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1 The Bridge between Optics and Mechanics

Since its early formulation, the analogy between Optics and Mechanics showed to be very

fruitful to produce very important physical insights. For example, it is well known that

this analogy was very important to arrive, passing through the construction of wave me-

chanics, at the present formulation of Quantum Mechanics that has been recognized a very

fundamental theory of the nature. It is worth to mention some very important steps of the

development of this analogy.

The first analogy put geometrical optics in correspondence with classical mechanics,

on the basis of the fully similar formulation of Fermat principle and Hamilton principle.

The above analogy has been soon recognized very important in the study of the mo-

tion of charged particle in the presence of electromagnetic fields. The natural development

of this branch was the formulation of the electron optics which has been applied for several

very important scientific and technological applications, such as electron microscopy and

particle accelerators [1]-[3]. For many years electron optics remained formulated at the

level of geometrical optics. Within this framework, the formulation of electron optics can

be given in a way fully similar to electromagnetic geometrical optics provided to replace

the notion of light rays and refractive index with electron rays and potential, respectively.

The analogy has been extended to the wave level, going from Optics to Mechanics

by de Broglie [4] and Schrödinger [5], obtaining the wave mechanics and subsequently the

Quantum Mechanics. The transition from Classical to Wave Mechanics has been induced

just considering the relationship between Geometrical and Wave Optics.

The same kind of transition has been performed by Bohr [6] with a formal procedure

called quantization based mainly on a set of formal prescriptions called quantization rules

where Planck’s constant plays a role. These rules allow to go from the classical formula-

tion of mechanics into another in terms of operators in such a way to obtain an evolution

equation for the physical system under consideration.

Within the framework of the above procedures to transit from Classical to Quan-

tum Mechanics, Schrödinger equation has been recognized as the nonrelativistic limit of

a more general wave mechanical formulation induced by the correspondence with wave

optics [7]: in fact, the nonrelativistic limit of Klein-Gordon equation, which can be put in

correspondence with D’Alambert equation, is just the Schrödinger equation.

Going back from Quantum Mechanics to Wave Optics, the above nonrelativistic limit

has been considered also for D’Alambert equation, i.e. for Helmohltz equation, by Fock

and Leontovich [8] considering the problem of radiation beam propagation through an ar-

bitrary medium. They showed that the equation which governs this propagation is a sort of
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Schrödinger equation where �h and the time are replaced by the inverse of the wave number

and the propagation coordinate, respectively. The Schrödinger-like equation of Fock and

Leontovich was actually obtained by the electromagnetic wave equation in paraxial ap-

proximation which considers the slopes of the light rays, with respect to the propagation

coordinate, very small. It is possible to see that this approximation is equivalent to the so-

called slowly-varying amplitude approximation, widely used in nonlinear optics [9]-[11]

and in plasma physics [12] as well as to the non relativistic limit of the electromagnetic

wave equation.

The above correspondence, going back from Quantum Mechanics to Wave Optics,

has been extended more recently by Gloge and Marcuse [13] by performing the transition

from Geometrical Optics to Wave Optics in a way fully similar to the one ala Bohr. In

the formal quantization of Gloge and Marcuse, a set of quantization rules (in which �h and

the time are replaced by the inverse of the wave number and the propagation coordinate,

respectively) are introduced in the Hamiltonian for the electromagnetic rays. The results is

the electromagnetic wave equation whose limit, in paraxial approximation, gives the Fock

and Leontovich equation.

The procedure of Gloge and Marcuse revealed to be very fruitful because it provided

for transferring algorithms and many solutions of quantum mechanics to radiation beam

physics, especially for optical fibers [14,15], coherent and squeezed states theories [16]-

[21], Schrödinger cat states [22,23], and phase-space investigations within a Wigner-like

picture [24] in which a quasi-classical distribution, fully similar to quantum Wigner trans-

form [25] governs the paraxial e.m. ray evolution.

In the recent years, the importance to describe, in an unified way, optics of light and

optics of electronic rays has been recognized by some author [26] and the importance to

transit from Geometrical Electron Optics to Wave Electron Optics, has been pointed out

[27] as a possible development of Electron Optics.

In the recent years as well, a procedure ala Gloge and Marcuse has been introduced

in Electron Optics to describe the collective behaviour of charged-particle beam transport

[28],[29]-[34]. By using some correspondence rules, called thermal quantization rules, in

which �h and the time are replaced by the beam emittance [36] and the propagation coordi-

nate, respectively, a quantum-like description of the electronic rays, called Thermal Wave

Model (TWM) can be constructed. This procedure, applied in paraxial approximation, al-

lows to get a Schrödinger-like equation for a complex function, the so-called beam wave

function (BWF) whose squared modulus is proportional to the beam density.

A novel approach which consists in a deformation of the phase-space equation for

electronic rays, has allowed to recover TWM, in a way alternative to the one ala Gloge

and Marcuse, but only in semiclassical approximation [37]. The transition from the classi-
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cal description to the quantum-like one allows for obtaining a von Neumann-like equation

which, in turns, provide for a Wigner-like description of charged-particle beam transport

in semiclassical approximation.

