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Abstract

A procedure dternativeto the one ala Gloge and Marcuse to perform the transition from geomet-
rical opticsto the waveopticsin paraxial approximationis presented. Thisis done by employing a
recent defor mationmethod used to give aquantum-like phase-space description of charged-particle
beam transport in semiclassica approximation. By taking into account the uncertainty relation
(diffraction limit) that holds between the transverse beam spot size and the r.m.s. of thelight-ray
slopes, theclassical phase-space equation for light raysis deformed into avon Neumann-like equa
tion which governs the phase-space description of the beam transport in semiclassical approxima:
tion. Here, / and the time are replaced by the inverse of the wavenumber, X, and the propagation
coordinate, respectively. In thisframework, the corresponding Wigner-like pictureis given and the
guantum-like corrections for an arbitrary refractive index are considered. In particular, it isshown
that the paraxial radiation beam transport can be also described in terms of a fluid motion equation
where the pressure term is replaced by a quantum-like potential in semiclassical approximation
which accounts for the diffraction of the beam. Finally, a comparison of thisfluid model with the
Madelug's fluid model is performed.
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1 TheBridge between Opticsand Mechanics

Sinceitsearly formulation, the analogy between Optics and Mechanics showed to be very
fruitful to produce very important physical insights. For example, it iswell known that
this analogy was very important to arrive, passing through the construction of wave me-
chanics, at the present formul ation of Quantum Mechanicsthat has been recognized avery
fundamental theory of the nature. It isworth to mention some very important steps of the
development of this analogy.

Thefirst analogy put geometrical opticsin correspondencewith classical mechanics,
on the basis of the fully similar formulation of Fermat principle and Hamilton principle.

The above analogy has been soon recognized very important in the study of the mo-
tion of charged particlein the presence of electromagneticfields. The natural development
of thisbranch wasthe formulation of the el ectron opticswhich hasbeen applied for several
very important scientific and technological applications, such as electron microscopy and
particle accelerators [1]-[3]. For many years electron optics remained formulated at the
level of geometrical optics. Within this framework, the formulation of electron optics can
be given in away fully similar to electromagnetic geometrical optics provided to replace
the notion of light rays and refractive index with el ectron rays and potential, respectively.

The analogy has been extended to the wave level, going from Optics to Mechanics
by deBroglie[4] and Schrodinger [5], obtaining the wave mechani cs and subsequently the
Quantum Mechanics. Thetransition from Classica to Wave M echanics has been induced
just considering the relationship between Geometrical and Wave Optics.

The samekind of transition has been performed by Bohr [6] with aformal procedure
called quantization based mainly on aset of formal prescriptionscalled quantization rules
where Planck’s constant plays arole. These rules alow to go from the classical formula-
tion of mechanicsinto another in terms of operatorsin such away to obtain an evolution
equation for the physical system under consideration.

Within the framework of the above procedures to transit from Classical to Quan-
tum Mechanics, Schrodinger equation has been recognized as the nonrelativistic limit of
a more general wave mechanical formulation induced by the correspondence with wave
optics[7]: in fact, the nonrelativistic limit of Klein-Gordon equation, which can be put in
correspondence with D’ Alambert equation, is just the Schrodinger equation.

Going back from Quantum Mechanicsto Wave Optics, theabove nonrelativistic limit
has been considered also for D’ Alambert equation, i.e. for Helmohltz equation, by Fock
and Leontovich [8] considering the problem of radiation beam propagation through an ar-
bitrary medium. They showed that the equation which governsthis propagationisasort of



Schrodinger equation where 7 and thetime are replaced by the inverse of thewave number
and the propagation coordinate, respectively. The Schrodinger-like equation of Fock and
Leontovich was actually obtained by the electromagnetic wave equation in paraxia ap-
proximation which considers the dopes of the light rays, with respect to the propagation
coordinate, very small. Itis possibleto see that this approximation is equivalent to the so-
called dowly-varying amplitude approximation, widely used in nonlinear optics [9]-[11]
and in plasma physics [12] as well as to the non relativistic limit of the electromagnetic
wave equation.

The above correspondence, going back from Quantum Mechanics to Wave Optics,
has been extended morerecently by Gloge and Marcuse [13] by performing the transition
from Geometrical Optics to Wave Optics in a way fully smilar to the one ala Bohr. In
the formal quantization of Gloge and Marcuse, aset of quantization rules (inwhich 72 and
the time are replaced by the inverse of the wave number and the propagation coordinate,
respectively) areintroduced in the Hamiltonian for the electromagnetic rays. Theresultsis
the electromagnetic wave equation whose limit, in paraxial approximation, givesthe Fock
and Leontovich eguation.

