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Abstract

A series of measurements has been performed on a THORN EMI 9351 phototube

in order to investigate its response to a low light intensity. Precise procedures

to determine the intensity of the incident photon ux have been developed and

compared. The data show that the various approaches give consistent and reliable

results, thus allowing the precise calibration of the device for applications of photon

counting.



1 Introduction

In many experimental conditions involving scintillators and photomultipliers the light

pulse arriving at the photocathode contains very few photons. The mean value � of

the Poisson distributed number of photoelectrons (p.e.) detected in a burst depends on

various factors. The most important factors being the energy of the incident particle

in the scintillator, the geometrical coverage of the photocathode, and the quantum and

collection e�ciency of the phototube. In a given experiment the precise evaluation of �

can be accomplished with di�erent methods, based on the use of the information contained

in the output of the phototube.

In the present paper we present the results of an investigation carried out to evaluate

and compare di�erent methods of mean p.e. number estimation from the PMT charge

distribution. We studied the charge distribution of the Thorn EMI 9351 PMT planned

for use in the Borexino experiment. In Borexino an organic liquid scintillator is used to

detect the 7Be solar neutrinos through the electron-neutrino elastic scattering. A rate of
few p.e. per PMT is expected (for a reference on Borexino see for example [10, 11]).

In order to study the response of the PMT for various levels of a light intensity we
used optical �lters (that do not change the spectral characteristic of the radiation). These
are used to control the amount of the incident light in di�erent measurements.

In table 1 the properties of the �lters used are summarized. Here � = �T
�0

is the ratio

of the transmitted to the incident luminous ux and D=log 1

�
is the �optical density�.

The results of our experiment are described below. In Sec. 2 we underline the features
of the PMT charge signal, that are important for the development of a PMT charge
response model. In Sec. 3 we discuss the model of the Single Electron Response (SER).
In Sec. 4 we present di�erent methods of mean number of p.e. evaluation and in Sec. 5

we analyze the measurements. Sec. 6 contains the conclusions.

2 The PMT charge response to a low intensity light

source

The charge response of the PMTs to low intensity light has been studied using the Borex-
ino PMT test facility at the Gran Sasso Laboratories. The experimental set-up is shown
in �gure 1. A Hamamatsu pulsed laser (0.39mW peak power, 27.3ps pulse width, 415nm

wavelength, which is close to the maximum quantum e�ciency of PMT 9351) is used

to study the PMT charge spectrum. Using the laser internal trigger, an ADC gate is
generated, as shown in the same �gure. The light pulse from the laser is delivered by a

6 meter long optic �ber into the dark-room. Between the �ber and the PMT, an optical
�lter support is placed. The dark noise spectrum has also been studied with the laser

turned o� using the ADC to gate the PMT signal (discriminated at the level of 0.05-0.10

p.e.) in order to cut the electronics noise.

We have performed a set of measurements with di�erent �lters using the same PMT.

The PMT is placed inside a �-metal shield in order to screen the Earth's Magnetic �eld.
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Table 1: Properties of the optical �lters

Density D Transmission � � tolerance

0.3 0.5 5%

0.7 0.2 5%

1 0.1 5%

1.3 0.05 10%

1.7 0.02 10%

2 0.01 10%

3 0.001 20%

The �rst step of the procedure to determine the mean number of detected photoelec-

trons requires the precise determination of the single electron response of the phototube.
Assuming that a Poisson distribution describes the p.e. number leaving the photo-

cathode as reported in [2], one can write:

P (2)

P (1)
=

�

2
; (2)

where P(2) and P(1) are the probability to detect two or one p.e. respectively and � is
the mean value of p.e.'s. Therefore, in order to keep the PMT charge multiphotoelectrons
responses at the 1% level it is necessary to have � � 0:02. Taking the PMT charge
spectrum, we controlled this number using the probability to have zero p.e.:

P (0) =
Nped

Ntrig

= e��; (3)

where Nped is the number of events in the pedestal (i.e. the response when no p.e. leaves
the photocathode) and Ntrig is the number of laser triggers.

