e
L’i“’ ISTITUTO NAZIONALE DI FISICA NUCLEARE

Sezione di Padova

INFN/TC-09/03
May 05, 2009

DESIGN AND IMPLEMENTATION OF THE GLITE CREAM JOB
MANAGEMENT SERVICE

Cristina Aiftimiei, Paolo Andreetto, Sara Bertocco, Sirmedballa Fina,
Alvise Dorigo, Eric Frizziero, Alessio Gianelle, Moreno Kalla, Mirco Mazzucato,
Massimo Sgaravatto, Sergio Traldi, Luigi Zangrando
INFN, Sezione di Padova, via Marzolo 8, 1-35131 Padovayltal

Abstract

Job execution and management is one of the most importactidmality provided by ev-
ery modern Grid middleware. In this paper we describe howptbblem of job manage-
ment has been addressed in the gLite middleware by means 6REAM and CEMon-
itor services. CREAM (Computing Resource Execution and &g@ment) provides a job
execution and management capability for Grid systems,eM@EMonitor is a general-
purpose asynchronous event notification framework. Batises expose a Web Service
interface allowing conforming clients to submit, managd aronitor computational jobs
to a Local Resource Management System.

PACS: 89.20.Ff Computer Science and Technology

Published bysl S-Pubblicazioni
Laboratori Nazionali di Frascati

1 Introduction

Grid middleware distributions are often large softwaréfacts, which include a set of
components each providing a basic functionality. Such lidipas include (but are not
limited to) data storage, authentication and authorimattesource monitoring, and job
management. The job management componentis used to saantél, and monitor jobs
which are executed on a suitable computational resouraellyseferred as a Computing
Element (CE). A CE is the interface to a usually large farmarhputing hosts managed
by a Local Resource Management System (LRMS), such as LSB®rN¥Roreover, a CE
implements additional features with respect to the onegiged by the underlying batch
system, such as Grid-enabled user authentication andragtion, accounting, fault tol-
erance and improved performance and reliability.

In this paper we describe the architecture of Computing ResoExecution and
Management (CREAM), a system designed to efficiently maaa@E in a Grid environ-
ment. CREAM provides a simple, robust and lightweight ssxfor job operations. It
exposes an interface based on Web Services, which enablgh ddygree of interoper-
ability with clients written in different programming langges: currently Java and C++
clients are provided, but it is possible to use any languatieawWeb Service framework.
CREAM itself is written in Java, and runs as an extension cd\&aAxis servlet inside
the Apache Tomcat application server [1].

As stated before, it is important for users to be able to noortite status of their
jobs. This means checking whether the job is queued, runwingnished; moreover,
extended status information (such as exit code, failureareand so on) must be ob-
tained from the job management service. While CREAM pravide explicit operation
for querying the status of a set of jobs, it is possible to useparate notification service
in order to be notified when a job changes its status. Thisseivprovided by CEMoni-
tor, which is a general-purpose asynchronous notificatigine. CEMonitor can be used
by CREAM to notify the user about job status changes. Thisfeas particularly impor-
tant for specialized CREAM clients which need to handle gdamount of jobs. In these
cases, CEMonitor makes the expensive polling operationsagssary, thus reducing the
load on CREAM and increasing the overall responsiveness.

CREAM and CEMonitor are part of the gLite [2] middleware distition and cur-
rently in production use within the EGEE Grid infrastrue(8]. Users can install CREAM
in stand-alone mode, and interact directly with it throughtom clients or using the pro-
vided C++-based command line tools. Moreover, gLite usarstcansparently submit
jobs to CREAM through the gLite Workload Management Systé&viS). For the latter
case, a special component called Interface to Cream Emagoh(ICE) has been devel-

oped. ICE receives job submission and cancellation regweshing from a gLite WMS,
and forwards these requests to CREAM. ICE then handles ttre difetime of a job,
including registering each status change to the gLite Legygnd Bookkeeping (LB) ser-
vice [4]. Note, however, that CREAM is mostly self-containevith few dependencies
on the gLite software components.

1.1 Related Works

The problem of job management is addressed by any Grid sydigfierent job man-
agement services have been developed starting from diffezquirements; furthermore,
they must take into account the specific features of the rewdalle they belong to.

The UNICORE (Uniform Interface to Computing Resources)d#$tem was ini-
tially developed to allow German supercomputer centersduvigge seamless and secure
access to their computational resources. ArchitectyraljICORE is a three-tier sys-
tem. The first tier is made of clients, which submit requestthe second tier (server
level). The server level of UNICORE consists of a Gatewayohlauthenticates requests
from UNICORE clients and forwards them to a Network Job Swuger (NJS) for fur-
ther processing. The NJS maps the abstract requests intoeterfobs or actions which
are performed by the target system. Sub-jobs that have tarbatra different site are
transferred to this site’s gateway for subsequent proegdsy the peer NJS. The third
tier of the architecture is the target host which executestbarnated user jobs or system
functions.

The Advanced Resource Connector (ARC) [6] is a Grid middtevageveloped by
the NorduGrid collaboration. ARC is based on the GlobusKibland basically consists
of three fundamental components: iemputing Servicerhich represents the interface
to a computing resource (generally a cluster of computdre)nformation Systerwhich
is a distributed database maintaining a list of know resssrand aBrokering Client
which allows resource discovery and is able to distribugevtbrkload across the Grid.

The Globus Toolkit provides both a suite of services to stifomonitor, and cancel
jobs on Grid computing resources. GRAM4 refers to the Webi€&aimplementation of
such services [7]. GRAMA4 includes a set of WSRF-complianib\®ervices [8] to locate,
submit, monitor, and cancel jobs on Grid computing resaird8RAM4 is not a job
scheduler, but a set of services and clients for communigatith different batch/cluster
job schedulers using a common protocol. GRAM4 combinesijainagement services
and local system adapters with other service componentsedBtobus Toolkit in order
to support job execution with coordinated file staging.

!Globus and Globus Toolkit are trademarks of the Univerdit@lnicago

Initially, the job management service of the gLite middlesvevas implemented by
the legacy LGC-CE [9], which is based on the pre-Web Servarsion of GRAM. The
development of CREAM was motivated by some shortcomingbh®gkisting solutions.
It was necessary to address scalability and performanddgmns with the existing so-
lutions. Furthermore, with the consolidation of open Wedmdards it was necessary to
develop a new, cross-platform Web Service-based CE.

1.2 Organization of this paper

This paper is organized as follows. In Section 2 we give a ggre/erview on how
job management is implemented in the gLite middleware. TheBection 3 we restrict
our attention on the CREAM and CEMonitor services, which the final part of the
job management chain in gLite. Sections 4 and 5 describertgtecture of CREAM
and CEMonitor respectively. In Section 6 we describe theradtions with CREAM and
CEMonitor which are necessary to handle the typical job sabion sequence. Section 7
describes how the components are built and deployed in teuption infrastructure.
Section 8 describes some performance results. Finallglgsions and future works are
discussed in Section 9.

2 Job Management in thegLite Middleware

In this section we give a brief introduction to the job maragat architecture of the gLite
middleware. The interested reader is referred to [2,9] fmoae complete description.

Fig. 1 shows the main components involved in the gLite jolnsgbion chain. We
will consider job submission to the CREAM CE only. The comg@ots shown in gray in
the figure—namely JobController+LogMonitor+CondorG ai@3-CE-are those respon-
sible for job management through the legacy LCG-CE, andmaitibe described in this
paper.

