnm = Φn
c
(r)

B

 Φm
c

(r) dS = 2π Φn
c
(r)

b

c

 Φm
c

(r) r dr . (B.1)

From the definition it follows immediately that is the matrix B is symmetric. Thus, starting
with the first element B11, it is

B11 = 1
ln(c/a)

 
b

c

dr
r  = 

ln(c/b)
ln(c/a)

 . (B.2)

We continue with the other elements of the first row (the first column) 11)

B1m = 2π
ln(c/a)

 Φm
c

(r) dr
b

c

 = π 
J0(bcm/a) Y0(cm) - J0(cm) Y0(bcm/a)

2 ln(c/a) J0
2(cm)/J0

2(ccm/a) - 1
 . (B.3)

and the other off-diagonal elements, using the integral (A.2), are

Bnm = 2π ln(c/a) b 
cn2 B1n Φm

c
(b) - cm2  B1m Φn

c
(b)

cn2 - cm2
(B.4)

The elements of the main diagonal can be obtained from the last relation in the limit
cn → cm, namely

Bnn = 2π ln(c/a) b B1n Φn
c
(b) .
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FIG.1: geometry of the cavity powered by a circular coaxial waveguide.
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