For small � the output of the PMT could be altered by the dark noise of the PMT,
which is of the order of some KHz. Because of the dark noise a number of random

coincidences can be detected, expressed by:

frandom = fdark � ftrig � �gate; (4)

where frandom is the random coincidence rate, fdark is the dark noise rate and �gate is the

ADC gate. On the other hand for small � the event rate is, using (3):

fevents = (1� P (0)) � ftrig ' � � ftrig (5)

Therefore, in order to have the random coincidences` contribution at the level of 1% it is
necessary to keep:

� � fdark � �gate
0:01

(6)
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Figure 1: Sketch of the experimental set-up

For a 2KHz dark rate and �gate = 80ns, eqn. (6) gives � � 0:016. Thus, for for � = 0.02 or
greater a PMT response has both a negligible contribution from the dark noise spectrum

and of the multiphotoelectrons one.

In �gure 2, we show a typical PMT charge spectrum together with the dark noise
spectrum from the same PMT. For these data, a software threshold was set at the level

of 0.15 p.e. Looking at the two spectra we can point out the following di�erences: a
longer tail and a higher contribution of small amplitude pulses distinguish the dark noise

spectrum. The origin of the longer tail events is due to �Cerenkov light of cosmic ray

particles and scintillation caused by natural radioactivity contamination in the PMT

itself, as reported in [3]. In order to understand the origin of the higher contribution of

small amplitude pulses we grounded the �rst dynode and kept the photocathode at a small
positive potential. In this way the possible noise from the dynode system was measured.
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The spectrum we obtain is also presented in �gure 2. It does not �t the di�erence between

the spectra. The most probable origin of this di�erence is the thermoionic emission from

the photocathode material (SbCsK) which is covering the inner parts of the PMT due to

the manufacturing procedure of the photocathode. Another contribution, as reported in

[4, 5], could come from the elastically scattered and backscattered electrons from the �rst

dynode.

From the consideration above, we note the following:

� a signi�cant amount of small amplitude pulses in the charge spectra is an intrinsic

property of the EMI 9135 PMT, and it should be taken into account when modeling

the SER;

� a signi�cant di�erence between the SER and the dark-noise makes it impossible to

use the latter distribution for the precise PMT calibration;

� the response of the PMT for a low intensity light source is not a pure SER as, due
to the statistical nature of the light counting, there is always a certain amount of
multiple p.e. counting with a total probability 1 � P (0) � P (1), where P (0) is the

probability of no response and P (1) is the probability of a SER.

3 The SER charge spectrum parameters

As it has been mentioned in the previous section, even for small �, the PMT charge

spectrum is not a pure SER. In order to extract the SER spectrum, i.e. the ideal PMT
response to one p.e. hitting the �rst dynode, the pedestal and multiple p.e. response
should be rejected from the experimental charge spectrum. We do it using an ideal SER
model which is discussed in this section.

The main parameters of the ideal SER we are evaluating in this section are the mean
value x1 of the ideal SER itself and its relative variance v1 = (�1=x1)

2, where �1 is the
ideal SER standard deviation.

3.1 The SER model and �tting function for the PMT response

to small �

An ideal SER model consisting of a gaussian and an exponential is used:

SER0(x) =

(
pE
A
e�

x�xp

A + 1p
2��0

1�pE
gN

e
� 1

2
(
x�x0�xp

�0
)2

x > 0

0 x � 0
(7)

with the following parameters:

- A is the slope of the exponential part of the SER0(x)

- pE is the fraction of events under the exponential function,

- xp is the pedestal position,
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- x0 and �0 the mean value and the standard deviation of the gaussian part of the

single p.e. response respectively;

and the factor

gN =
1

2

 
1 + Erf

 
x0p
2�

!!
;

where Erf(x) is the error function, takes account for the cut of the PMT response gaussian

part.

The model has been applied to a number of di�erent PMTs. From this, we �nd a

good quality of the �nal �t and this justify our choice of the SER0(x) function.

To account for the electronics noise, we perform a convolution of the ideal SER with

a noise function, Noise(x) :

SER(x) = SER0(x)
Noise(x); (8)

where:

Noise(x) =
1p
2��p

e
� 1

2
(
x�xp

�p
)2

; (9)

which �ts the pedestal with a proper normalization. The convolution does not inuence
the gaussian part of the SER since �1 >> �p (in our measurements �p � 0:01�1), but

it does a�ect the exponential part because it is closer to the pedestal. The analytical
formula for the convolution of the exponential function with the gaussian gives:

Ser(x) =
pE

2A
� e

�2p�2A(x�xp)

2A2 �
 
1 + Erf

 
Axp � �2pp

2A�p

!!
: (10)