There are two entry points for job management requests: liite §YMS User
Interface (Ul) and the CREAM Ul. Both include a set of comméind tools which can
be used to submit, cancel and query the status of jobs. I gbibs are described using
the Job Description Language (JDL) notation, which is auaitotation based on Condor
classads [10].

The CREAM Ul is used to interact directly with a specific CREABE. It is a set
of command line tools, written in C++ using the gSoap engirlg.[The CREAM CLI
provides a set of commands to invoke the Web Services opasatixposed by CREAM
(see Table 1 on Section 4 for the list of available operajiofilse user can submit, cancel,
and query the status of a job on a CREAM server.

glLite Ul host CREAM host

0.* 1.

CREAM CLI alite WMS host 1”é CREAM
WMs

0.* 1.2
WMS Ul El:| g WMProxy —g WM —
IJ:I JC+LM+CondorG LGC CE Host
—
LGC CE

|

LB Server host
LB

Figure 1: Job submission chain (simplified) in the gLite nhédeare

On the other hand, the gLite WMS Ul allows the user to submit monitor jobs
through the gLite Workload Management System (WMS) [12]e TWMS is responsible
for the distribution and management of tasks across Gralress (in particular Comput-
ing Elements), in such a way that applications are efficyemtecuted. Job management
through the WMS provides many benefits compared to direcsjdimission to the CE:

e The WMS can manage multiple CEs, and is able to forward joltsé@mne which
better satisfies a set of requirements which can be specsigara of the job de-
scription;

e The WMS can be instructed to handle job failures: if a job &bdue to problems
related with the execution host (e.g. host misconfiguratioa WMS can automat-
ically resubmit it to a different CE;

e The WMS provides a global job tracking facility using the L&ce;

e The WMS supports complex job types (job collections, jobhwdependencies)
which can not be handled directly by the CEs.

Note that there is a many to many relationship between theegMMS Ul and
the WMS, that is, multiple User Interfaces can submit to thme WMS, and multi-
ple WMS can be associated to the same WMS UI.

The WMS exposes a Web Service interface which is impleménteide WMProxy
component. The core of the WMS is the Workload Manager (WMjpse purpose is to

accept and satisfy requests for job management. For jobisalom requests, the WM
tries to locate an appropriate resource (CE) where the jotbeaxecuted. The decision
of which resources should be used is the outcome of the matdhmprocess between
the requests and the available resources. The user cafyspset ofrequirementsn the
job description. These requirements represent a set ofraamts which the WM tries to
satisfy when selecting the CE where the job will be executed.

Currently, the gLite WMS can submit jobs to CREAM as well athlegacy LCG-
CE. Each CE is uniquely identified by a URI calleetid Interaction with the LCG-CE is
handled by the Job Controller/Log Monitor/CondorG (JC/iddhdorG) modules within
the WMS. In the case of submission to CREAM-based CEs, jobsranaged by a
different module, called ICE. ICE receives job submissiand other job management
requests from the WM component of the WMS through a simplesaggag system based
on local files. ICE then uses the operations of the CREAM fater to perform the
requested operation. Moreover, it is responsible for nooimg the state of submitted
jobs and for taking the appropriate actions when job stdtasnges are detected (e.g. to
trigger a possible resubmission if a Grid failure is detérte

ICE can obtain the state of a job in two different ways. The @ree is by subscrib-
ing to a job status change notification service implemenyealdeparate component called
CEMonitor (more details in Section 5). CEMonitor [13] is angeal purpose event noti-
fication framework. CREAM notifies the CEMonitor componebbat job state changes
by using the shared, persistent CREAM backend. ICE sulesctido CEMonitor notifi-
cations, so it receives all status changes whenever they.ols a fallback mechanism,
ICE can also poll the CREAM service to check the status ofivatjobs for which it did
not receive any notification for a configurable period of tifhkis mechanism guarantees
that ICE knows the state of jobs even if the CEMonitor sertieeomes unavailable or
has not been installed.

The LB service [4] is used by the WMS to store various infoliorabn running jobs,
and provide the user with an overall view on the job state. Sdrgice collects events in
a non blocking asynchronous way, and this information candsel to compute the job
state. LB is also used to store events such as the transfeb®frjom one component to
another one (e.g., from the WMproxy to the WM): in this wa tiser knows the location
of each job. The job status information gathered by the LBaslenavailable through the
gLite Ul commands. Note that in case of direct submissionsuiph the CREAM Ul,
the LB service is not used; however, CREAM itself provides Jobinfooperation for
reporting detailed job status information.

3 CREAM and CEMonitor

CREAM and CEMonitor are both available through Web Serviterfaces. CREAM is
intended to offer job management facilities to the widestgildle range of consumers.
This includes not only other components of the same middkewtack, but also single
users and other heterogeneous services. Thus, we need anisectthat lets poten-
tial users to be as free as possible in using their own todlslamguages to interface
to CREAM and CEMonitor. The Web Services technology offdrthe interoperability
characteristics that are needed to fulfill the above reqerds.

3.1 Deployment

Fig. 2 shows the typical deployment of a Computing Elemesetdaon CREAM and CE-
Monitor. Both applications run as Java-Axis servlets [1d]the Tomcat application
server [1]. Requests to CREAM and CEMonitor traverse a pipalf additional compo-
nents which take care of authorization issues; one of thes@onent is théuthorization
Framework which is an Axis plugin for validating and authorizing thegjuests received
by the services (more details on the security infrastrectvil be given shortly).

CREAM uses an external relational database server to stomgernal state. This
improves fault-tolerance as it guarantees that this inédion is preserved across restarts
of CREAM. Moreover, the use of a SQL database improves resypemess of the service
while performing complex queries which are needed by thenabCREAM operations,
such as getting the list of jobs associated with a specific Udee database is accessed
through the JDBC interface; in the gLite deployment we aiagislySQL [15], but any
database accessible through JDBC is supported. Note thdatabase server can be in-
stalled on a dedicated host, as shown in Fig. 2, or can shasathe machine as CREAM
and CEMonitor.

CREAM interacts with CEMonitor [13] to provide an asynchooss job status no-
tification service. For each job status change, CREAM neati@iEMonitor, which in turn
check whether there are subscriptions registered for titdiaation. If so, the notification
is sent to the user which requested that (more details wijiven in Section 5).

CREAM can be associated to multiple batch queues (note ted@many asso-
ciation shown in Fig. 2). CREAM submits requests to the LRM@®utigh Batch-system
Local ASCII Helper (BLAH) [16], an abstraction layer for tnaederlying LRMS. BLAH,
in turn, interacts with the client-side LRMS environmenhigh might consist of a set of
command line tools which interact with the server-side LRMS

CREAM CE

Tomcat

Axis

Delegation % Authz Fwk
CREAM DB Host
Z [E
SQL DB Server Authz Fwk

T
T
%: Trust Manager

] 1
1% |
Server-side LRMS - 1 Axis
% CEMon % Authz Fwk

Figure 2: Typical deployment of a CREAM service

LRMS head node C

3.2 Security

The Grid is a large collaborative resource-sharing envirenmnt. Users and services cross
the boundaries of their respective organizations and tesgurces can be accessed by
entities belonging to several different institutions. urtls a scenario, security issues are
of particular relevance. There exists a wide range of aditegtion and authorization
mechanisms, but Grid security requires some extra feataxess policies are defined
both at the level of Virtual Organizations (VOs) and at theslef single resource owners.
Both these aspects must be taken into account. Moreovek asligee in the following,
Grid services have to face the problem of dealing with theghion of certificates and
the mapping of Grid credentials into local batch systemengdls.