In this paper, we propose a method, alternative to the one ala Gloge and Marcuse,

to transit from Geometrical Optics to Wave Optics namely from the classical-like descrip-

tion to the quantum-like description of Light-ray Optics, by using the above deformation

procedure employed in Electron Optics. This allows us to get an effective description of

Light-ray Optics which shows the role played by the semiclassical approximation in the

quantum-like theory of light rays. In the next Section, we briefly review the quantum-

like theory of Gloge and Marcuse and in Section 3 we present the classical-like phase-

space equation for light rays for an arbitrary refractive index. In Section 4, the deforma-

tion procedure is used to transit from the above classical-like phase-space equation to an

effective quantum-like equation in semiclassical approximation which formally coincides

with von Neumann equation. This deformed phase-space description allows us to recover

the Wigner-like picture, widely used to describe the electromagnetic beam transport in

phase-space [24]. The quantum-like picture of Gloge and Marcuse as well as the Fock-

Leontovich Schrödinger-like equation are then recovered in semiclassical approximation.

In Section 5 the hierarchy of the moment equations, associated with the von Neumann-like

equation, is obtained, and a fluid model, associated with the beam transport in real space,

is obtained by truncation of the above hierarchy. In particular, the case of both the classical

and the semiclassical fluids are considered. In Section 6 this fluid description is compared

with the Madelung fluid model, and finally in Section 7 conclusions and remarks are pre-

sented.

2 Brief review of the Gloge and Marcuse Quantum-like Theory

Fermat’s principle can be formulated in terms of the following least-action principle [13]

�
Z

L(x; y; x0; y0; z) dz = 0 ; (1)

where L(x; y; x0; y0; z) = n(x; y; z)(1 + x02 + y02)1=2 represents the Lagrangian associ-

ated with the propagation of light rays through a medium with an arbitrary refractive in-

dex n(x; y; z; ), where z is the propagation coordinate, x and y denote the transverse (with

respect to z) space coordinates and primes denote differentiation with respect to z. Ac-

cording to the hamiltonian terminology, the following generalized momentum p of com-

ponents

px =
@L

@x0
= n

x0

(1 + x02 + y02)
1
2

; (2)
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py =
@L

@y0
= n

y0

(1 + x02 + y02)
1
2

; (3)

and the hamiltonian

H = pxx
0 + pyy

0 � L = (n2 � p2x � p2y)
1
2 ; (4)

can be introduced. In the case of paraxial approximation, for which rays have a direction

close to the propagation direction, say z-axis, (2), (3), and (4) become, in normalized form

Px =
px
n0

� n

n0
x0 ; (5)

Py =
py
n0

� n

n0
y0 ; (6)

and

H =
H

n0
� 1

2

�
P2
x + P2

x

�
+ U ; (7)

where U � �n=n0 (n0 being the constant average of n close to the z-axis). Consequently,

by introducing in (7) the following formal quantization rules

Px !�i 6� @

@x
; Py ! �i 6� @

@y
; (8)

and

H ! i 6� @

@z
; (9)

where 6 � � �=2� is the inverse of the wavenumber (� being the wavelength) associated

with the e.m. wave, a Schrödinger-like equation for a complex e.m. wave amplitude �

can be easily obtained, namely [8]

i 6� @

@z
� = � 6�2

2

 
@2

@x2
+

@2

@y2

!
� + U� : (10)

Eq.(10) is referred as to Fock-Leontovich equation [9]. Provided thatZ 1

�1

Z 1

�1
j�(x; y; z)j2 dx dy = 1 ; (11)

j�(x; y; z)j2 gives the normalized e.m. power density as well as the probability density of

finding an e.m. ray at (x; y).

Remarkably, the above paraxial approximation is appropriate for describing an e.m. beam

travelling along z-axis. Furthermore, the effective potential U (refractive index) can in

general depend on j�j2, which in this case accounts for an e.m. beam propagation through
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a nonlinear medium. Since the evolution of an e.m. beam is governed by a Schrödinger-

like equation for the complex e.m. field amplitude � , it is easy to prove the following

well-known uncertainty relation:

W PW �6� ; (12)

where

W �
"R1

�1 r2j�j2 d2rR1
�1 j�j2 d2r

#1=2
�< r2 > (13)

is the effective beam radius (r � p
x2 + y2) and

PW �
"
6�2
R1
�1 jr?�j2 d2rR1
�1 j�j2 d2r

#1=2
; (14)

is the total e.m. averaged transverse momentum associated with the e.m. beam .

By following [9] and assuming a the refractive index of the formU(r; z) = 1
2
K(z)r2

(linear lens), one easily obtains

d2W

dz2
+K(z)W � 6�2

W 3
= 0 : (15)

In particular for the propagation in vacuo (K = 0) :

W (z) = W0

 
1 +

z2

z2R

!
; (16)

where W0 is the minimum spot size (waist) and zR is the so-called Rayleigh length (Note

that: W 2
0 =6� zR).