The procedure of Gloge and Marcuserevealed to be very fruitful becauseit provided
for transferring algorithms and many solutions of quantum mechanics to radiation beam
physics, especially for optical fibers[14,15], coherent and squeezed states theories [16]-
[21], Schrodinger cat states [22,23], and phase-space investigations within a Wigner-like
picture [24] inwhich aquasi-classical distribution, fully similar to quantum Wigner trans-
form [25] governsthe paraxial em. ray evolution.

In the recent years, the importance to describe, in an unified way, optics of light and
optics of electronic rays has been recognized by some author [26] and the importance to
transit from Geometrical Electron Optics to Wave Electron Optics, has been pointed out
[27] as apossible development of Electron Optics.

In the recent yearsaswell, aprocedure ala Gloge and Marcuse has been introduced
in Electron Opticsto describe the collective behaviour of charged-particle beam transport
[28],[29]-[34]. By using some correspondencerules, called thermal quantizationrules, in
which /& and the time are replaced by the beam emittance [36] and the propagation coordi-
nate, respectively, a quantum-like description of the electronic rays, called Thermal Wave
Model (TWM) can be constructed. This procedure, applied in paraxia approximation, al-
lows to get a Schrodinger-like equation for a complex function, the so-called beam wave
function (BWF) whose squared modulus is proportional to the beam dengity.

A novel approach which consists in a deformation of the phase-space equation for
electronic rays, has allowed to recover TWM, in away alternative to the one ala Gloge
and Marcuse, but only in semiclassical approximation[37]. Thetransition fromtheclassi-



cal description to the quantum-like one allowsfor obtaining a von Neumann-like equation
which, in turns, provide for a Wigner-like description of charged-particle beam transport
in semiclassical approximation.

In this paper, we propose a method, alternative to the one ala Gloge and Marcuse,
to transit from Geometrical Opticsto Wave Optics namely from the classical-like descrip-
tion to the quantum-like description of Light-ray Optics, by using the above deformation
procedure employed in Electron Optics. This alows us to get an effective description of
Light-ray Optics which shows the role played by the semiclassical approximation in the
guantum-like theory of light rays. In the next Section, we briefly review the quantum-
like theory of Gloge and Marcuse and in Section 3 we present the classical-like phase-
space equation for light rays for an arbitrary refractiveindex. In Section 4, the deforma-
tion procedure is used to transit from the above classical-like phase-space equation to an
effective quantum-like equation in semiclassical approximation which formally coincides
with von Neumann equation. This deformed phase-space description alows usto recover
the Wigner-like picture, widely used to describe the el ectromagnetic beam transport in
phase-space [24]. The quantum-like picture of Gloge and Marcuse as well as the Fock-
Leontovich Schrodinger-like equation are then recovered in semiclassical approximation.
In Section 5 the hierarchy of the moment equations, associated with the von Neumann-like
equation, is obtained, and afluid model, associated with the beam transport in real space,
isobtained by truncation of the above hierarchy. In particular, the case of both the classical
and the semiclassical fluids are considered. In Section 6 thisfluid description is compared
with the Madelung fluid model, and finally in Section 7 conclusions and remarks are pre-
sented.

2 Brief review of the Gloge and Marcuse Quantum-like Theory

Fermat’s principle can be formulated in terms of the following least-action principle [13]
5 [ Lley,ayiz)ds =0 (1)

where L(z,y, 2", y'; 2) = n(x,y, 2)(1 + =™ + y'*)'/? represents the Lagrangian associ-
ated with the propagation of light rays through a medium with an arbitrary refractive in-
dex n(x,y, z, ), where z isthe propagation coordinate, = and y denote the transverse (with
respect to =) space coordinates and primes denote differentiation with respect to =. Ac-
cording to the hamiltonian terminology, the following generalized momentum p of com-
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and the hamiltonian
H=pa' +py — L= (n®—p>—p2)7 | 4

can be introduced. In the case of paraxia approximation, for which rays have a direction
closeto the propagation direction, say z-axis, (2), (3), and (4) become, in normalized form

Po= Ba (5)
g g
p no,
Py = = = —y (6)
o o
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where U = —n/ngq (no being the constant average of n closeto the z-axis). Consequently,
by introducing in (7) the following formal quantization rules
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where A = A\/27 isthe inverse of the wavenumber (A being the wavelength) associated
with the em. wave, a Schrodinger-like equation for a complex em. wave amplitude ¢
can be easily obtained, namely [8]

X[ 02 0*

z%—@——3(53+5J®+U®. (10)

Eq.(10) isreferred as to Fock-Leontovich equation [9]. Provided that
[ ety drdy = 1 (11)

|®(z,y, 2)|* givesthe normalized em. power density aswell asthe probability density of
findinganem. ray at (z,y).