Trust Manager The Trust Manager is the component responsible for carrgutgau-
thentication operations. It is external to CREAM and CEMoniand is an implemen-
tation of the J2EE security specifications [17]. Authentarais based on Public Key
Infrastructure (PKI). Each user (and Grid service) wistimgccess CREAM or CEMon-
itor is required to present an X.509 format certificate [1Bhese certificates are issued
by trusted entities, the Certificate Authorities (CA). Tléerof a CA is to guarantee the
identity of a user. This is achieved by issuing an electrdoicument (the certificate) that
contains the information about the user and is digitallysajby the CA with its private
key. An authentication manager, such as the Trust Managetryerify the user identity
by decrypting the hash of the certificate with the CA publig.k&his ensures that the
certificate was issued by that specific CA. The Trust Managarthen access the user

data contained in the certificate and verify the user idgrne interesting challenge in a
Grid environment is the so-callgatoxy delegationlt may be necessary for a job running
on a CE to perform some operations on behalf of the user owthimgpb. Those oper-
ations might require proper authentication and authadmagupport. For example, we
may consider the case where a job running on a CE has to acG¢ssage Element (SE)
to retrieve or upload some data. This aim is achieved in thistTvlanager usingroxy
certificates RFC3820 proxy certificates are an extension of X.509 ceatiis [19]. The
generation of a proxy certificate is as follows. If a user wantdelegate her credential
to CREAM, she has to contact tkelegation Port-typef the service. CREAM creates a
public-private key pair and uses it to generate a CertifiSzga Request (CSR). Thisis a
certificate that has to be signed by the user with her priveye Khe signed certificate is
then sent back to CREAM. This procedure is similar to the gaien of a valid certifi-
cate by a CA and, in fact, in this context the user acts like a T#e certificate generated
so far is then combined with the user certificate, thus fognairchain of certificates. The
service that examines the proxy certificate can then vengydentity of the user that del-
egated its credentials by unfolding this chain of certisatEvery certificate in the chain
is used to verify the authenticity of the certificate at thevwus level in the chain. At
the last step, a CA certificate states the identity of the tis#rfirst issues the delegated

Proxy.

Authorization Framework The aim of the authorization process is to check whether
an authenticated user has the rights to access servicegssmareces and to perform cer-
tain tasks. The decision is taken on the basis of policiesdfia be either local or de-
cided at the VO level. Administrators need a tool that allélnsm to easily configure the
authorization system in order to combine and integrate thwtke policies. For this rea-
son, CREAM adopts a framework that provides a light-weigbtfigurable, and easily
deployable policy-engine-chaining infrastructure fofagning, retrieving, evaluating and
combining policies locally at the individual resource sit&€he framework provides a way
to invoke a chain of policy engines and get a decision refudtiaithe authorization of a
user. The policy engines are divided in two types, dependimtieir functionality. They
can be plugged into the framework in order to form a chain dicpe@ngines as selected
by the administrator in order to let him set up a complete @ughtion system. A policy
engine may be either a Policy Information Point (PIP) or adydDecision Point (PDP).
PIPs collect and verify assertions and capabilities aasetiwith the user, checking her
role, group and VO attributes. PDPs may use the informagtiteved by a PIP to decide
whether the user is allowed to perform the requested actibether further evaluation
is needed, or whether the evaluation should be interruptelditze user access denied.

In CREAM both VO and “ban/allow” based authorizations arpmurted. In the former
scenario, implemented via the VOMS PDP, the administradorspecify authorization
policies based on the VOs the jobs’ owners belong to (or otiqudar VO attributes). In
the latter case the administrator of the CREAM-based CE gplicdly list all the Grid
users (identified by their X.509 Distinguished Names) axitiedl to access CREAM ser-
vices. For what concerns authorization on job operatiopdgfiault each user can manage
(e.g. cancel, suspend, etc.) only her own jobs. HowevelCRREAM administrator can
define specific “super-users” who are empowered to managgodls submitted by other
users.

Credential Mapping The execution of user jobs in a Grid environment requires iso
lation mechanisms for both applications (to protect thggdieations from each other)
and resource owners (to control the behavior of these arpiipplications). In the ab-
sence of solutions based on the virtualization of resouf¢ét), CREAM implements
isolation via local credential mapping, exploiting traaiital Unix-level security mecha-
nisms like a separate user account per Grid user or per jois. Utiix domain isolation

is implemented in the form of thgLExec system [20], a sudo-style program which al-
lows the execution of the user’s job with local credentiadsived from the user’s iden-
tity and any accompanying authorization assertions. Talation between the Grid cre-
dentials and the local Unix accounts and groups is detedniyethe Local Credential
MAPping Service (LCMAPS) [21].gLExec also uses the Local Centre Authorization
Service (LCAS) to verify the user proxy, to check if the usas lthe proper authoriza-
tion to use thegLExec service, and to check if the target executable has been fyope
“enabled” by the resource owner.

4 The CREAM service

The main functionality of CREAM is job management. Usersmsiiljobs described
as a JDL expression [22] representing a job, and CREAM ersdtibn an underlying
LRMS (batch system). The JDL is a high-level, user-orientethtion based on Con-
dor classified advertisements (classads) [10] for desgijmbs and their requirements.
CREAM uses a JDL dialect which is very similar to the one ugsedédscribe jobs in the
gLite WMS. There are however some differences between tHeABRand WMS JDL,
which are motivated by the different role of the job executmd workload management
services. As described in Section 2, the gLite WMS receiwvbssubmission requests
which possibly include a set of user-defined requirementg;iware used by the WM to
select the CE where the job is executed. Of course, once thetisa is done, there

10

is no need for the CE to further process the job requirementthey are no longer
relevant. Similarly, there are other kind of informationiahhonly make sense for the
CREAM JDL, and not for the WMS JDL.

CREAM supports the execution of batch (normal) and par@iig?l) jobs. Normal
jobs are single or multithreaded applications requiring G U to be executed; MPI jobs
are parallel applications which usually require a largenhar of CPUs to be executed,
and which make use of the MPI library for interprocess comigation.

Applications executed by CREAM might need a set of input did¢a to process,
and might produce a set of output data files. The set of inmstificalled the InputSandBox
(ISB), while the set of files produced by the application ileththe OutputSandBox
(OSB). CREAM transfers the ISB to the executing node fronctlent node and/or from
Grid storage servers to the execution node. The ISB is stadszfore the job is allowed
to start. Similarly, files belonging to the OSB are autonalyctransferred out of the
execution node when the job terminates.

As an example, consider the following JDL processed by CREAM

Type = "job";
JobType = "normal";
Executable = "/sw/command";

Arguments = "60";
StdOutput = "sim.out";
StdError = "sim.err";
OutputSandbox = {
"sim.err",
"sim.out"
};
OutputSandboxBaseDestURI = "gsiftp://sel.pd.infn.it:5432/tmp";
InputSandbox = {
"file:///home/user/filel",
"gsiftp://sel.pd.infn.it:1234/data/file2",
"/home/user/file3",
"filed"
};
InputSandboxBaseURI = "gsiftp://se2.cern.ch:5678/tmp";

With this JDL anormal(batch) job will be submitted. Besides the specification of
the executablesw/command (which must already be available in the file system of the
executing node, since it is not listed in the ISB), and of ttamdard output/error files,
it is specified that the filesilel, file2, file3, file4 will have to be staged on the
executing node as follows:

e filel andfile3 will be copied from the client Ul file system

e file2 will be copied from the specified GridFTP server
(gsiftp://sel.pd.infn.it:1234/data/file2)

11

e filed will be copied from the GridFTP server specifiedlagputSandboxBaseURI
(gsiftp://se2.cern.ch:5678/tmp)

Itis also specified that the fileim. err andsim. out (Specified aSutputSandbox)
must be automatically uploaded ingsiftp://sel.pd.infn.it:5432/tmp when the
job completes its execution.