It is worth to note that the limits 6�! 0 and �h! 0 recover geometrical optics (light-

rays equation) and classical mechanics (classical motion equation), respectively. In fact,

the physical meaning of 6� is given in terms of diffraction parameter. The condition 6� 6= 0

in paraxial approximation is connected to a weak displacement of light rays from the beam

propagation direction in such a way to produce a mixing between them. In the exact geo-

metrical optics limit ( 6� = 0) the ray would be straight lines parallel to the propagation

direction when the beam is travelling in vacuo, whilst for 6� finite the rays mixing (diffrac-

tion effect) produces a hyperbolic hyperboloid around the z-axis which corresponds to a

typical caustic shape described by (16) [38].

3 Classical-like phase-space equation for light rays

In this section we develop the classical-like description of geometric optics in the phase

space in terms of a classical phase-space distribution of the light rays in the case of an

arbitrary refractive index. We confine our attention on the case of paraxial approximation.
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Taking into account this approximation, we describe, according to Eq.s (5) and (6),

the geometrical optics of a light beam which propagates along z-axis. We observe that,

Hamilton’s equation for (7) give (single-light-ray equations):

d~r?
dz

= ~P? ; (17)

d~P?
dz

= �~r?U ; (18)

where ~r? � xx̂ + yŷ and ~P? � Pxx̂ + Py ŷ. Thus, we can associate with a single ray a

classical-like particle trajectory. Consequently, Eq.n (18) shows that the refractive index

provides to give an effective force on each single light-ray. In addition, it is clear from

(5) and (6) that Px and Py represent a measure of the light-ray slopes with respect to the

propagation direction. These slopes are very small in paraxial approximation, in fact

dx

dz
� x0 � 1 ; and

dy

dz
� y0 � 1 ; (19)

i.e. Px and Py account for the small deviation of the rays with respect to the propagation

direction. Consequently, as for the particle systems, we may introduce a distribution in the

phase space �(x; y;Px;Py; z) which is constant along the characteristics, i.e.

@�

@z
+ f�;Hg = 0 ; (20)

where f:::; :::gdenotes the classical Poisson’s brackets. Eq.n (20) can be explicitly written

as:
@�

@z
+
�
~P? � ~r?

�
� �

�
~r?U

�
� @�

@ ~P?
= 0 : (21)

Let us consider, around the point (~r?0, ~P?0), the phase-space volume element d2r?d2P? =

dxdydPxdPy . Thus the quantity �
�
~r?0; ~P?0; z

�
d2r?d

2P? is the probability to find a light

ray at transverse location ~r?0 with slope ~P?0, provided that the following normalization

condition holds Z
�
�
~r?; ~P?; z

�
d2r?d

2P? = 1 : (22)

Eq.n (21) describes the evolution of the light rays in paraxial approximation and in the

geometrical optics context. However, we point out that (21) is still suitable to describe the

beam optics beyond the exact geometrical optics limit. In fact, in the case of vacuum, U =

0, and in the case of linear focusing (defocusing) devices, U = k1x
2=2+k2y2=2, Gaussian

beams, whose propagation is affected by the diffraction, can be also described by (21). To

give the reader an idea, let us consider a simple 2-D (y-transverse component is neglected

for simplicity) focusing/defocusing, infinitely thick (in the both x and z directions) device

7



with refractive index of the form U = k(z)x2=2, where k(z) being the strength of the

device. Thus, in this case Eq.n (21) becomes:

@�

@z
+ p

@�

@x
� k(z)x

@�

@p
= 0 ; (23)

where, for simplicity, we have put Px � p.

We look for a solution of (23) of the form

�(x; p; z) = A exp
�
� 1

B

h
c(z)x2 + 2a(z)xp+ b(z)p2

i�
; (24)

where A and B are positive constants, and a(z), b(z), c(z) are functions to be determined.

By substituting (24) in (23), we obtain the following conditions:

c0(z) = 2k(z)a(z) ; (25)

a0(z) = �c(z) + 2k(z)b(z) ; (26)

and

b0(z) = �2a(z) ; (27)

where primes again stand for derivative with respect to z. The following results thus hold.

(i). Using (25)-(27) it is easy to see that:

b(z)c(z) � a(z)2 = constant : (28)

Without loss of generality, we can assume that the constant is 1=4, i.e.

bc � a2 =
1

4
: (29)

(ii) the normalization condition, applied to (24), gives

A =

p
cb� a2

�B
; (30)

which, by virtue of assumption (29), becomes

A =
1

2�B
: (31)

(iii). Defining the second-order moments, �x(z), �p(z), and �xp(z), of � as

�2x(z) =
Z

�(x; p; z)x2 dx dp � hp2i ; (32)
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(beam spot-size)

�2p(z) =
Z

�(x; p; z)p2 dx dp � hp2i ; (33)

(momentum spread or r.m.s. of ray slopes)

�xp(z) =
Z

�(x; p; z)xp dx dp � hxpi ; (34)

the use of (24), (29), and (31) allow us to obtain

b(z) =
�2x(z)