The PMT response for a low light intensity contains a certain amount of multiple primary
p.e. signals. Assuming that the PMT response is linear, we can write: xn = nx1 and
�n =

p
n�1, where xn and �n are the mean value and the standard deviation of the

PMT response to n-p.e., respectively. Taking into account the Poisson distribution of
the detected light and using a gaussian approximation for the responses to np:e: > 2
(the validity of this assumption is discussed later), the multi-p.e. response will have the
following form:

M(x) =
NMX
n=2

P (n;�)p
2n��1

e
� 1

2n

�
x�nx1�xp

�1

�2
(11)

where the response to n p.e. is approximated by a gaussian and P (n;�) is the Poisson

distribution with mean value � to account for the di�erent contributions of 0! n p.e. In

eq. (11) NM , the maximum number of multiple-p.e. responses considered, depends on �

and on the ADC scale. The function M(x) has three additional parameters �, x1 and �1.

For �tting the PMT response to a low intensity light source (small �) with a small
contribution of multiple-p.e., approximate values of x1 and �1 can be used:

x1 � (1� pE) � x0 + pEA (12)

�1 � (1 � pE) � (�20 + x20) + 2pEA
2 � x21: (13)
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The approximate character of these formulae come from the cut in the gaussian part of

the SER, whose portion below 0 is truncated.

A more complex analytical approach has been developped for larger � with lower

statistics data. This approach gives a precise value of x1 and �1 (see appendix A). Here

we are following the standard procedure of the SER de�nition described in literature [9],

making corrections for the multiple hits and small amplitude pulses contribution.

From eqs. (8), (9) and (11) the �tting function for the PMT spectrum can be written

as:

f(x) = N0 � (P (0) �Noise(x) + P (1) � SER(x) +M(x)) (14)

where N0 is a normalization factor. In eq. (11) we choose the values of x0, �0, pE and A

as free parameters for �tting. When used with small �, this function will work well only

for very high statistics because of the larger magnitude ot the P (0) probability.

We should point out that eq. (14) was used only to separate the contribution of small

amplitude pulses from the events in the pedestal and can be applied only in the case of

small � (� 0:02) and high statistics data. For 1% precision of � de�nition at 1� C.L.
the necessary statistics is 105 (see appendix B). We veri�ed the statistics needed for a 1%
precision of the SER parameters de�nition is of the order of 105 excluding the pedestal.

So for � � 0:02 the total number of events should be 105.

3.2 The SER charge spectrum parameters

To obtain the SER parameters x1 and v1 the following procedure has been applied.

1. Using eq. (3) an approximate value of � is de�ned by evaluating the ratio of the
events under the gaussian �tting the pedestal to the total number of triggers.

2. The �t of the experimental data with eq. (14) is performed with �xed � (see �gure
(3)).

3. The mean value, x�m, and the r.m.s., ��m, have been de�ned for the experimental
spectrum after the pedestal rejection. To reject the pedestal events the experimental
data have been used for x > xp + 5 � �p, while the data have been replaced by the
�tting curve (see black-painted area in �gure 4) for x < xp + 5 � �p.

4. The number of pedestal events have been estimated from the di�erence between the
total number of triggers and the events under the modeling curve (see �gure 4),

then the precise � value has been obtained using (3).

5. x1 and v1 (the SER relative variance) have been obtained from x�m and v�m =
(��m=x

�
m)

2 (the PMT charge spectrum relative variance) discarding the contribu-

tion of the multiple-hits, using the formulae (see appendix C):

x1 = x�m

�
1� �

2

�
(15)

v1 =
v�m � �

2

1� �
2

(16)
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The PMT response to low intensity light source
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Figure 3: The SER charge spectrum taken with a mean p.e. number equal to 0.021. In

the upper plot the exponential part and the gaussian one in the SER are shown. The

exponential function is convoluted with the noise. The contribution of 2 and 3 p.e. to the
PMT response can be seen in the logarithmic scale.
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Figure 4: The pedestal rejection procedure using the single photoelectron �tting function.

The SER model function convoluted with the noise circumscribe the black-painted area.
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4 Estimation of the mean number of p.e.

We studied four di�erent procedures to obtain the mean p.e. number from the PMT

charge spectrum.