The pre- and post-staging of data is handled by a shell scafied Job Wrapper
(JW), which is what is actually sent for execution on the LRMS the name suggests,
the script “wraps” the executable by taking care of fetcterternal data, then calling the
executable and finally putting the output data to the comemiote locations. The JW is
assembled by CREAM according to the JDL and sent to the LRMS.

Other typical job management operations (job cancellajamstatus with different
levels of verbosity and filtering, job listing, job purgingde supported. Moreover users
are allowed to suspend and resume jobs submitted to CREAdebGES, provided that
the underlying LRMS supports this feature.

For what concerns security, authentication (implemengeagua GSI based frame-
work [7]) is properly supported in all operations. Auth@iion on the CREAM service
is also implemented, supporting both VO based policies antidips specified in terms
of individual Grid users. A Virtual Organization is a contdpat supplies a context
for operation of the Grid that can be used to associate uees, requests, and a set
of resources. CREAM interacts with the VO Membership Ser(MOMS) [23] to man-
age VOs; VOMS is an attribute issuing service which allovghHevel group and capabil-
ity management and extraction of attributes based on thésudentity. VOMS attributes
are typically embedded in the user’s proxy certificate, énglthe client to authenticate
as well as to provide VO membership and other evidence ingdesoperation.

Fig. 3 shows the (simplified) internal structure of the CREABtvice. CREAM
exposes two different Web Service interfaces. The operstal the legacy CREAM
interface are listed in Table 1.

The first group of operationd éase Managemenallows the user to define and
manage leases associated with jobs. The lease mechanidredrasnplemented to en-
sure that all jobs get eventually managed, even if the CREAMise loses connection
with the client application due to network partitioning.dedease defines a time interval,
and can be associated with a set of jobs. A lease can be rer@f@e its expiration; if
a lease expires, all jobs associated with it are terminatdgarged by CREAM.

The second group of operation¥op Managemeitis related with the core func-
tionality of CREAM as a job management service. Operatiarspaovided to create a
new job, start execution of a job, suspend/resume or tetmengob. Moreover, the user

12

Authorization Layer (VOMS) Authentication Layer (TLS/SSL) |

CREAM |

<<interface>> <<interface>>
BES Interface Legacy Interface

AN JAN

1 U
<<realize>3 <<realize>>

1
| CREAM Core

CommandManager <<interface>>
| commandvansier e

,*A

<<realize>>
JobCommand

A

JobRegisterCmd | JobStartCmd || OtherCmd |

Client-side LRMS
BLAH

Figure 3: CREAM internal architecture

can get the list of all owned jobs, and it is also possible tatlye status of a set of jobs.
The CREAM job state model is shown in Fig. 4, and job stateslaseribed in Table 2.
Finally, the third group of operationSérvice Managementieals with the whole
CREAM service. It consists of two operations, one for emajitiisabling new job sub-
missions, and one for accessing general information alb@usérvice itself. Note that
only users with administration privileges are allowed tal@e/disable job submissions.
Recently we implemented an additional interface to the CRIES&rvice, compli-
ant with the Basic Execution Service (BES) specification.SHE4] defines a standard
interface for execution services provided by differentd®ystems. The aim of BES is
to favor interoperability of computing elements betwedifedent Grids: the same BES-
enabled CE can be “plugged” into any compliant infrastreestinoreover, sharing of re-
sources between different Grids is possible. BES definas bperations for job submis-
sion and management. More specifically, the BES specificdidines two Web Services
port-types BES-Factory containing operations for creating, monitoring and caltitrg
sets of jobs, an@ES-Managementvhich allows clients to monitor the details of and
control the BES itself. The Port-types and associated tipesaare shown in Table 3.
BES uses the Job Submission Description Language (JSDL)aR%e notation
for describing computational jobs. The legacy CREAM irded was defined before BES
was available, and also provides additional methods whiemat provided by BES (no-
tably, the possibility to renew a user proxy certificate, athis useful to avoid user proxy

13

Lease Management Operations

SetLease Creates a new lease, or renews an existing lease
GetlLease Gets information on a lease with given ID
JobSetlLeaseld Associates a lease with a job

GetlLeaselList Gets the list of all active leases

DeleteLease Deletes a lease, and purge all associated jobs
Job Management Operations

JobRegister Registers a new job for future execution
JobStart Starts execution of a registered job
JobCancel Terminates a job

JobPurge Purges all information of a job

JobSuspend Suspends execution of a running job
JobResume Resumes execution of a suspended job
JobStatus Gets the status of a job

Jobinfo Gets detailed information about a job

JobList Gets the list of all active jobs

Service Management Operations

acceptNewJobSubmission€Enables/disables new job submissions
getServicelnfo Gets general information about the service

Table 1: CREAM interface operations

expiration while a job is running).

CREAM has been developed around an internal core, which énargc command
executor. The core accepts abstract commands which areeedjand executed by a
pool of threads. It is possible to customize the core by degiebncrete implementations
of the abstract command interface. Two kind of commands eateffined:synchronous
andasynchronousSynchronous commands must be executed immediately upeipte
while asynchronous command execution can be deferred &tratilme. Moreover, it is
possible to definsequentiabr parallel commands. When a parallel command is being
executed, other commands (parallel or sequential) can ta&uc@ntly executed by other
threads in the pool. When a sequential command is being tediaoo other commands
operating on the same job are executed by any other threldhersequential command
terminates execution. The job management interfaces thetBES and the legacy one)
instantiate the correct command type to execute the opasatequested by the users.

When job submissions arrive through the gLite WMS, it is aigéthat all jobs
submitted to CREAM eventually reach a terminal state (amg #wentually get purged
from the CREAM server). The gLite WMS has been augmented anthdditional com-

14

. JobResume /4 Held \ JobResume

JobSuspend \ J JobSuspend

JobRegister

Registered
JobResume JobSuspend

JobStart

Pending : LRMS assigns ID Idle LRMS executes J Running LRMS Executes the Jol Really-Running :

. _ Job Tesrinates with errors
JobCancel Job Terminates W Job Terminates Succesfully
LRMS Submission Failed
rcancelled \ rDone-Failed \ (Done-OK)

N

Figure 4: CREAM job states

ponent, ICE, which is responsible for interacting with CREAICE and CREAM use a
lease-based protocol to ensure that all jobs get eventpatlyed by CREAM even if it
loses contact with the ICE client, e.g. due to network garting. Basically, each job
submitted through ICE has an associdtsase timewhich must be periodically renewed
using theJobLeaseCREAM operation. ICE is responsible for periodically rermegvthe
leases associated to active jobs, i.e. jobs which are nwoiritated yet. Should a lease
expire before the actual termination of a job, CREAM will gerall jobs associated with
that lease and free all the CE resources used by them.

CREAM can be seen as an abstraction layer on top of an LRM$8HIsftstem),
which extends the LRMS capabilities with an additional lexfesecurity, reliability, and
integration with a Grid infrastructure. CREAM supportseient batch systems through
the idea ofLRMS connectorsAn LRMS connector is an interface for a generic batch
system. Currently, CREAM supports all the batch systemgaupd by BLAH [16]
through a specific instance of LRMS connector calledBhé&H connector moduleat
the time of writing BLAH supports LSF, PBS/Torque, and Conf@6]; Sun Grid Engine
(SGE) support is currently being implemented as well. 1i1$® gossible to create other,
ad-hoc connectors to interact with other types of batclesyst Note that a single instance
of CREAM can provide access to multiple underlying LRMS.