Remarkably, the above paraxial approximation isappropriatefor describing an em. beam
travelling along z-axis. Furthermore, the effective potential U/ (refractive index) can in
genera depend on |® |2, whichin this case accounts for an e.m. beam propagation through



anonlinear medium. Since the evolution of an em. beam is governed by a Schrodinger-
like equation for the complex em. field amplitude @ , it is easy to prove the following
well-known uncertainty relation:

where

22 r2 @) d*r
J2 @ d2r
isthe effective beam radius (r = /22 + y?) and

1/2
W = l ] =<r?> (13)
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J2 O d?r

isthetotal em. averaged transverse momentum associated with the em. beam .
By following [9] and assuming atherefractiveindex of theform U(r, z) = L K(z)r?

(linear lens), one easily obtains

PW = [)(2

2 2
dd;/ + K(z)W — % =0 . (15)
In particular for the propagation in vacuo (K = 0) :
22
Wi(z) = Wy (1 + 2—2) ) (16)
R

where W is the minimum spot size (waist) and =z is the so-called Rayleigh length (Note
that: W2 = X zg).

It isworthto notethat thelimits X — 0 and 2 — 0 recover geometrical optics (light-
rays eguation) and classical mechanics (classical motion equation), respectively. In fact,
the physical meaning of X isgivenintermsof diffraction parameter. The condition X # 0
in paraxial approximationisconnected to aweak displacement of light raysfrom the beam
propagation direction in such away to produce a mixing between them. In the exact geo-
metrical opticslimit (X = 0) the ray would be straight lines parallel to the propagation
direction when the beam istravellingin vacuo, whilst for X finitetheraysmixing (diffrac-
tion effect) produces a hyperbolic hyperboloid around the z-axis which corresponds to a
typical caustic shape described by (16) [38].

3 Classical-like phase-space equation for light rays

In this section we develop the classical-like description of geometric optics in the phase
gpace in terms of a classical phase-space distribution of the light rays in the case of an
arbitrary refractiveindex. We confine our attention on the case of paraxial approximation.



Taking into account this approximation, we describe, according to Eg.s (5) and (6),
the geometrical optics of alight beam which propagates along z-axis. We observe that,
Hamilton’'s equation for (7) give (single-light-ray equations):

dr 4
TL_ P, (17)
dz
Pr _ g0 , (18)
dz

where 7| = zi + yj and P, = P, + P,i). Thus, we can associate with asingleray a
classical-like particle trajectory. Consequently, Eq.n (18) shows that the refractive index
provides to give an effective force on each single light-ray. In addition, it is clear from
(5) and (6) that P, and P, represent a measure of the light-ray sopes with respect to the
propagation direction. These slopes are very small in paraxial approximation, in fact

d d
g~ < 1,and Y~ y <1, (29
dz dz

i.e. P, and P, account for the small deviation of the rays with respect to the propagation
direction. Consequently, asfor the particle systems, we may introduce adistributionin the
phase space p(x, y, P, Py, z) Which is constant along the characteristics, i.e.

dp

@ + {p7H} =0 ) (20)

where{..., ...} denotesthe classical Poisson’s brackets. Eqg.n (20) can be explicitly written

0 (Pui)p - (Fur) - — 0 @)

PL

Let usconsider, around thepoint (710, P. ), the phase-space volumeelement d*r , P, =
dxdydP,dP,. Thusthequantity p (7L, PLo, 2) d*r d*P, istheprobability tofind alight
ray at transverse location 7., with Slope P, o, provided that the following normalization
condition holds

/ p (FLPr2) dridPL = 1 . 22)

Eq.n (21) describes the evolution of the light rays in paraxial approximation and in the
geometrical optics context. However, we point out that (21) is still suitable to describe the
beam optics beyond the exact geometrical opticslimit. Infact, inthe case of vacuum, U =
0, and inthe case of linear focusing (defocusing) devices, U = kya? /2 + kyy? /2, Gaussian
beams, whose propagation is affected by the diffraction, can be aso described by (21). To
givethereader an idea, let usconsider asimple 2-D (y-transverse component is neglected
for smplicity) focusing/defocusing, infinitely thick (in the both = and = directions) device



with refractive index of theform U = k(z)z?/2, where k(=) being the strength of the
device. Thus, in this case Eq.n (21) becomes:

dp dp dp
°or A i 23
where, for smplicity, we have put P, = p.
We look for a solution of (23) of the form
1
plasp2) = Aexp{ = [e(z)e” + 2a()ep + b)) | (24)

where A and B arepositive constants, and «(z), b(z), ¢(z) arefunctionsto be determined.
By substituting (24) in (23), we obtain the following conditions:

d(z) = 2k(2)a(z) , (25)
a'(z) = —c(z) + 2k(2)b(2) , (26)

and
b'(z) = —2a(z) , (27)

where primes again stand for derivative with respect to z. Thefollowing resultsthus hold.
(v). Using (25)-(27) it is easy to see that:
b(z)e(z) — a(z)® = constant . (28)

Without loss of generality, we can assume that the constantis1/4, i.e.