2B
; c(z) =

�2p(z)

2B
; and c(z) = ��xp(z)

2B
: (35)

Thus, we easily write (29) in the following way:

�2x(z) �
2
p(z) � �2xp(z) = B2 = constant : (36)

Consequently, the following inequality can be derived:

�2x(z) �
2
p(z) � B : (37)

(iv). Correspondingly, solution (24) can be cast in the form:

�(x; p; z) =
1

2�B
exp

�
� 1

2B2

h
�2p(z)x

2 � 2�xp(z)xp+ �2x(z)p
2
i�

: (38)

Eq.n (38) is the phase-space distribution function of light rays associated with a Gaussian

beam whose space density is

�x(x; z) �
Z
�(x; p; z)dp =

1q
2��2x(z)

exp

"
� x2

2�2x(z)

#
; (39)

and whose ray-slope distribution is

�p(p; z) �
Z
�(x; p; z)dx =

1q
2��2p(z)

exp

"
� x2

2�2p(z)

#
: (40)

It is worth to observe that, in case the beam is in a vacuum (k = 0), solution (24),

i.e. (38), remains formally the same but provided that in Eq.s (25)-(27) is put k = 0.

Even if the distributions (39) and (40) do not depend explicitly on the constant B, to

complete the present description we need to give for it a more precise physical meaning.

To this end, we observe that the experimental observations show that, when we produce

in vacuo the focusing of a light monochromatic beam of wavelength �, a diffraction limit

holds which can be written as [38]:

(�x �p)min ' �

4�
� 6�

2
: (41)
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Consequently, it follows that

B =
6�
2

: (42)

Using this result in (35) and (38), we finally obtain, respectively

�x = 6�b ; �xp = 6�a = �x
d�x
dz

; �p = 6�c ; (43)

and

�(x; p; z) =
1

� 6� exp

(
� 2

6�2
h
�2p(z)x

2 � 2�xp(z)xp + �2x(z)p
2
i)

: (44)

Remarkably, (41) and (44), show that, due to the diffraction limit, we cannot resolve among

two or more light rays in phase-space regions of size the order of 6�. If the limit 6�! 0 is

not exactly taken, but nevertheless 6� is considered however small, we are still in the con-

text of geometrical optics. Thus, in the paraxial approximation Eq.n (23) still describes

the phase-space evolution in a linear device. On the other hand, the diffraction limit intro-

duced by non-zero 6� introduces, by virtue of (41), an indistinguishability among the light

rays.

In the next section we develop an effective phase-space description which takes into

account this indistinguishability. We conclude the present section observing that �x(x; z)

must also represent, according to the results of the previous section, the electromagnetic

power density which is proportional to the modulus square of the electromagnetic field

amplitude associated with the beam.

4 Deformed phase-space description

In this section we apply a deformation method used recently to transit from the classical

phase-space ray equation to a quantum-like phase-space ray equation in semiclassical ap-

proximation [37]. We want to make here a similar transition, starting from the classical

phase-space light ray equation (21). We still confine our attention to the 2-D case (the y-

direction is ignored for simplicity) and make the same step as in Ref.[37].

(i). Let �0 be the minimum spot size that can be achieved in vacuo with an initial

focusing condition, and let us define the parameter � �6�= (2�0). It is easy to see that, in

paraxial approximation, this quantity is much smaller than 1. In fact, by denoting with �p0
the r.m.s. of the ray-slopes corresponding to the above minimum spot size, from (41) is

clear that:

� � 6�
2�0

' �p0 ' h
 
dx

dz

!2

i1=2min � 1 : (45)
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(ii). The above 2-D phase-space light-ray equation for an arbitrary refractive index

can be explicitly written as:

@�

@z
+ p

@�

@x
� @U

@x

@�

@p
= 0 ; (46)

By introducing the dimensionless variables:

z � z

2�0
; x � x

2�0
; (47)

Eq.n (46) assumes the form:

@�

@z
+ p

@�

@x
�
 
@U

@x

!
@�

@p
= 0 ; (48)

where � � �(x=2�0; p; z=2�0) � �(x; p; z) and U � U(x=2�0; z=2�0) � U(x; z).

According to the previous results , the indistinguishability among two or more rays

due to the paraxial diffraction is the order of � � 1. Thus, @U=@x in (46) can be conve-

niently replaced by the following symmetrized Schwarz-like finite difference ratio:

@U

@x
� U(x+ �=2) � U (x� �=2)

�
: (49)

This way, (46) must be replaced by the following equation for an effective distribution,

say �w(x; p; z; �):

@�w
@z

+ p
@�w
@x

� U (x+ �=2) � U(x� �=2)

�

@�w
@p

= 0 : (50)

Given the smallness of �, multiplying both numerator and denominator of the last term of

the l.h.s. by the imaginary unit i, we have:

U(x+ �=2) � U(x� �=2)

i�
i
@�w
@p

� U(x+ i (�=2) @=@p)� U(x� i (�=2) @=@p)

i�
�w ;

(51)

Thus, going back to the old variables x and z, (50) assumes formally the look of a von

Neumann equation [25,39]:(
@

@z
+ p

@

@x
+

i

6�

"
U

 
x+ i

6�
2

@

@p

!
� U

 
x� i

6�
2

@

@p

!#)
�w = 0 ; (52)

where �w � �w(2�0x; p; 2�0z; 2�0�) � �w(x; p; z; 6�). Eq.n (52) shows that in the frame-

work of this effective description, the phase-space evolution equation for light rays is a

quantum-like phase-space equation where �h and the time t are replaced by 6� and the prop-

agation coordinate z, respectively.