5 The CEMonitor Service

The purpose of CEMonitor is to provide an asynchronous ewetification framework,
which can be coupled with CREAM to notify the users when jaliust changes occur.

15

Registered The job has been submitted to CREAM with thebRegisteoperation

Pending The user invoked thdobStartoperation to start the job execution

Idle The LRMS (batch system) accepted the job for execution. dbésjnow
in the LRMS queue

Running The Job Wrapper is being executed

Really-Running The actual user job is being executed

Held The job has been suspended, e.g. because the user issuet$luspend
operation. The job can be resumed in its previous state welkddbRe-
sumeoperation

Done-OK The job terminated correctly

Done-Failed The job terminated with errors

Cancelled The job has been cancelled, e.g. because the user invokddii@ancel
operation to terminate it

Aborted Submission to the LRMS failed

Table 2: Description of the CREAM job states

Figure 5 shows the internal structure of the CEMonitor servSimilarly to CREAM,
CEMonitor is a Java application which runs in an Axis congaiwithin the Tomcat
application server. CEMonitor uses the same authentiwatibhorization mechanisms
as CREAM, which has been already discussed in Section 3.

CEMonitor publishes information a®pics For each Topic, CEMonitor maintains
the list of Eventsto be notified to users. Topics can have three different $evkVisibil-
ity: public, meaning that everybody can receive events associatedheattopic;group,
meaning that only member of a specific VO can receive notifinat anduser, meaning
that only the user which created the Topic can receive natifins. Users can creaBeib-
scriptionsfor topics of interest. Each subscription has a unique IDexgnration time
and an update frequengy CEMonitor checks every/ f seconds whether there are new
events for the topic associated to the subscription; if Ise,events are sent to the sub-
scribed users. Unless a subscription is explicitly renetweds creator, it is removed
after the expiration time and no more events will be notified.

Each Topic is produced by a correspond8gnsor A Sensor is a component which
is responsible for actually generating Events to be notfieedh specific Topic. Sensors
can be plugged at runtime: when a new Sensor is added, CEdanitomatically gener-
ates the corresponding Topic so that users can subscrilgemdkt important Sensor we
currently use is calledobSensqrwhich produces the events corresponding to CREAM
job status changes. When CREAM detects that a job changssits (for example, an
Idle job starts execution, thus becomiRgnning, it notifies the JobSensor by sending a

16

BES-Management Port-type
StartAcceptingNewActivities Administrative operation: requests that the BES ser-
vice start accepting new activities

StopAcceptingNewActivities Administrative operation: requests that the BES ser-
vice stop accepting new activities

BES-Factory Port-type

CreateActivity Requests the creation of a new activity; in general, this
operation performs the submission of a new computa-
tional job, which is immediately started

GetActivityStatuses Requests the status of a set of activities
TerminateActivities Requests termination of a set of activities
GetActivityDocuments Requests the JSDL document for a set of activities

GetFactoryAttributeDocument Requests the XML document containing the proper-
ties of this BES service

Table 3: BES Port-Types and Operations

message on the network socket where the sensor is listeFtieg, the JobSensor triggers
a new notification which is eventually sent to all subscribsdrs.

Each Sensor can provide either asynchronous notificatmnsgistered listeners,
or can be queried synchronously. In both cases, Sensorsiaplst of so-calledQuery
Languages A Query Language is a notation (e.g., XPath, classad esijores and so
on) which can be used to ask a Sensor to provide only Evensfysad) a user-provided
condition. When an Event satisfies a condition, CEMonitmuggrs anAction on that
event. In most cases, the Action simply instructs CEMonitosend a notification to
the user for that event. Of course, it is possible to exten§@fitor with additional
types of user-defined Actions. When registering for asymebus notifications with the
SubscribeCEMonitor operation (see Table 4), the user passes a quprgssed in one
of the supported Query Languages as parameter. So, foruhatrption, only events
matching the query are notified.

Sensors support differebtialects A Dialect is a specific output format which can
be used to render Events. This means that a Sensor can puibtighation in different
formats: for example, job status change information co@ariade available in Condor
classad format [10], or in XML format. When a user subscritoes Topic, she can also
specify an appropriate Dialect for rendering the notifimasi. CEMonitor will then apply
the correct rendering before sending the notifications.

We show in Fig. 6 an example of job status change notificatidme notification
is in Condor classad format, and contains several variahighstheir associated values.
CREAM_JOB_ID is the ID of the job which changed stat@REAM_URL is the endpoint of

17

Authorization Layer (VOMS) Authentication Layer (TLS/SSL)

CEMonitor

Action Event
<<interface>>
CEMonitorPort o 0.*
T
: <<realizgb> Subscription Topic
CEMonitorService 0.+ | +frequency : Integer +Visibility : TopicVisibility
1

1

QueryLanguage
0.x | Sensor |
AN Dialect

Figure 5: Internal structure of CEMonitor

the CREAM service where the job is being executsiB_STATUS is the current job status
(in human-readable formatLIMESTAMP represents the time (in seconds since epoch)
when the job status change happen@@RKER_NODE is the name of the execution host
for the job. In this case, the job has not started executionsgethe information on the
worker node is reported as not available. Figure 7 shows ah Kdering of the same
information.

CREAM_JOB_ID = "CREAM986407854";

CREAM_URL = "https://cream-02.pd.infn.it:8443/ce-cream/services/CREAM2";
JOB_STATUS = "REGISTERED";

TIMESTAMP = "1232444196000";

WORKER_NODE = "N/A"

Figure 6: Job status change notification in classad Dialect

Table 4 lists all the operations supported by CEMonitor.

It must be stressed that CEMonitor is not strictly couplethW@REAM. Itis instead
a generic framework for information gathering and provigng. For example in the
context of the Open Science Grid (OSG) ReSS project is usathtage Grid resource
information [27].

18

<status>
<cream_job_id>CREAM986407854</cream_job_id>
<cream_url>

https://cream-02.pd.infn.it:8443/ce-cream/services/CREAM2

</cream_url>
<job_status>REGISTERED</job_status>
<timestamp>1232444196000</timestamp>
<worker_node>N/A</worker_node>

</status>

Figure 7: Job status change notification in XML Dialect

6 Putting the components together

In this section we summarize the submission to CREAM via @& énabled WMS with
the UML Sequence Diagram shown in Fig. 8.
The relevant messages shown in the diagram are as follows:

1. ICE invokes thegetProxyRedpperation on the Delegation service. The request
parameter is a string which represents the delegation IRwhill be associated to
the delegated credentials.

2. The delegation service replies with a CSR, which is a RBO32yle proxy certifi-
cate request in PEM format with Base64 encoding [18].

3. ICE signs the CSR on behalf of the user which originallymsitted the job. This
is possible because ICE itself is using a user proxy cettdfiadnich has been dele-
gated to the WMS. Then, ICE sends back: the ID of the alreatBgd&on session
initiated on step 1, the RFC3280 style proxy certificatensyby ICE on behalf of
the user, in PEM format with Base64 encoding.

4. The Delegation service transfers the delegation IDé&igiroxy to CREAM. Note
that both CREAM and the delegation service execute on the gduaysical host, so
they can communicate locally.

5. ICE requests the creation of a new lease, with a given [EasAt the moment,
ICE maintains a single lease for each user submitting jabshere are as many
lease IDs as the number of unique users submitting to a spE&fiEAM CE. Note
that the gLite WMS (and thus ICE) submits jobs on behalf ofuker, using an
X509 proxy certificate which has been delegated from theeglUit (see Fig. 1) to
the WMS.