1
2
. 2
be a (29)

(22) the normalization condition, applied to (24), gives

\eb — a?

A =
B ’

(30)

which, by virtue of assumption (29), becomes

1
= — . 1
A 2B (31)

(¢42). Defining the second-order moments, o,.(z), o,(z), and o,,(z), of p as

oi(z) = /p(:z:,p,z):z;2 de dp = (p*) (32



(beam spot-size)

o2z) = [ plep. 2t dedp = () (33
(momentum spread or r.m.s. of ray slopes)
oenlz) = [ pla,p,)ep dedp = (ap) (34)
the use of (24), (29), and (31) allow usto obtain
_ oi(z) GHED. o(2)
(Z) = T 5 C( ) = T ,and C(Z) = — 2B . (35)
Thus, we easily write (29) in the following way:
o2(z) ol(z) — o2(z) = B* = constant . (36)

Consequently, the following inequality can be derived:
oX(z)oi(z) > B . (37)
(¢v). Correspondingly, solution (24) can be cast in the form:

2B P\ 2B

Eq.n (38) isthe phase-space distribution function of light rays associated with a Gaussian
beam whose space density is

pla,pz) = — xp{ : [a;<z>x2—2axp<z>xp+az<z>p2}} . (3

Ap(z,z) = /,0(:1; p,z)dp = éexp [—i] (39)
R 77 2m02(2) 203(2)]
and whose ray-dope distribution is
1 z?
Ap(p, 2) = /P(l’apaz)dw = Wexp [—203(2)] . (40)

It is worth to observe that, in case the beam isin avacuum (£ = 0), solution (24),
i.e. (38), remainsformally the same but provided that in Eq.s (25)-(27) isput £ = 0.

Even if thedistributions (39) and (40) do not depend explicitly on the constant B, to
complete the present description we need to give for it a more precise physical meaning.
To this end, we observe that the experimental observations show that, when we produce
in vacuo the focusing of alight monochromatic beam of wavelength A, adiffraction limit
holds which can be written as [38]:

DO | <

(41)

A
(0-95 Up)min - E



Consequently, it follows that

B:é . (42)

Using thisresult in (35) and (38), we finally obtain, respectively

o, = b, pr:)(azal,%, op = e, (43)
and ' ,
pla,p,z) = ﬂexp {_ﬁ {0‘;(2)1‘2 — 20,,(2)xp + Uz(z)pﬂ} ) (44)

Remarkably, (41) and (44), show that, dueto thediffractionlimit, we cannot resolve among
two or more light rays in phase-space regions of sizethe order of X. If thelimit X — 0 is
not exactly taken, but nevertheless X is considered however small, we are still in the con-
text of geometrical optics. Thus, in the paraxial approximation Eq.n (23) still describes
the phase-space evolution in alinear device. On the other hand, the diffraction limit intro-
duced by non-zero X introduces, by virtue of (41), an indistinguishability among the light
rays.

In the next section we devel op an effective phase-space description which takesinto
account thisindistinguishability. We conclude the present section observing that A, («, z)
must also represent, according to the results of the previous section, the electromagnetic
power density which is proportional to the modulus square of the electromagnetic field
amplitude associated with the beam.

4 Deformed phase-space description

In this section we apply a deformation method used recently to transit from the classical
phase-space ray equation to a quantum-like phase-space ray equation in semiclassical ap-
proximation [37]. We want to make here a similar transition, starting from the classical
phase-space light ray equation (21). We still confine our attention to the 2-D case (the y-
direction isignored for smplicity) and make the same step asin Ref.[37].

(). Let oo be the minimum spot size that can be achieved in vacuo with an initial
focusing condition, and let us define the parameter n = X/ (20y). It iseasy to see that, in
paraxial approximation, this quantity is much smaller than 1. Infact, by denoting with o,
ther.m.s. of the ray-sopes corresponding to the above minimum spot size, from (41) is
clear that:

d 2
1= o e ()0 <1 &

A
20'0

10



(22). The above 2-D phase-space light-ray equation for an arbitrary refractive index
can be explicitly written as:

pl - Ty (46)