1. We assume the Poisson distribution of the detected light, the mean p.e. number

can be de�ned from (3):

� = �ln(P (0)):

2. In addition, we assume the linearity of the PMT, the electronics and the ADC;

then the mean number of p.e. can be estimated from the mean value of the charge

spectra using the calibration of the SER:

� =
xm

x1
; (17)

where

xm =

P
N(i) � iP
N(i)

; (18)

and it is de�ned for all spectra, including pedestal, being N(i) the charge response
to the i-th photoelectron. It is interesting to note that x1 is di�erent (lower) than
the location of the peak in the output charge spectrum for single photoelectron.

3. The mean p.e. number can be estimated from the relative variance of the charge
spectra. For the assumption involved see references [2, 6]. If v1 is the relative
variance of the SER spectrum, then:

v =

�
�m

xm

�2
=

1 + v1

�
;

i.e.

� =
1 + v1

v
: (19)

4. Supposing, as before, the linearity of the PMT response and the mutual indepen-
dence of every primary p.e. participating in the anode charge formation , one can

construct the basis set of functions fN (x), which can be used for the charge distri-

bution �tting:

fN (x) = fN�1(x)
 f1(x); (20)

where fN (x) is the response of the PMT for N-p.e. and f1(x) is the SER in (7). The

parameters in f1(x) have to be de�ned with the procedure described in section 3.
Taking into account the underlined assumptions, the �tting function for a measured

charge spectrum can be written as:

f(x) =
NmaxX
N=1

P (N)fN (x) + P (0)fp(x); (21)
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Table 2: Mean photoelectrons number obtained implementing di�erents methods#,##.

No � Att(dB) � = xm=x1 � = �ln(P (0)) � = (v1 + 1)=(v � v(p)) �tI(�2)

1 0.001 0 0.0211 0.0211 0.0211 #

2 0.01 10 0.202 0.208 0.204 0.206(2.72)

3 0.02 10 0.432 0.436 0.431 0.430(1.48)

4 0.05 10 1.10 1.07 1.09 1.08(2.42)

5 0.1 10 2.12 2.06 2.10 2.10(1.69)

6 0.2 10 4.16 # 4.20 4.12(1.25)

7 0.5 20 10.2 # 10.2 10.13(2.14)

8 ## 20 21.7 # 21.7 21.3(1.65)

# too low statistics for the method used.

## no �lters

where P (N) is the Poisson distribution of N and fp(x) is the noise function. For �
big enough instead of (20) a gaussian approximation can be used. In this case, as
we show below, the functions fN (x) can be gaussians. This is practically the case

of (14).

5 Data analysis

The data analysis of the measurements taken with di�erent �lters have been performed

using the four methods mentioned above. The results of the analysis are presented in
table 2 and discussed in the next subsections.

We aimed to achieve 1% accuracy in our measurements, so we keep signi�cant numbers
for all the data in table 2 at this level of accuracy. We estimated the accuracy only for

the P (0) method (see appendix B) directly. It is di�cult to estimate the precision of

the other methods in such a direct way but one can see from table 2 that the di�erent
methods give equal results within the claimed accuracy.

5.1 The SER parameters

In order to obtain with a satisfactory precision the SER parameters a high statistics data

sample of 1:8 � 108 laser trigger was taken with an optical �ltet having � = 0:001. Using
the procedure described above, we obtained the following numbers.

1. The number of events under the SER histogram after pedestal rejection was Nev =

12



Table 3: PMT charge spectrum parameters (left column) and the SER ones (right column).

xm=249.4 x1=246.7

v=0.303 v1=0.296

3:725 � 106. The mean number of photoelectrons was calculated to be:

� = �ln
 
1� 3:725 � 106

1:8 � 108
!
= 0:021;

since Nev = Ntriggers(1� P (0)).

2. With � �xed to 0.021 the �t has been performed with the function of eq. (14) (see

�gure 3).

3. The calculated PMT charge spectrum parameters are reported in table 3.

4. Using the �t, the pedestal events number have been estimated, leading to the precise
evaluation of the number of p.e., which however resulted virtually unchanged (indeed
the new evaluation turns out to be 0.0211). It can be seen in the �gure 4 that we
have a certain amount of negative small amplitude pulses near xp. These signals
are registered when the trigger hits just after the big amplitude dark event pulse

(which has negative overshoot) has occurred. These pulses should be considered as
no-p.e. events.

5. The SER parameters obtained from eqs. (15-16) are presented in table 3. From
which it can be resumed that the di�erence with the parameters inferred directly

by the \not corrected" charge spectrum is negligible.