However, some considerations are in order.
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� Approximation (49) is due both to the smallness of � and the fact that evaluation of

U -variation around the location x does not make sense within an interval of size �.

This, in fact, corresponds to the intrinsic uncertainty produced among the rays by

the paraxial diffraction. Thus, (50) represents a possible way to take into account

the ray-mixing produced by the paraxial diffraction in this evaluation.

� Since U(x + i�
2

@
@p
) � U(x � i�

2
@
@p
) = @U

@x
i� @

@p
+ O

�
�3 @3

@p3

�
, approximation (51)

is equivalent to assume that terms O
�
�3 @3

@p3

�
are small corrections compared to the

lower-order ones, according to the paraxial approximation. Consequently, approxi-

mation (51) plays the role of semi-classical approximation [40].

� While the distribution �(x; p; z) involved in (46) is introduced in a classical frame-

work and it is positive definite, the function�w(x; p; z; 6�) is introduced in a quantum-

like framework and it is not positive definite. In fact, in this quantum-like context

�w(x; p; z; 6�) cannot be used to give information within the phase-space cells with

size smaller than 6 �, due to the paraxial diffraction, i.e. due to the indistinguisha-

bility among the light rays. It is clear from the von Neumann-like equation (52)

that �w is a sort of Wigner-like function, which is not positive definite, due to the

quantum-like uncertainty principle given in section 3. In analogy with quantum me-

chanics, �w(x; p; z; 6 �) can be defined a quasidistribution, even if its x-projection

and p-projection are actually configuration-space distribution and momentum-space

distribution, respectively. In particular, we assume that the probability �x(x; z; 6�),
introduced above, is:

�x(x; z; 6�) =
Z

�w(x; p; z; 6�) dp ; (53)

provided that also �w is normalized over the phase space.

Remarkably, from the above results it follows that it may exist a complex function,

say 	(x; z) such that

�x(x; z; 6�) = 	(x; z)	�(x; z) ; (54)

used also for description of pure quantum states, and the following quantum-like density

matrix

G(x; x0; z) = 	(x; z)	�(x0; z) ; (55)

used also for description of mixed quantum states, connected with �w by means of the fol-

lowing Wigner-like transformation:

�w(x; p; z; 6�) = 1

2� 6�
Z 1

�1
G
�
x+

y

2
; x� y

2
; z
�
exp

 
i
py

6�

!
dy ; (56)
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or, for pure states

�w(x; p; z; 6�) = 1

2� 6�
Z 1

�1
	�

�
x+

y

2
; z
�
	
�
x� y

2
; z
�
exp

 
i
py

6�

!
dy : (57)

Consequently, 	(x; z) must obey to the following Schrödinger-like equation:

i 6� @	

@z
= � 6�2

2

@2

@x2
	+ U(x; z)	 ; (58)

which is exactly the Fock-Leontovich equation in the case of 2-D radiation beam (see Eq.n

(10) ). Note that (10) has been recovered with the present deformation method in semiclas-

sical approximation only. Nevertheless, it is valid, in paraxial approximation, beyond the

semiclassical approximation, as well.

5 Classical and semiclassical radiation fluids

In this section we consider the hierarchy of the moment equations generated by the von

Neumann-like equation (52) up to the second order. This way we can give the picture that

we could call radiation fluid picture. We distinguish the case of 6�! 0 (classical radiation

fluid) from the one of small wavelengths (semiclassical radiation fluid). To this end, one

can calculate the set of moment equations associated with (52) respectively. Defining the

following Liouville operator

L̂ � @

@z
+ p

@

@x
�
 
@U

@x

!
@

@p
; (59)

(U being an arbitrary refractive index which can be expanded in Taylor series with respect

to x), it is easy to see that (52) can be cast as:

L̂�w =
1X
k=1

(�1)k
(2k + 1)!