19

Service Management Operations

Getinfo Gets information about the CEMonitor service, including tersion
and a brief description of the service, plus a list of avddalopics and
Actions.

Lease Management Operations

Subscribe Subscribes for notifications. The user specifies the Topfguery to be

executed and a set of Actions to trigger when the Query sdsce€he
notification rate can also be specified as parameter.

Update Updates an existing Subscription: it is possible to modifg Topic,
Query, triggered Actions and/or notification rate.

GetSubscriptionRef Gets the list of all Subscription IDs and associated expinatimes be-
longing to the caller.

GetSubscription Gets detailed information on a set of Subscriptions giveir tmique IDs.

Unsubscribe Removes an existing subscription. Events associated t&thascription
will no longer be natified.

PauseSubscription Pauses the stream of notifications associated with a givesc8ption
ID.

ResumeSubscriptionResumes sending notifications associated with a previopalysed
Subscription.

GetTopics Gets the list of Topics supported by CEMonitor.
GetTopicEvent Gets the list of events associated with the specified Topic.

Table 4. CEMonitor interface operations

6. ICE is now ready to submit jobs to CREAM using the existimgedation 1D and
lease ID. The first step is to invoke tldebRegisteroperation on CREAM: this
operation prepares the job for execution, by first creatorgestemporary files for
internal use on the CE host.

7. The CREAM service registers the job, creates all the teargdiles and returns a
CREAM job ID which can be used from now on to refer to this job.

8. ICE invokes thelobStartoperation, using the CREAM job ID as parameter, to re-
guest that the job is actually transferred to the LRMS, améduiest that execution
begins.

9. CREAM forwards the job to the LRMS; the job is added to theMRRbatch queue,
and will eventually be executed.

10. ICE subscribes to CEMonitor to receive job status charmg#ications. This is
done only if there are no active subscriptions on that sme€@REAM CE; if so,

20

| ICE | | Delegation | | CREAM | |CEMOnitor

| 1: GetProxyReqL |
L

L
7: cream_job_id ‘ |_|

- ‘ 9: LRMS start(;
\
LL ——————— m————— e

\ \ \
2: CsR \ \ \
= = — — —
3: PutProxy() \ | | |
e — — — — — 4: Put Delegation ‘ ‘ ‘
! 5: SetLease(lease_id) - ! |
\ '|_| \ \
T~ === - === T |
@ 6: JobRegister(JDL, lease_id) | f f
\ \
8: JobStart(cream_job_id)
\ 4 \
\

\
=~ \
0 |l
| 15: JobPurge) | | \
. 1 \ T
v v v v v

Figure 8: Overall job submission sequence diagram
there is no need to create a new subscription, as it is pessllse the existing
one.

. CEMonitor returns a Subscription ID, which can be uséet lan to renew, modify
or cancel the subscription.

. The LRMS, through the BLAH component (see Section 4)fiestCREAM about
each job status change. CREAM in turn informs CEMonitor.

. CEMonitor sends an appropriate notification to ICE; idevrto reduce round-trip
times, CEMonitor batches multiple related notificationdgchihare sent together to
subscribed clients.

. ICE also periodically queries the job states directlyni® CREAM service using
theJobStatumperation.

21

15. When the job terminates, ICE invokes@Purgeoperation to remove all tempo-
rary files which have been created on the CE node.

We remark that it is necessary to perform a single delegapenation and to create
a single lease for each user. So, after the first job has bdamited, all subsequent
submissions for the same user will require the interactglmsvn in box (a) only. The
interactions in box (b) are executed whenever CEMonitorreas job status changes to
notify. We recall that, in order to improve efficiency, CEMtmm batches multiple status
change events for the same user into a single notificationlwikisent to the clients each
1/f seconds,f being the user-defined notification frequency (in seconé®ally, the
interactions shown in box (c) are executed only when ICE do¢seceive status change
notifications for some jobs for longer than a configurableghold.

Finally, note that we omitted from Fig. 8 the operations ieggito renew the del-
egations when they are about to expire, and the operatiousreel to renew the leases
when they are about to expire. Delegation renewal involxestty the same operations
required for delegating credentials for the first time (@pens 1 through 4 in the se-
guence diagram); lease renewal is performed by callietieasevith an existing lease
ID, as in operation 5 in the diagram.

7 Build, Installation and Usage

All the components of the gLite middleware (including CREAdvd CEMonitor) are
built using the ETICS Build and Test facility [28]. ETICS is éntegrated system for
the automated build, configuration, integration and tgspinsoftware. Using ETICS it is
possible to integrate existing procedures, tools and ressun a coherent infrastructure,
additionally providing an intuitive access point througiWab portal. The ETICS system
allows developers to assemble multiple components, eaglibeimg developed indepen-
dently, into a coherent software release. Each softwargoaent can use its own build
method (e.g., Make for C/C++ code, Ant for Java code and spaom) ETICS provides a
wrapper around that so that components or subsystems cérebleec! out and built using
a common set of commands. The ETICS system can automatpraltiice and publish
installation packages for the components it builds; mldtiarget platforms can also be
handled.

CREAM and CEMonitor are included in the gLite 3.1 softwarstdbution, which
is provided as a set of different deployment modules (aledaode typesthat can be
installed separately. CREAM and CEMonitor are installedl eonfigured together as one
of these modules, calletteanCE. For what concerns the installation, the main supported

22

platform, at present, is CERN Scientific Linux 4 (SLC4), 32flavor; porting of gLite to
CERN Scientific Linux 5 (64 bit) is underway. For the SLC4 fiat, the gLitecreamCE

is available in RPM [29] format and the recommended indialleamethod is via the gLite
yumrepository. For what concerns the configuration, theret@xdsmanual configura-
tion procedure but a gLite compliant configuration tool aésasts. The tool adopted
to configure gLite Grid Services is YAIM (YAIM Ain't an Insti@tion Manager) [30].
YAIM provides simple configuration methods that can be usedet up uniform Grid
sites. YAIM has been implemented as a set of bash scriptspfi@ts a component based
model with a modularized structure including a YAIM core qoinent, common to all the
gLite middleware software, supplemented by componentiipetodules, all distributed
as RPMs. For CREAM and CEMonitor appropriate plugins for MAkere implemented
in order to get a fully automated configuration procedure.

8 Performance Considerations

We evaluate the performance of the CREAM service in term afughput (number of
submitted jobs{), comparing CREAM with the LCG-CE currently used in the glLiid-
dleware, considering the submission through the WMS. Toodave submit 1000 identi-
cal jobs to an idle CE, using an otherwise identical infrastire. The jobs are submitted
using the credentials of four different users (each usem#si250 jobs).

The layout of the testbed is shown in Fig. 9. All jobs are sutediusing a WMS Ul
installed on the hostream-15.pd.infn. it located at INFN Padova. We always use the
gLite WMS Ul (see Fig. 1) for submissions to both CREAM and ti@&G-CE (that is,
we do not use direct CREAM submission). The Ul transfers ¢t jjo the WMS host
devell9.cnaf.infn.it located at INFN CNAF in Bologna. The WMS submits jobs
through ICE to the CREAM service running efeam-21.pd.infn. it located at INFN
Padova. The JobController+CondorG+LogMonitor composiehthe WMS submit jobs
to a LCG-CE running ortert-12.pd.infn.it, also located at INFN Padova. Both
CREAM and the LCG-CE are connected to the same (local) batsters running the
LSF batch scheduler.