5.2 The attenuator calibration

In order to increase the dynamical range of the ADC an attenuator has been used before

the ampli�er as shown in �gure 1. Using a precise charge generator (LeCroy mod. 1976)

the calibration of the ADC for the attenuator set at 0, 10, 20 and 30dB respectively
has been performed. For every set of data a linear �t has been done. The pedestal,

measured with high statistics, has been taken as the constant parameter of the �tting
linear function. Finally, the calibration of the attenuator has been obtained as the ratio

of the corresponding slopes. The data are presented in table 4.

5.3 \No photoelectron event number" estimation

Together with the pedestal rejection procedure described in subsection 3.2 (�rst column

in table 5), two alternative methods have been tried.

13



Table 4: Attenuator calibration parameters

setting attenuation

10dB 3.20

20dB 10.24

30dB 33.49

Table 5: Mean p.e. number evaluated by three di�erent methods of pedestal rejection.

I method: using the single photoelectron response �tting function to discard real photo-

electrons small amplitude pulses. II method: using a suitable cut (see text) to discard real

pulses from the pedestal region. III method: �tting the pedestal events with a gaussian.

No I method II method III method

1 0.0211 0.0212 0.0202

2 0.208 0.207 0.205
3 0.431 0.433 0.425
4 1.29 1.32 1.30

1. We �xed a value averaging the SER around xp+5�p with a spread of ��p, then we

rejected the events under the measured charge spectrum for x > xp + 5�p plus the
events under the rectangular area from xp up to xp + 5�p. The mean p.e. number
for di�erent measurements are listed in table 5 in the second column.

2. Fitting the pedestal with a Gaussian, we took as pedestal events the normalization

factor Nped. The mean p.e. number, obtained with this method of pedestal rejection,
for di�erent measurements are listed in table 5 in the third column.

The �rst method gives better results evaluating the pedestal. Nevertheless the second

one, easier to implement, gives results in acceptable agreement in comparison with the

former.

5.4 Mean photoelectrons number estimation using SER mean

value

Having evaluated x1 (the mean value of the SER) one can estimate � from (17). Data
are presented in table 2.

We should note that, because of the asymmetrical shape of the SER, x1 is less than

x0, the main peak position. For a sample of 40 PMTs tested during the preparation of

the C.T.F. this di�erence was in the range of 0-15%. So it is not correct to calibrate the
PMTs using x0.

14



Here we would like also to point out another di�culty that arises from the non-

equivalence of x0 and x1. Not knowing apriori the x1 value which should be de�ned in

the complicated enough way described before we adjust the PMT operating high voltage

in order to have the gain factor at k = 107 at the peak position. It means that the real

PMT gain is up to 15% less and is equal to k0 = kx1=x0.

5.5 The basis set of the �tting functions

5.5.1 Convolution of the ideal PMT response

A �tting function for the measured charge spectra can be obtained from the known SER0

function (f1(x)). The SER0 parameters was obtained by �tting high statistics data. Then

the set of discrete functions have been obtained as recursive convolution:

f0N (i) =
iX

k=1

f01 (k) � f0N�1(i� k): (22)

Such a set f0N has been obtained for every attenuator setting. In �gure (5) and (6) we
show these functions (continuous line) evaluated for 0 and 30dB respectively. Then the
convolution with the gaussian noise function has been performed:

fN (i) =
i+10�pX

k=i�10�p
f0N (k) �Noise(i� k): (23)

So the �nal �tting function is:

f(i) = N0(
NmaxX
N=1

P (N)fN (i) + P (0)fp(i)): (24)

The data with � � 4 were �tted with four free parameters: the normalization N0, the
mean number of p.e. �, xp and �p. For � > 4 when events in pedestal cannot be clearly
separated xp and �p were �xed at the measured values. In table 2 we present in the last
column the values of � and �2 obtained using (24).

An example of this �tting method is presented in �gure 7.