 6�
2

!2k
@2k+1U

@x2k+1
@2k+1�w
@p2k+1

; (60)

Note that (60) reduces to (46) when the sum at the r.h.s. is zero. Remarkably, this circum-

stance is verified not only in the limit 6 � ! 0. In fact, it occurs also when, keeping non

zero 6�, the refractive index has a quadratic form in x: this is in full agreement with the re-

sults presented in Section 3. By introducing the �–order (� being a non-negative integer)

moment of L̂ as

M(�)(x; z) �
Z 1

�1
p�L̂�w dp ; (61)

Eq.n (60) leads to: – the continuity equation, for � = 0

@�x

@z
+

@

@x
(�xV ) = 0 ; (62)
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– the motion equation, for � = 1 
@

@z
+ V

@

@x

!
V = �@U

@x
� 1

�x

@�

@x
; (63)

– the energy equation, for � = 2

@u

@z
+

@

@x
(uV ) +

@

@x
(�V ) = �

 
@U

@x

!
�xV � @Q

@x
; (64)

and so on, where

V (x; z) =
1

�x

Z 1

�1
p�w dp � hpip ; (65)

is the current velocity, which is experimentally the first order moment of �w ,

�(x; z) �
Z 1

�1
(p � V )2�w dp � �xh(p � hpip)2ip ; (66)

which is essentially the radiation pressure or the second order moment of �w,

u(x; z) � 1

2
� +

1

2
�xV

2 ; (67)

Q(x; z) � 1

2

Z 1

�1
(p� V )3�w dp � �xh(p � hpip)3ip ; (68)

which is essentially the analog of the heat. Additionally, from (61) we obtain also:

M(�)(x; z) = �
kmax�(��1)=2X

k=1

(�1)k
 

�
2k + 1

! 6�
2

!2k
@2k+1U

@x2k+1

Z 1

�1
p��2k�1�w dp 6= 0 8� � 3 :

(69)

The characteristic of these moment equations is that the one of �–order is an evolution for

the �–order moment of �w, but contains (� +1)–order moment of this function. Provided

that a closure equation is introduced, which relates (�+1)–order moment with the lower-

order ones, the truncated set of equations, consisting of moment equations up to the �–

order plus the closure equation, is fully equivalent or (60), respectively.

The fluid description is given when the truncation is introduced at � = 1 together

with a closure relationship involving the second-order moment. Actually, the picture that

we could get from the truncation involving (64) can be considered a fluid picture, as well.

Furthermore, note that all the Eq.s (69) account for the quantum-like corrections beyond

the semiclassical approximation.

We can estimate the order of the paraxial diffraction introduced in Eq.n (63), assum-

ing the form (44) for �w and making use of (65) and (66). It results that

�(x; z) =
6�2
4�2x

�x(x; z) : (70)

14



Since 6�
2�x

� 6�
2�0

= � � 1 ; (71)

the last term in (63), viz.
1

�x

@�

@x
� 6�2

4�2x

1

�x

@�x

@x
; (72)

represents the semiclassical approximation of the paraxial diffraction at the level of the

fluid description. Remarkably, truncating the hierarchy at the order � more and more high,

we get a mesoscopic description more and more deep. Taking all the infinite hierarchy, we

will have the most deep mesoscopic description of the system (beyond the semiclassical

approximation), which corresponds to a fluid scheme that we could call Madelung’s radi-

ation fluid (see Section 6).

5.1 Classical radiation fluid (diffraction-less beam)

For arbitrary refractive indexes U , the fluid description for a diffraction-less beam can be

obtained from (62) and (63) in the limit 6�! 0:

@�(0)
x

@z
+

@

@x

�
�(0)
x V (0)

�
= 0 ; (73)

 
@

@z
+ V (0) @

@x

!
V (0) = �@U

@x
; (74)

where the apexes (0) denotes that we are taking the above limit. In this limit we observe

that

�w(x; p; z; 6�! 0) ! �(0)
x (x; z) �

�
p � V (0)(x; z)

�
� �0(x; p; z) ; (75)

and the local slope of the light rays, p = dx=dz, is determined only by the gradient of U .

In particular, in vacuo (U = 0) a monochromatic beam has the phase-space density of the

form P0 �(p� V0), with P0 and V0 constants.

Note that system (73) and (74) is naturally closed. It has been used in radiation beam

optics to solve a number of problems when the diffraction is negligible [41].

5.2 Semiclassical radiation fluid

Within the fluid description, we now take into account also the paraxial diffraction. Thus,

the semiclassical fluid is described by the Eq.s (62) and (63) plus a suitable closure equa-

tion. The result shown by (70) for Gaussian beams suggests us to assume in general this

relationship, at the present level of fluid description, as the required suitable closure equa-

tion. Consequently, Eq.s (62) and (63) become

@�(1)
x

@z
+

@

@x

�
�(1)
x V (1)

�
= 0 ; (76)
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@

@z
+ V (1) @

@x

!
V (1) = �@U

@x
� 6�2

4�2x

1

�(1)
x

@�(1)
x

@x
; (77)

where the apexes (1) denote that the paraxial diffraction is now taken into account. This

system is fully similar to the one that can be usually derived for the transverse motion of

a dilute particle beam, assuming a fluid model with the ideal gas state equation [42]. In

fact, in this analogy, the term 6�2

4�2x

1

�
(1)
x

@�
(1)
x

@x
is replaced, for particle beams, by �2

4�2x

1
n
@n
@x
'

v2th
c2

1
n
@n
@x

, where n is the beam number density, � is the transverse particle beam emittance,

vth is the transverse thermal velocity, and where the following properties holds: �=2�x '
vth=c� 1 (see Ref. [3]). The above ideal gas state equation assumed in this case is

� =
kBT

mc2
n =

�2

4�2x
n ' v2th

c2
n ; (78)

where here� plays the role of the transverse kinetic pressure. On the other hand, radiation

pressure is the effect that radiation produces on the surroundings (ponderomotive action)

which is proportional to the square modulus of the electromagnetic field amplitude, E, i.e.