We are interested in examining the submission rate from IGEJL/CondorG/LM
to CREAM and LCG-CE respectively; this is an HB (Higher is t®et metric, as higher
submission rate denotes better performance. To compugeibmission rate we consider
the time elapsed since the first job is dequeued by ICE or J@ their respective input
queues, to the time the last job has been successfully éraedfto the batch system. Note
that we do not take into consideration the time needed to teimpxecution of the jobs.

In order to ensure that the transfer from the WMS Ul to the WHKI8at the bottle-

23

AN . AN gLite CREAM CE B
User Interface (Ul) gLite WMS host
1
1 1 I
1 1

cream-21.pd.infnit
cream-15.pd.infn.it devell19.cnaf.infn.it LSF Batch System

cert-12.pd.infn.it

LCG-CE B

Figure 9: Layout of the testbed

neck in our tests, we execute the following steps:

1. We switch off the ICE or JC component of the WMS;
2. We submit 1000 jobs from the WMS U,

3. When all the jobs have been successfully transferredetd¥thlS node, we switch
on ICE (or JC, depending on the kind of test we are performiAgjhis point ICE
(or JC) finds all the jobs in its input queue, so what we meakare is the actual
transfer rate from the WMS to the CE.

We analyze the impact of two factors on the submission thipug The factors we
consider are the following:

e Use of anautomatic proxy renewahechanism vao proxy renewalThe automatic
proxy renewal mechanism is normally used for long-runniigsj to ensure that
the credentials delegated to the CE are automaticallysieée before expiration.
Automatic proxy renewal works by first having the user reggister credentials to
a so-calledviyProxy Server The gLite WMS receives a “fresh” proxy from the
MyProxy server, and ICE or JC+CondorG are responsible fegaging the new
credentials to the CE. We remark that no proxy is actuallyesdfed in our tests,
since transfer of all jobs to the CE completes long beforeiiee credentials expire.
Nevertheless, the proxy renewal mechanism has an impatteosubmission rate
to CREAM via ICE, as will be explained later.

e Use ofautomaticvs explicit delegation(see Section 3.2). Wheautomaticdelega-
tion is active, the WMS Ul delegates a new proxy certificathheoWMS, which in
turn delegates the proxy again to the G, each job submitted to the CEhus,

24

Proxy Delegation Submission Rate (jobs/sec)
Renewal CREAM/ICE | LCG-CE/JC+CondorG+LM
Test A | Disabled | Explicit 0.9624 0.3952
Test B | Disabled | Automatic 0.1660 0.3633
Test C | Enabled | Explicit 0.8976 0.3728
Test D | Enabled | Automatic 0.9191 0.3863

Table 5: Test results; better submission rates are showerlimed

a new delegation operation on the CE is executed before edchitted job. Ifex-
plicit delegation is used, the user explicitly delegates a prokyrbehe first job is
submitted, and uses the same delegation ID for all subseéqubmissions. Thus,
in this case only a single delegation operation is perfororethe CE node.

We analyze four different scenarios with a total of 8 indegf®ent runs, correspond-
ing to a2? factorial design with two replications [31]; each test hagr repeated two
times, and the average of the measured submission ratessgleced.

Table 5 shows the submission rates for all the experiments.olb¢erve that the
submission rates from JC+CondorG+LM to the LCG-CE remaimenw less the same
across the different experiments. On the other hand, ssimnisates from ICE to the
CREAM CE are higher in three of our experiments, but incuigaigicant penalty in Test
B.

The reason for this is in the different way in which CREAM/IGEd LCG-
CE/JC+CondorG+LM implement the transfer of user credenfram the WMS to the
CE node. As already described in section 3, CREAM exposesegateon port-type to
allow clients to securely delegate their credentials to@ke The delegation operation
(steps 1-4 from Fig. 8) involves the creation on the sena sif a public/private key
pair, which takes a considerable amount of time. Explicledation (Test A and C)
allows ICE to delegate only once for each user: in our testsy@are submitting 250
jobs for each of 4 different users, only four delegation afiens are performed, and this
causes a significant improvement of the submission rate.

The JC+CondorG+LM does not implement a proper delegati@natipn, butfor
each jobtransfers the user credentials to the LCG-CE using a mohéwigjght mech-
anism. This explains why the submission rate achieved by AGEEIC+CondorG+LM
is more or less independent from the delegation mechanisoh (@sitomatic or explicit).
The lack of delegation on the LCG-CE was one of the reasons@REAM was devel-
oped, as credential transfer without proper delegation i®nger considered acceptable.

In Test D we have automatic delegation together with proxyeweal. This implies
thatall delegated user proxies are automatically renewed. Notéf tthe same user per-

25

forms two delegations, the delegated credentials will iexpn different times, and thus
in general should be treated separately. However, if theyprenewal mechanism is ac-
tive, all delegations will be renewed before expirationfreon the user point of view all
her credentials have duration equal to the duration of tbgyprenewal mechanism. For
this reason, in situations like Test D, ICE considers alkms “equivalent” by perform-
ing a single delegation operation to CREAM for each user twejuested automatic
credentials renewal.

The CREAM based CE was also tested and used for real produatiorities.

To assess the performance and the reliability of CREAM, argiiticular to verify
its usability in production environments, the Alice LHC exjent [32] performed some
tests which took place during the summer of 2008. About 55@@dard production
Alice jobs, each one lasting about 12 hours, were submitted GREAM based CE at
the FZK? Tier-1 center. The CREAM service showed a remarkable stgbiio failures
were seen and no manual interventions were needed duringhible test period.

After this first successfull assessment, the submissiorRBAM based CREAM
CEs has been fully integrated in the Alien Alice softwareismment. Alice jobs are
currently being submitted in about a dozen of CREAM CEs dggddn several sites of
the EGEE Grid.

9 Conclusions

In this paper we described CREAM and CEMonitor, two softwemenponents which
are used in the gLite middleware to implement a job executimthmanagement service.
CREAM allows users to submit and manage computational jobs bRMS. CREAM
provides additional features on the top of the underlyintglbaystem, such as Grid-
enabled user authentication and authorization, improggalhility, and integration with
the rest of the gLite infrastructure. CEMonitor is a gengrnadpose event notification ser-
vice, which can be coupled with CREAM to allow authorizedrade receive notifications
about job status changes without the need to explicitly thellservice.

CREAM and CEMonitor have been integrated into the gLite WM$g an ad-
ditional component called ICE. ICE receives requests froendgLite WM, and handles
all interactions with CREAM and CEMonitor. ICE takes caredefegating user creden-
tials to the CREAM service, subscribing to CEMonitor for e&ing job status change
notifications, and actually submitting jobs to CREAM. ICEethmonitors the jobs and

2Forschungszentrum Karlsruhestp: / /www. fzk . de/

26

registers to the gLite LB service all status changes, suahGhid users know exactly the
location and the status of their jobs.

CREAM and CEMonitor expose a Web Service interface, whitbmed easy in-
teroperability with heterogeneous client applicationgcéntly, the Grid community is
putting considerable effort in defining standard interfat® Grid services. The reason
for this interest is twofold: from one side, standard irdeds allow different middlewares
to easily share resources and services. Furthermore,astimadompliant components
improve the software development cycle by allowing devetspo import software com-
ponents from other middleware stacks. For these reasonsnplemented a prototype
support for the BES and JSDL specifications in CREAM. Howekiese specifications,
in their current status, proved to be inappropriate for pobidn use, as they only provide
basic functionality. In particular, the JSDL specificatisseverely limited because it only
allows users to describe simple (batch) jobs, while stmectyobs such as collections of
tasks with dependencies cannot be represented using ttencd6DL standard. Fur-
thermore, security considerations are outside the scopigedBES specification, which
results in the possibility for different services to claitarsdard-compliance without be-
ing interoperable due to the use of mutually incompatibusgey settings. To address
these problems, the Grid community is currently definingdpiion-quality extensions
of the BES and JSDL interfaces, which will eventually be iempénted in CREAM and
will replace the legacy interface.