5.5.2 Gaussian approximation of basic functions fN

For large � (> 4) a gaussian approximation has been tried instead of using the function

(24). In this case instead of (23) we use:

fN (x) =
1p
2��N

e
� 1

2
(x�xN

�N
)
2

; (25)

with:

xN =
x1N

katt
; (26)
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Basis set of functions for Katt = 0dB
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Figure 5: Set of convoluted and gaussian (dashed lines) functions to work out the phototube

charge spectrum �tting for a 0dB attenuator setting.
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Basis set of functions for Katt = 30dB
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Figure 6: As in �gure (5) but for a 30dB attenuator setting.
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Figure 7: PMT charge spectrum �t using the convolution method
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�2N = N(
�1

katt
) + �2p: (27)

In �gures 5 and 6 we plot these gaussians (dashed lines) for comparison with eq.(23). It

can be seen that for a number of p.e. � 3 the gaussian coincides with the corresponding

function from eq. (23). One can also see (�gure 6) that the noise signi�cantly changes

the fN functions for high katt, so even the SER can be replaced by a gaussian in a noisy

enviroment.

For 0:05 < � < 1 a combined method has been used: as f1(x) was chosen the SER

function and for each fN (x) (N > 1) were chosen gaussians as in (25).

An example of this �tting method is presented in �gure 9 ( lower plot).

5.6 The quality of the �t

The quality of the �t was checked by three criteria:

1. �2 method;

2. comparison with the � value obtained by the other methods;

3. the � value obtained for the di�erent attenuator setting should be the same.

The convolution method is good for � � 0:05 and up to � ' 10 then it gives slightly
smaller values due to the accumulated errors while constructing the fN functions. The
gaussian approximation gives good results starting from � > 1 (even if �2 is big), and it

is de�nitely better for high � values (� > 10). For 0:05 < � < 1 the combined method
gives results comparable with the convolution one.

5.7 Estimation of � using the relative variance

Estimation of � using formula (19) for � > 4 gives signi�cantly di�erent values in compar-
ison with the other methods used (see table 6). A possible reason could be the uctuations
in the electron collection, electrons transfer e�ciency etc. In the case of a normal distri-

bution (it is also true for a Poisson distribution) of the emitted light one can take into
account such uctuations, as reported in ref. [6]:

v = v(p) +
1 + v1

�
; (28)

where v(p) is the relative variance of the photoelectrons transfer e�ciency.

Fitting the data using eq. (28) with v1 �xed, we obtained v(p) = 8:7�10�3. This is
a too small value to inuence the estimation of small �, but it becomes noticeable for a
bigger �.

In table 6, we show recalculated values for the � � 1. These are also found in table 2,

in the 6th column.
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Figure 8: PMT charge spectrum �t using the convolution method (upper plot) and the

gaussian approximation for the �tting functions.
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Figure 9: PMT charge spectrum �t using the convolution method (upper plot) and the

combined gaussian one.
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Table 6: Recalculated values for the relative variance method.

� = xm=x1 � = (v1 + 1)=v � = (1 + v1)=(v � v(p))

1.10 1.08 1.09

2.12 2.06 2.10

4.16 3.99 4.20

10.2 9.46 10.2

21.7 18.8 21.7

Table 7: Recalculated values for the relative variance method.

N0 �I �F �2 v(p)(10�3)

1 21.7 21.8 1.65 4.7

2 10.2 10.2 2.14 7.6
3 4.16 4.20 1.70 7.0

5.8 Fit correction for the electrons transfer uctuations

The e�ect of the electrons transfer uctuation should also be taken into account for the

proper �tting of the PMT charge distribution for large �. Indeed, �tting the charge
distribution with � ' 10 using the gaussian approximation the � of the �tting curve
tends to be slightly less than the experimental value (see �gure 10).

Fluctuations in the transfer e�ciency will lead �nally to increase the distribution
spread. In order to account for this we introduce the additional parameter v(p) 1:

�2N = N(�21 + �x21vp) + �2p: (29)

We implemente the �t using eq. (29) for charge distributions with � > 4. In table 7,
where the �tting results are presented, one can see that v(p) � 7 � 10�3.

An example of the �t is presented in the �gure 11, the quality of the �t is better,

though the � values remains almost unchanged. This is a consequence of the Poisson

character of the primary electrons counting, which is the main assumption in the �tting
function. The last column of table 7 reports the results obtained with such correction.

1It is easy to check that the same distribution spread will provide the use of the following formulae:

�2N = N (�2
1
+ (N � 1)x2

1
vp) + �2p: (29a)

�2N = N�2
1
+ �2x2

1
vp + �2p: (29b)

The formula (29) has been chosen after the analysis of the �t quality (see 5.6)
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Figure 10: PMT charge spectrum �t using the gaussian approximation. The mean number

of p.e. is calculated to be 21.71 and �2=2.76.
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Figure 11: PMT charge spectrum �t with correction for the light transfer uctuations.