� / jEj2. By taking into account the physical meaning of both the complex amplitude of

Fock-Leontovich equation and the Gloge-Marcuse theory, and according to the results of

the previous section, we note that jEj2 and �(1)
x essentially coincide (apart from a normal-

ization factor), i.e. jEj2 / �(1)
x . Consequently, we can provide for the following physical

interpretation of the closure equation (70). We observe that since �p � 6�
2�x

, the mean

transverse energy, due to the diffraction, associated with a single light ray (in vacuo) is

E0 � 1
2�

2
p � 6�2

8�2x
. We remind that �x(x; z)) is the probability to find a light ray at lo-

cation (x; z). Thus, using arguments analogous to the ones used for particle systems (i.e.

electronic-ray systems) we thus conclude that the transverse radiation pressure is given by

�(x; z) = 2�(1)
x (x; z)E0(z) � 6�2

4�2x(z)
�(1)
x (x; z) : (79)

5.3 Coherent states in semiclassical fluid description

In this subsection we give a relevant example of the use of the results presented in the

previous subsection. In particular, we show that Eq.s (76) and (77) are very suitable for

describing in a very natural way coherent states associated with the radiation fluid motion.

Let us start by considering the case of V (x; z) independent of x, viz.

V (x; z) � p0(z) : (80)

This way (77) can be easily integrated with respect to x, giving the normalized density:

�(1)
x (x; z) =

exp
n
� (4�2x(z)= 6�2)

h
U(x; z) + p

0

0(z)x+ g(z)
io

R1
�1 exp

n
� (4�x(z)= 6�2)

h
U(x; z) + p

0

0(z)x+ g(z)
io

dx
; (81)
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where g(z) is an arbitrary function of z, and (76) becomes:

@�(1)
x

@z
= �p0(z)@�

(1)
x

@x
: (82)

Note that the density is Gaussian if, and only if, U is quadratic in x. Thus, substituting

(81) and (82), we get

@U

@z
+ p0(z)

@U

@x
= �p00

0(z)x � p0(z)p
0

0(z) � g(z) : (83)

Let us define the center x0(z) of the transverse distribution �x(x; z), i.e. the mean value

of x:

x0(z) �
Z 1

�1
x�x(x; z) dx : (84)

In general, this quantity could not be zero. Taking into account this observation, we may

define now �x(z) as:

�2x(z) �
Z 1

�1
(x� x0(z))

2�x(x; z) dx : (85)

We concentrate now the attention on the case in which the beam does not spread, namely:

�x(z) � �x0 = constant : (86)

Thus, by differentiating (85) with respect to z and taking into account (82) and (86) we

obtain:

x
0

0(z) = p0(z) : (87)

Let us concentrate our attention now only on the case in which U is independent of z. In

this case (83) can be easily integrated with respect to x, obtaining:

U(x) = �1

2

p
00

0(z)

p0(z)
x2 � 1

p0(z)

 
1

2

dp20(z)

dz
+ g

0

(z)

!
x + G ; (88)

whereG is an arbitrary constant which, without loss of generality, can be put equal to zero.

Consequently, the only possible form of U(x) compatible with (80) is to be quadratic with

respect to x. For instance, by choosing:

U(x) =
1

2
kx2 ; with k > 0 ; (89)

from (88) we get:

p
00

0 + kp0 = 0 ; (90)

and

g(z) = �p20
2

+ g0 ; (91)

17



where g0 is the an arbitrary constant. On the other hand, taking into account (83), (89),

and (90), (81) can be cast in the form:

�x(x; z) =

s
k

2�

2�x0
6� exp

"
�4�x0k

6�2 (x� x0(z))
2

#
; (92)

with:

p
0

0(z) = �kx0(z) ; and g(z) =
1

2
kx20(z) : (93)

Consequently, combining (87), (90), (91), and (93), we obtain

1

2
p20(z) +

1

2
kx20(z) = g0 = constant ; (94)

and

x
00

0 + kx0 = 0 : (95)

Finally, by combining (85), (86), and (92), we obtain the condition which relates k, 6�, and

�x0:

k�4x0 =
6�2
4

; (96)

and �x can be written as:

�x(x; z) =
1p

2��x0
exp

"� (x� x0(z))
2

2�2x0

#
: (97)

We thus can conclude that the distribution (97) with (86), (87), (90), (93), (95), and (96),

describe a coherent state associated with the semiclassical radiation fluid. Its physical

meaning is fully equivalent to the one given in the standard description [16]-[18]. We

would like to point out that the quantum coherent states, which are described by the true