Eq.n (46) assumes the form:
dp op oUN\ dp
oz " Pz (az) op =0 (48)

wherep = p(z /200, p, z/200) = p(F,p,Z) ad U = U(x /200, z/200) = U(T, Z).
According to the previous results, the indistinguishability among two or more rays
due to the paraxia diffraction isthe order of < 1. Thus, 9U/J7 in (46) can be conve-
niently replaced by the following symmetrized Schwarz-like finite differenceratio:
oU _U@E+n/2) U@ —n/?)
dr n

(49)

This way, (46) must be replaced by the following equation for an effective distribution,
say p,,(T, p, Z;1):
0Py paﬁw ~ U@+n/2) - U@ —1/2)dp,
Jz JT n Jdp
Given the smallness of », multiplying both numerator and denominator of the last term of
thel.h.s. by theimaginary unit ¢, we have:

U@+n/2) = U@—n/2) .0p,  UE@+i(n/2)0/0p)— (l’—@(n/Q)@/@p)p

in ap in v
(51)

Thus, going back to the old variables = and z, (50) assumes formally the look of a von
Neumann equation [25,39]:

d i X 9 X0 _
{$+pax+xlU($+Z§a—p)—U(l‘—lga—p)]}Pw =0 ’ (52)

where p,, = p,,(200T, p, 200Z; 200n) = pu(x, p, z; X). EQ.n (52) shows that in the frame-
work of this effective description, the phase-space evolution equation for light raysis a
quantum-like phase-space equation where /» and thetime ¢ arereplaced by X and the prop-
agation coordinate z, respectively.

However, some considerations are in order.

_ (50)

11



e Approximation (49) is due both to the smallness of » and the fact that evaluation of
U-variation around the location Z does not make sense within an interval of size .
This, in fact, corresponds to the intrinsic uncertainty produced among the rays by
the paraxial diffraction. Thus, (50) represents a possible way to take into account
the ray-mixing produced by the paraxia diffraction in this evaluation.

o SinceU(z+ %45)—U(T—F5) = i g + 0 (773%) , approximation (51)
is equivalent to assume that terms O (773%) are small corrections compared to the
lower-order ones, according to the paraxial approximation. Consequently, approxi-
mation (51) playstherole of semi-classical approximation [40].

e Whilethedistribution p(z, p, z) involved in (46) isintroduced in aclassical frame-
work and itispositivedefinite, thefunction p,, (z, p, z; X) isintroduced inaquantum-
like framework and it is not positive definite. In fact, in this quantum-like context
pw(, p, z; X) cannot be used to give information within the phase-space cells with
size smaller than A, due to the paraxial diffraction, i.e. due to the indistinguisha-
bility among the light rays. It is clear from the von Neumann-like equation (52)
that p,, i1s a sort of Wigner-like function, which is not positive definite, due to the
guantum-like uncertainty principlegiveninsection 3. Inanalogy with quantum me-
chanics, p.,(z,p, z; A) can be defined a quasidistribution, even if its x-projection
and p-projection are actually configuration-space distribution and momentum-space
distribution, respectively. In particular, we assume that the probability A..(z, z; X),
introduced above, is:

Mol ) = [ pulwapz N dp (53)
provided that also p,, isnormalized over the phase space.

Remarkably, from the above resultsit follows that it may exist acomplex function,

say ¥(x, z) such that
Ap(a,z; X) = W(a, 2)U (2, 2) (549
used also for description of pure quantum states, and the following quantum-like density

matrix
G(z,2',z) = U(x,2)P*(a',2) (55)

used also for description of mixed quantum states, connected with p,, by means of thefol-
lowing Wigner-like transformation:

pul(x,p,z; X) = ﬁ/_o:o G (:1; + %,:1; — %,Z) exp (@p—;) dy (56)

12



or, for pure states

pul(x,p,z; X) = ﬁ/_o:o I\ (:1; + %,Z) v (:1; — %,Z) exp (@p—;) dy . (57

Consequently, W(z, z) must obey to the following Schrodinger-like equation:

., 0V 2 9

which isexactly the Fock-L eontovich equation in the case of 2-D radiation beam (see Eq.n
(20) ). Notethat (10) has been recovered with the present deformation method in semiclas-
sical approximation only. Nevertheless, it isvalid, in paraxial approximation, beyond the
semiclassical approximation, as well.