The mean p.e. number is 21.68 and �2=1.80.
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table 1
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6 Conclusions

The assumption of the Poisson distribution of the detected p.e. number proved to be

reasonable for our experimental conditions, as well as the model chosen for the SER. In

�gure 12, we presente a logarithmic plot where the estimated p.e. number is shown as

dependence on the transmittancy of the �lters.

All of the methods give values which are in a good agreement with expected linear

dependence of the p.e. number registered on the �lter transparency. The �gure demon-

strates the linearity of the setup in the dynamic range of 0.02-20 p.e.

The best method for p.e. number estimation in the 0:2 < � < 5 range in an experi-

mental conditions (when the variations of the light transfer e�ciency are bigger then in

the laboratory set-up) is the �t of the PMT charge distribution with the function (A6) of

appendix A with x0,�0,pE and A values �xed to the values found during the independent

PMT calibration and with free � and v(p).

The advantage of the �tting method is its ability to restore � from \cut" charge dis-
tribution. In the case where the independent calibration was not performed the functions

of appendix A can be used with free parameters in order to estimate x1 (using Appendix
A formula). This will need more statistics.

If the charge distribution has \no cut" and the SER (or x1 parameter) is known, the
mean p.e. number can be estimated by dividing the mean of the distribution by the
calibration value x1(position of the mean for a \pure" SER).
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A APPENDIX: Function for the PMT response �t-

ting for the �'1

Formula (14) cannot be implemented to �t the PMT response to a light source with
intensity of ' 1 p.e. because of the approximate character of the estimation of x1 and �1.
These quantities can be estimated precisely in our model as:

x1 =

 
x0 +

�0p
2�gN

exp

 
�1

2

�
x0

�0

�2!!
(1� pE) + pE �A (A1)

�21 =

 
x20 + �20 +

x0�0p
2�gN

exp

 
�1

2

�
x0

�0

�2!!
(1 � pE) + 2pE �A2 � x21 (A2)

where pG is a normalization factor taking into account the cut of the gaussian part of the
SER spectra:

gN =
1

2

 
1� erf

 
� x0p

2�0

!!
(A3)

Another problem arises from the substitution of the multiple p.e. responses with

gaussians. While for n�3 the gaussian is a very good approximation (see �g.5), there is
a signi�cant deviation from the gaussian shape in the n=2 response. Precise analytical
formula for the f1
f2 convolution is quit complicated and its use in the �tting procedure
slows down the calculation. The following approximation can be obtained neglecting the

smallest contributions (x should be replaced by x � xp in the right part of the equation

in the case of non-zero pedestal value):

f2(x) = pE
2 x

A2
e�

x
A + 2

(1� pE)pEp
2��0

exp

 
�1

2

�
x� x0 �A

�0

�2!
+

+
(1� pE)

2

2
p
��0

exp

0
@�1

2

 
x� 2x0

�0
p
2

!21A (A4)

The last problem of the correct PMT charge spectra �tting is taking into account the
photons transfer e�ciency v(p) (including all the possible variations of the photocathode
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quantum e�ciency from point to point and from the angle of incidence etc.) One can

neglect this variations only for

� <<
1 + v1

v(p)
(A5)

For a big enough � when parameter v(p) is not known it is better to leave it free and use

formula (29) for �N .

The �tting function for a measured charge spectrum can be written as:

f(x) = P (0)fp(x) + P (1)f1(x) + P (2)f2(x) +
NmaxX
N=3

P (N)fN (x); (A6)

where P (N) is the Poisson distribution and fp(x) is the noise function. For the functions

fN(x) the gaussian approximation (with parameters de�ned by (A1) and (A2) is used.

f1(x) function coincides with (8).

The function (A6) has been tested on the C.T.F. (prototype of BOREXINO [10]) data
(runs with a Rn source at the center of the detector). It turns out a �2 ' 0:9 � 1:1 with

a statistics of ' 80; 000 events.
The parameter v(p) ' 0:025 in the C.T.F. is signi�cantly bigger than the one we could

expect using our set-up (because of the more complex light transfer in the C.T.F.).
In order to check the stability of the �t 64 samples of 40,000 events each have been

acquired using the set-up shown in �gure 1 for the same PMT and in the same conditions

with � = 2:15 (de�ned from the combined statistics with a high precision following the
procedure described in 3.2). The �t of each run has been performed. The �t parameters
change around their mean values as (for 1�):

< � >= 2:151 � 0:026;

< v1 >= 0:294 � 0:014;

< x1 >= 244 � 2:

So we can conclude that a statistics of 40,000 events with � ' 2 is enought to obtain
a SER calibration with a 1% precision at the 1� C.L.