CREAM and CEMonitor are being actively developed. In futiwleases we plan to
improve the scalability and fault tolerance of these sewioy implementing appropriate
clustering/failover mechanisms. Clustered configuragitows multiple service instances
to balance their load, and can also be used to toleratedailitowever, as CREAM and
CEMonitor are both stateful services, special care musakentsuch that each instance
share the same internal status while avoiding single pahfailure. We are also in-
vestigating how some ideas from tbhlud computingparadigm could be integrated into
CREAM. In patrticular, we are considering the possibilitydylnamically adjusting the
size (number of hosts) of the underlying LRMS to allow thetegsto automatically scale
whenever needed. This could be done, for example, by impigngea LRMS based on
Amazon’s EC2 service, such that the batch system pool cauldiybamically increased
by instantiating new virtual hosts.

Acknowledgments

EGEE-3 is a project funded by the European Union under coniRi=SO-RI-222667.

27

References

[1] Apache Software Foundation. Jakarta Tomcat Servlet&oer,http://tomcat.
apache.org/.

[2] E. Laure, S. M. FisherA. Frohner, C. Grandi, P. Kunszt, A. Krenek, O. Mulmo,
F. Pacini, F. Prelz, J. White, M. Barroso, P. Buncic, F. HemnAe Di Meglio,
A. Edlund, Programming the Grid with gLite, Computationa¢tidods in Science
and Technology 12 (1) (2006) 33—45.

[3] Enabling Grid for E-sciencE (EGEE) project web sitegtp: //wuw.eu-egee.
org/.

[4] D. Kouril, et al., Distributed tracking, storage, areduse of job state information on
the grid, in: Proceedings of CHEP’04, Interlaken, Switzed, 2004.

[5] D. W. Erwin, UNICORE-a grid computing environment, Canency and Compu-
tation: Practice and Experience 14 (2002) 1395-1410.

[6] M. Ellert, M. Grgnager, A. Konstantinov, B. Konya, J.ndemann, |. Livenson,
J. Nielsen, M. Niinimaki, O. Smirnova, A. Waananen, Adeed resource connec-
tor middleware for lightweight computational grids, Figuteneration Computer
Systems 23 (2) (2007) 219-240.

[7] 1. Foster, Globus Toolkit Version 4: Software for SemiOriented Systems, in: IFIP
International Conference on Network and Parallel Comgu2005, pp. 2—-13.

[8] I. Foster, et al., Modeling Stateful Resources with Welnv&es, White paper, ver-
sion 1.1, Available online dittp://www.ibm.com/developerworks/library/
ws-resource/ws-modelingresources.pdf (Mar. 5 2004).

[9] S. Burke, S. Campana, E. Lanciotti, P. M. Lorenzo, V. MagdC. Nater, R. San-
tinelli, A. Sciaba, gLite 3.1 User Guide—Manuals Seriesrsibn 1.2, Document
identifier CERN-LCG-GDEIS-722398. Available onlinelattps://edms. cern.
ch/document/722398/1.2 (Jan.7 2009).

[10] R. Raman, Matchmaking Frameworks for Distributed Rese Management, Ph.D.
thesis, University of Wisconsin-Madison (2001).

[11] R. van Engelen, gSOAP 2.7.11 User Guide (Oct. 2 2008).

28

[12] P. Andreetto, et al., The gLite Workload Managementt&ys Journal of Physics,
Conference Series 119 (6) (2008) 062007 (10pp).
URL http://stacks.iop.org/1742-6596/119/062007

[13] CEMonitor home pageyttp://grid.pd.infn.it/cemon.

[14] Apache Software Foundation. Axis SOAP Contairtertp://ws.apache.org/

axis/.
[15] P. DuBois, MySQL, Addison-Wesley Professional, 2008.

[16] E. Molinari, et al., A local Batch System Abstractionylea for Global Use, in: Proc.
XV International Conference on Computing in High Energy &hetlear Physics
(CHEP’06), Mumbay, India, 2006.

[17] Sun Microsystems, Inc., JaVdPlatform Enterprise Edition, v5.0, API Specifica-
tions (2007).

[18] R. Housley, W. Polk, W. Ford, D. Solo, RFC3280: InterXe509 Public Key In-
frastructure Certificate and Certificate Revocation LisR(TProfile,http: //wuw.
ietf.org/rfc/rfc3280.txt (Apr. 2002).

[19] S. Tuecke, V. Welch, D. Engert, L. Pearlman, M. ThompsBRC3820: Inter-
net X.509 Public Key Infrastructure (PKI) Proxy Certific&Reofile, http://www.
ietf.org/rfc/rfc3820.txt (Jun. 2004).

[20] D. Groep, O. Koeroo, G. Venekamp, gLExec: gluing griecngating to the Unix
world, Journal of Physics: Conference Series 119 (6) (2062p32 (11pp).
URL http://stacks.iop.org/1742-6596/119/062032

[21] Site authorisation and enforcement services: LCAS IBBMAPS, http: //www.
nikhef.nl/grid/lcaslcmaps/.

[22] M. Sgaravatto, CREAM Job Description Language AtttésuSpecification for the
EGEE Middleware, document Identifier EGEE-JRA1-TEC-5323&vailable on-
line athttps://edms.cern.ch/document/592336 (Aug. 2005).

[23] R. Alfieri, R. Cecchini, V. Ciaschini, L. del’AgnelloA. Frohner, K. Léentey,
F. Spataro, From gridmap-file to VOMS: managing authormain a Grid envi-
ronment, Future Generation Computer Systems 21 (4) (200%5)558.

29

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Mewse, S. Pickles,
D. Pulsipher, C. Smith, M. Theimer, OGSA Basic Executionvi®er Version 1.0,
OGF Specification GFD.108http://www.ogf.org/documents/GFD.108.pdf
(Aug. 2007).

A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, Ay, LS. McGough,
D. Pulsipher, A. Savva, Job Submission Description Langud&DL) Specifica-
tion, Version 1.0, OGF Specification GFD-R.056,tp: //www.gridforum.org/
documents/GFD.56.pdf (Nov. 2005).

D. Thain, T. Tannenbaum, M. Livny, Distributed commgiin practice: the Condor
experience, Concurrency—Practice and Experience 17 (2605) 323-356.

G. Garzoglio, T. Levshina, P. Mhashilkar, S. Timm, Re33Resource Selection
Service for the Open Science Grid, in: S. C. Lin, E. Yen (Edsr)Jd Computing,
International Symposium on Grid Computing (ISGC 2007) ji8per, 2009, pp. 89—
98.

M.-E. Bégin, G. D.-A. Sancho, A. D. Meglio, E. Ferro, Ronchieri, M. Selmi,
M. Zurek, Build, configuration, integration and testing lodor large software
projects: Etics, in: N. Guelfi, D. Buchs (Eds.), RISE, Vol044of Lecture Notes in
Computer Science, Springer, 2006, pp. 81-97.

E. Foster-Johnson, Red Hat RPM Guide, 1st Edition, Ragd 2003.
YAIM Home Pagehttp://yaim.info/.

R. Jain, The Art of Computer System Performance AnalyBechniques for Exper-
imental Design, Measurement, Simulation, and ModelingeWyiL991.

[32] ALICE-A Large lon Collider Experiment at CERN LHGyttp://aliceinfo.

cern.ch/.

30