5 Classical and semiclassical radiation fluids

In this section we consider the hierarchy of the moment equations generated by the von
Neumann-like equation (52) up to the second order. Thisway we can give the picture that
we could call radiation fluid picture. Wedistinguishthecaseof X — 0 (classical radiation
fluid) from the one of small wavelengths (semiclassical radiation fluid). To thisend, one
can calculate the set of moment equations associated with (52) respectively. Defining the

following Liouville operator
5, 5, ou\ o0
9= + Por ~ ( ) (59)

,C a—xa_pv

(U being an arbitrary refractiveindex which can be expanded in Taylor series with respect
to x), it is easy to see that (52) can be cast as:

. oo (_1)k é 2k o2RHLLT 82k+1pw
Lpw = ,; Qk+1)I\2) a2kt gpret (60)

Note that (60) reducesto (46) when the sum at ther.h.s. iszero. Remarkably, this circum-
stance is verified not only inthelimit A — 0. Infact, it occurs aso when, keeping non
zero )X, therefractiveindex hasaquadratic formin z: thisisinfull agreement with there-
sults presented in Section 3. By introducing the »—order (v being a non-negative integer)
moment of £ as

Mg, 2) = /OO Ly dp | (61)
Eq.n (60) leads to: — the continuity equation, for v = 0
oA, 0
ot (V) =0 (62)

13



— the motion equation, for v = 1

5, 5, ou 10l
(az+vax)v T Aor (63)
—the energy equation, for v = 2
Ju 0 d ou 0Q
and so on, where
Vi, 2) / ppw dp = (p)y (65)
isthe current velocity, which is experi mental ly the first order moment of p,,,
N2 = [ (= Vipudp = Allp = (1)) - (66)
which isessentialy the radiation pressure or the second order moment of p,,,
(e, )= o1 4 Iavr (67)
2 2
1 e 3 . 3
Q) =5 [ (=) pudy = Mullp = (1)) - (68)

which isessentialy the analog of the heat. Additionally, from (61) we obtain also:

Emas <(v—1)/2 2k 92k+1
(69)
The characteristic of these moment equationsisthat the one of »—order isan evolution for
the v—order moment of p,,, but contains (v + 1)—order moment of this function. Provided
that a closure equation isintroduced, which relates (v 4 1)—order moment with the lower-
order ones, the truncated set of equations, consisting of moment equations up to the v—
order plusthe closure equation, is fully equivalent or (60), respectively.

The fluid description is given when the truncation isintroduced at » = 1 together
with a closure relationship involving the second-order moment. Actually, the picture that
we could get from the truncation involving (64) can be considered afluid picture, aswell.
Furthermore, note that al the Eq.s (69) account for the quantum-like corrections beyond
the semiclassical approximation.

We can estimate the order of the paraxial diffractionintroduced in Eq.n (63), assum-
ing the form (44) for p,, and making use of (65) and (66). It results that

H(x,z) = 4);2/\1,(:1;,2) : (70)

xr

14



Since

A X
< =n <1, (71)

20, 209

thelast termin (63), viz.
1 oIl X2 1 0A,

A_x Er 40?2 A_l, ox '
represents the semiclassical approximation of the paraxial diffraction at the level of the
fluid description. Remarkably, truncating the hierarchy at the order - more and more high,
we get amesoscopic description more and more deep. Taking all theinfinite hierarchy, we
will have the most deep mesoscopic description of the system (beyond the semiclassical
approximation), which corresponds to a fluid scheme that we could call Madelung's radi-
ation fluid (see Section 6).

(72)

5.1 Classical radiation fluid (diffraction-lessbeam)

For arbitrary refractiveindexes U, the fluid description for a diffraction-less beam can be
obtained from (62) and (63) in thelimit X — 0:

AN .
@ A0
o +%@H/) 0, (73)
0 0 oU
il (N 0 _ 77
(82 +V 8:1;) v ox (74)

where the apexes (0) denotes that we are taking the above limit. In thislimit we observe
that
puw(,p,z; X —0) — A;O)(J},Z) 1) (p — V(O)(:L',Z)) = polx,p,2) (75)

and the local dope of the light rays, p = dx/dz, isdetermined only by the gradient of U.
In particular, in vacuo (/' = 0) amonochromatic beam has the phase-space density of the
form P, é(p — Vo), with P, and V4, constants.

Notethat system (73) and (74) isnaturally closed. It has been used in radiation beam
optics to solve anumber of problems when the diffraction is negligible [41].

5.2 Semiclassical radiation fluid

Within the fluid description, we now take into account also the paraxial diffraction. Thus,
the semiclassical fluid is described by the Eq.s (62) and (63) plus a suitable closure equa-
tion. The result shown by (70) for Gaussian beams suggests us to assume in general this
relationship, at the present level of fluid description, asthe required suitable closure equa-
tion. Consequently, Eq.s (62) and (63) become

oA 0
B O Ay _
o +%@H/) 0, (76)
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0 0 ou X2 1 oAl
il 1) o - = - Tz
(az v 8:1;) v Ox 402 A 9z 7 (7

where the apexes (1) denote that the paraxial diffraction is now taken into account. This
system isfully similar to the one that can be usually derived for the transverse motion of
a dilute particle beam, assuming afl UId model with the ideal gas state equation [42]. In
fact, in this analogy, the term 25 —L L on