If the SER parameters (x0,�0,pE and A) are �xed to the values obtained in independent
high statistics calibration and only the parameters �,v(p),xp and �p are free, the �t of the
same data samples gives

< � >= 2:147 � 0:009;

providing even better estimation of the � value.

B APPENDIX: The accuracy of the mean p.e. num-

ber calculation from the amount of no-p.e. events

The estimation of the mean number of p.e. from the amount of the events in the pedestal

is based only on the assumption of the Poisson-like distribution of the p.e. registration

28



statistics. This means we do not take into account the linearity of the PMT, which is

an important point when all the other methods described in this paper but this one are

concerned.

However, while implementing this technique, errors can arise in separating small am-

plitude pulses from pedestal events (no-p.e. events). Here we suppose that pedestal events

are separated perfectly.

Let us call P0 the probability to have a no-p.e. response, then 1�P0 is the probability

to have a p.e. response. Because of the Poisson law of the registrated p.e.:

P0 = e��: (B1)

The mean p.e. number is estimated from:

� = �ln
 

Nped

Ntrigger

!
: (B2)

Therefore, we have a simple binomial law for the probability of having a signal under the
pedestal. The mean value and the r.m.s. for this binomial distribution are, respectively:

< Nped >= Ntrigger � P0; (B3)

and
�2Nped = Ntrigger � P0 � (1 � P0): (B4)

For a 1� error estimation we can substitute Nped with Nped �
q
Ntriggerse

��=2p1 � e��.
The error on � is not symmetrical and it turns out that the bigger error comes out from

the substitution of Nevents �
p
Neventse

��=2p1 � e��. Performing this substitution and
taking we have:

�+�� = �ln
0
@e�� � 1q

Ntrigger

e��=2
p
1� e��

1
A : (B5)

For 1% accuracy at 1� C.L. ��=0.01� and as a consequence

Ntrigger =
1 � e��

e��(1� e�0:01��)2
: (B6)

In this way it is possible to work out the number of triggers, Ntrigger. In �gure 13 the

number of triggers for a 1% accuracy at 1� C.L. is shown.

C APPENDIX: Corrections to the SER parameters

to account for multip.e. hits

Let us consider P (n) as the Poisson distribution of the photoelectrons hitting the �rst

dynode. The mean value of the ADC spectrum will be, supposing the linearity of the
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Figure 13: Statistics for 1% accuracy at 1� and 3� C.L. for di�erent mean number of p.e.
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PMT response: xn = nx0 and �n =
p
n�0, where x0 and �0 are respectively the mean

value and the standard deviation of the SER; and taking into account the Poissonian

distribution of the detected light:

x�m =
P (0) � 0 + P (1) � x1 + P (2) � 2x1 + : : :

P (1) + P (2) + : : :
=

= x1 �
�

1� P (0)
; (C1)

where x1 is the mean value of the SER and the normalization does not contain P(0)

because the pedestal is not measured. When �� 1 the (C1) can be written:

x�m =
x1

1� �

2

: (C2)

To de�ne the relative variance:

v� �
���m
x�m

�2
=

< x2 >

< x >2
� 1: (C3)

one should know < x2 >, where < x >� x�m:

< x2 >=< x >2 +(��m)
2 =

=
P (0) � 0 + P (1) � (x21 + �21) + P (2) � (4x21 + 2�21) + : : :

P (1) + P (2) + : : :
=

=
�1 < n > +x21 < n2 >

1� P (0)
; (C4)

where < n >� � and < n >=< n2 > � < n >2 (Poisson distribution) has been used.
From (C4) it turns out that:

< x2 >=< n > ��1 + (1+ < n >)x21
1� P (0)

: (C5)

Therefore the relation between v� and v1 is:

v� = (v1 + 1) � 1� e��

�
� e��: (C6)

For �� 1 (C6) becomes:

v� = v1
�
1� �

2

�
+
�

2
: (C7)
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