Schrödinger equation are only analogs of the ones described by the Fock-Leontovich equa-

tion as in the Ref. [24]. The quantities x0(z) and p0(z) account for the real and the imag-

inary parts of the complex shift � which generates all the coherent states, starting from

the ground state of both quantum [16]-[18] and quantum-like [31] harmonic oscillator for

particle beams:

�(z) =
x0(z)

2�x0
+ i

�x0p0(z)

6� � �1(z) + i�2(z) : (98)

Still keeping U independent of z, we conclude this subsection considering the case of

the equilibrium states (stationary states) associated with the semiclassical radiation fluid,

which corresponds to the case of x0 = constant. Thus (87) gives p0 = 0 and from (83)

we get g = constant. Consequently, (81) gives:

�x(x) =
exp

h
�4�2x0

6�
U(x)

i
R1
�1 exp

h
�4�2x0

6�
U(x)

i
dx

: (99)
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Note that (99) represents a stationary state of the radiation beam for an arbitrary refractive

index U(x) in semiclassical approximation.

6 Madelung’s radiation fluids

In this section we give the full quantum-like description of the radiation beam beyond the

semiclassical approximation developed in the previous section.

To this this end, let us start from the following eikonal representation of the complex

electromagnetic field amplitude 	 appearing in (58):

	(x; z) = �1=2
x (x; z) exp

"
i

6��(x; z)
#

: (100)

Thus, substituting (100) in (58), we obtain the following system of equations:

@�x

@z
+

@

@x
(�xv) = 0 ; (101)

 
@

@z
+ v

@

@x

!
v = �@U

@x
+
6�2
2

@

@x

"
1

�1=2
x

@2�1=2
x

@x2

#
; (102)

where the current velocity v is now given by

v(x; z) =
@�(x; z)

@x
: (103)

Eq.s (101) and (102) has been widely used in literature [9]-[10] to describe the paraxial

propagation of a radiation beam, especially in nonlinear media, where the refractive index

depends on�x (i.e. j	j2), being a functional of�x. Moreover, Eq.s (101) and (102) consti-

tute a closed system and are formally identical to the equation that describe the Madelung’s

fluid [43].

The last term of the r.h.s. of (102) accounts for the pressure term beyond the semi-

classical approximation. If we take for �x the form as the one given by (39), the pressure

term of (102) coincides with the one shown in (72), and, thus, in this case, u coincides with

V . In fact, the term 6�2

2
@
@x

�
1

�
1=2
x

@2�
1=2
x

@x2

�
becomes � 6�2

4�2x

1
�x

@�x
@x

. One important consequence

of this result is that coherent states found in semiclassical approximation for the semiclas-

sical radiation fluids (see Section 5) are exact solutions of the Madelung radiation fluid, as

well. On the contrary, the stationary states found for non-quadratic refractive indexes (see

section 5), are approximate solutions for the semiclassical radiation fluids only. In fact,

when v(x; z) = p0(z) � 0, the (99) is not solution if U is not quadratic. For Madelung’s

fluid, stationary states must have a density�x satisfying the following quantum-like eigen-

value problem associated with the Fock-Lentovich equation:

6�2
2

@2�1=2
x

@x2
+ U(x)�1=2

x = E�1=2
x ; (104)
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where E is a constant.

7 Conclusions, remarks, and future perspectives

In this paper we have proposed a deformationprocedure, recently used to give the quantum-

like semiclassical description of the electronic-ray optics [37], to describe, in a quantum-

like context, the transition from geometrical optics to wave optics which is alternative to

the one proposed by Gloge and Marcuse [13].

Starting from the light-ray equations provided by the Fermat’s principle, we have

given a phase-space description of the geometrical optics in terms of a classical probabil-

ity density distribution of the light rays for an arbitrary refractive index. This way, taking

into account the quantum-like uncertainty relation (diffraction limit) between the r.m.s.

transverse ray-position, �x, and the r.m.s. ray-slope, �p, the above deformation procedure

has allowed us to transit to a von Neumann-like equation in semiclassical approximation

which provides for a Wigner-like picture of the radiation beam optics in paraxial approx-

imation.

In turn, this picture has allowed us to recover, in semiclassical approximation, the

Fock-Leontovich parabolic equation and its Gloge-Marcuse quantum-like interpretation.

In this context, the possible negativity of the Wigner-like function has been correctly ex-

plained in terms of the above quantum-like uncertainty relation.

We have also determined the hierarchy of the moment equations associated with the

von Neumann-like equation, and thus given both the classical and the semiclassical radia-

tion fluid descriptions in paraxial approximation. In particular, the inclusion of the paraxial

diffraction in the fluid context, that characterizes the semiclassical radiation fluid, has al-

lowed us for naturally describing the coherent states associated with the radiation beam,

whose fluid interpretation is in fully agreement with the standard one.

Finally, a comparison between the above radiation semiclassical fluid and the Madelung’s

fluids has been given.
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