_2 Lon ~,
402 A(m

Yia L0 \yheren isthe beam number densty, ¢ isthe transverse particle beam emittance,

2 nog?

vy, 1Sthe transverse thermal velocity, and where the following properties holds: ¢/2c,. ~
v /e < 1 (seeRef. [3]). The aboveideal gas state equation assumed in thiscase is

kgT €? vl
I = Sno= ——n ~ —mn
me 4o2 c

) (78)

where here Il playstheroleof thetransversekinetic pressure. On the other hand, radiation
pressure is the effect that radiation produces on the surroundings (ponderomotive action)
whichis proportional to the square modulus of the electromagnetic field amplitude, £, i.e.
IT o | F']. By taking into account the physical meaning of both the complex amplitude of
Fock-Leontovich equation and the Gloge-Marcuse theory, and according to the results of
the previous section, we note thaI |E|? and A{") essentially coincide (apart from anormal-
ization factor), i.e. |E|* o« A("). Consequently, we can provide for the followi ng physical
interpretation of the closure equation (70). We observe that since o, ~ 2% , the mean
transverse energy, due to the diffraction, associated with a single light ray (in vacuo) is
& = 300 ~ 8% We remind that A, (x, z)) is the probability to find a light ray at lo-
cation (x, z). Thus, using arguments anal ogous to the ones used for particle systems (i.e.
electronic-ray systems) we thus conclude that the transverse radiation pressureis given by

fz.2) = 200w 6(2) ~ 5 A (79)

5.3 Coherent statesin semiclassical fluid description

In this subsection we give a relevant example of the use of the results presented in the

previous subsection. In particular, we show that Eq.s (76) and (77) are very suitable for

describing inavery natural way coherent states associated with the radiation fluid motion.
Let us start by considering the case of V'(«, =) independent of X, viz.

V(e,z) =po(z) . (80)
Thisway (77) can be easily integrated with respect to «, giving the normalized density:

Az = CPAZURE WU bt} o

J7 exp{ = (ou(=)] J2) [UGe,2) + (=) + 9(=)] } de
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where ¢(z) isan arbitrary function of =, and (76) becomes:

OAL) OAL)
dz ~po(2) oxr (82)

Note that the density is Gaussian if, and only if, UU is quadratic in x. Thus, substituting
(81) and (82), we get

aa_(z] +po(2)2—g = —po(2)e — po(2)po(z) — gl=) . (83)

Let us define the center () of the transverse distribution A,(x, =), i.e. the mean value
of x: _
zo(z) = / ey (2, z)de . (84)

In general, this quantity could not be zero. Taking into account this observation, we may
define now o,(z) as:
02(z) = / T (2 = 2o(2)) Aoz, 2) da (85)

— 0

We concentrate now the attention on the case in which the beam does not spread, namely:
0.,(2) = 0,0 = constant . (86)

Thus, by differentiating (85) with respect to = and taking into account (82) and (86) we
obtain:

zo(2) = polz) - (87)
Let us concentrate our attention now only on the case in which U isindependent of z. In
this case (83) can be easily integrated with respect to =, obtaining:

_ w1 (Lde) Y
vle) = 2po(z) po(2) (2 5 Tl )) +G, (88)

where (& isan arbitrary constant which, without loss of generality, can be put equal to zero.
Consequently, the only possible form of U/ () compatiblewith (80) isto be quadratic with
respect to =. For instance, by choosing:

Ulx) = %kxz, with £ > 0 | (89)
from (88) we get:
po + kpo =0, (90)
and )
9(z) = =2 + g0 (91)
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where ¢q is the an arbitrary constant. On the other hand, taking into account (83), (89),
and (90), (81) can be cast in the form:

k 20'130 40@016 2
Me,2) = | 2 g {— o= o) (92
with: |
pg(z) = —kao(z), and g¢(z) = 51{:1;(2)(2) : (93)
Consequently, combining (87), (90), (91), and (93), we obtain
%pg(z) + %kx%(z) = ¢go = constant (99)
and
rg + krg = 0 . (95)

Finally, by combining (85), (86), and (92), we obtain the condition which relates &, X, and

Tx0-

2
kol = 2 (96)
and A, can bewritten as;
1 — (x — wo(2))”
A(z,2) = ) 7
(r.5) = o ey |~ (97)

We thus can conclude that the distribution (97) with (86), (87), (90), (93), (95), and (96),
describe a coherent state associated with the semiclassical radiation fluid. Its physical
meaning is fully equivalent to the one given in the standard description [16]-[18]. We
would like to point out that the quantum coherent states, which are described by the true
Schrodinger equation are only anal ogs of the ones described by the Fock-L eontovich equa-
tion asin the Ref. [24]. The quantities x(z) and py(z) account for thereal and the imag-
inary parts of the complex shift o which generates all the coherent states, starting from
the ground state of both quantum [16]-[18] and quantum-like [31] harmonic oscillator for
particle beams:

a(z) = D) oonoE) oy ) (98)

20,0 X

Still keeping U independent of =, we conclude this subsection considering the case of
the equilibrium states (stationary states) associated with the semiclassical radiation fluid,
which corresponds to the case of o = constant. Thus (87) gives p, = 0 and from (83)
we get g = constant. Consequently, (81) gives:

exp {—%U(m)}
o exp {—%U(:p)} dx

Ag(x) = (99)
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Note that (99) represents a stationary state of the radiation beam for an arbitrary refractive
index U(x) in semiclassical approximation.

6 Maddung'sradiation fluids

In this section we give the full quantum-like description of the radiation beam beyond the
semiclassical approximation developed in the previous section.

Tothisthisend, let us start from the following etkonal representation of the complex
electromagnetic field amplitude ¥ appearing in (58):

U(x,z) = Aglc/z(:zj,z) exp [%@(:p,z)] : (100)
Thus, substituting (100) in (58), we obtain the following system of equations:
dA, 0 B
0 d oU X290 [ 1 9*AL?
(@‘l-va—x)v——a—x—l-?a—x [A}U/Q 922 ) (102)
where the current velocity v is now given by
vz, z) = 20(x, 2) (103)
Oz

Eq.s (101) and (102) has been widely used in literature [9]-[10] to describe the paraxia
propagation of aradiation beam, especially in nonlinear media, where the refractiveindex
dependson A, (i.e. |¥|?), beingafunctional of A,.. Moreover, Eq.s(101) and (102) consti-
tuteaclosed system and areformally identical to the equation that describethe Madelung's
fluid [43].

The last term of ther.h.s. of (102) accounts for the pressure term beyond the semi-
classical approximation. If wetakefor A, theform asthe one given by (39), the pressure
term of (102) coincideswith the oneshownin (72), and, thus, in thiscase, « coincideswith
V. Infact, theterm ¥ 2 i 2852 | hecomes — L5 54 Oneimportant consequence
of thisresult isthat coherent states found in semiclassical approximation for the semiclas-
sical radiation fluids (see Section 5) are exact solutions of the Madelung radiation fluid, as
well. On the contrary, the stationary states found for non-quadratic refractive indexes (see
section 5), are approximate solutions for the semiclassical radiation fluids only. In fact,
when v(z, z) = po(z) = 0, the (99) isnot solution if U isnot quadratic. For Madelung's
fluid, stationary states must haveadensity A, satisfying thefollowing quantum-likeeigen-
value problem associated with the Fock-Lentovich equation:

)(2 82/\1/2

2 0x?

+ U)A)? = en? (104)
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where £ isaconstant.

7 Conclusions, remarks, and future per spectives

Inthis paper we have proposed adeformation procedure, recently used to givethe quantum-
like semiclassical description of the electronic-ray optics[37], to describe, in a quantum-
like context, the transition from geometrical optics to wave optics which is alternative to
the one proposed by Gloge and Marcuse [13].

Starting from the light-ray equations provided by the Fermat’s principle, we have
given a phase-space description of the geometrical opticsin terms of aclassical probabil-
ity density distribution of the light raysfor an arbitrary refractive index. Thisway, taking
into account the quantum-like uncertainty relation (diffraction limit) between the r.m.s.
transverse ray-position, o,., and ther.m.s. ray-dope, o,,, the above deformation procedure
has allowed us to transit to a von Neumann-like equation in semiclassical approximation
which providesfor a Wigner-like picture of the radiation beam opticsin paraxia approx-
imation.

In turn, this picture has allowed us to recover, in semiclassical approximation, the
Fock-Leontovich parabolic equation and its Gloge-Marcuse quantum-like interpretation.
In this context, the possible negativity of the Wigner-like function has been correctly ex-
plained in terms of the above quantum-like uncertainty relation.

We have also determined the hierarchy of the moment equations associated with the
von Neumann-like equation, and thus given both the classical and the semiclassical radia-
tion fluid descriptionsin paraxial approximation. In particular, theinclusion of the paraxial
diffraction in the fluid context, that characterizes the semiclassical radiation fluid, has a-
lowed us for naturally describing the coherent states associated with the radiation beam,
whose fluid interpretation isin fully agreement with the standard one.

Finally, acomparison between the aboveradiation semiclassical fluid andtheMadelung's
fluids has been given.
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