Lliﬂ, ISTITUTO NAZIONALE DI FISICA NUCLEARE
Sezione di Padova

INEFN/TC 08/4
22 September 2008

A RESTful Approach to the OGSA Basic Execution Service
Specification

Sergio Andreozzi Moreno Marzolla
) INFN-CNAF, Viale Berti Pichat 6/2, 1-40127 Bologna, Italy
2) INFN Padova, Via Marzolo 8, 1-35131 Padova, Italy

Abstract

The OGSA-Basic Execution Service (BES) specification hesntty been proposed by
the Open Grid Forum (OGF) as the standard job submission amhgement interface
across different Grid middlewares. This specification aefia Web Services Description
Language (WSDL) interface for creating, monitoring and aging computational jobs
(called activities), and for querying the capabilitiestod BES service itself. In this paper,
we propose an alternate incarnation of the BES functiaaal@ccording to the Represen-
tational State Transfer (REST) architectural style. Wecdbks the mapping of the BES
operations in terms of HTTP actions on resources. We conthar®EST formulation
of BES with the standard WS-based one. We show that all BE&atpes can be ex-
pressed in a very natural way using the standard HTTP prbémcbfollowing the REST
approach; moreover, we present useful extensions thakpeeied to appear in the near
future.

PACS:89.20.Ff

Published bySIS-Pubblicazioni
Laboratori Nazionali di Frascati

1 Introduction

The Grid paradigm emerged in the last decade for the integrattilization and man-
agement of heterogeneous networked resources part ofediffadministrative domains
to be made available to virtual organizations [5]. Diffdremddleware suites have been
developed to support the Grid paradigm. They enable to expus various resources
using a common abstraction layer offering a uniform acoesisem.

A job submission and monitoring service is one of the bagsictionalities of most
Grid systems available today. This service allows usersubymst computational jobs
to a Grid, manage them and monitor their progress. While ¥aetenotion of “job”
usually varies from Grid to Grid, there are many common fesgtuvhich can be isolated.
For example, a “job” usually consists of running some exaulét program on a given
processor; the program may operate on one or more input tedadnd produce one or
more output data files. Moreover, job requirements (mininavailable memory, disk
space, CPU speed) may be part of the job description.

Job management involves suspending, resuming, or remavérid job. Monitor-
ing involves checking the current status of the job. Moreojya submission services
also provide operations to handle the service itself, eligabling further job submis-
sions or check the service capabilities. The different Gmiddleware platforms offer
different interfaces for job submission and monitoringvemes today. This makes inter-
operability between different Grids extremely difficulbiys originating on a Grid system
cannot directly be submitted to another Grid system relging different middleware,
both because the job description notation is different aawhbse the interfaces to the job
submission services are incompatible.

The OGF is the standard body which is defining specificatioreable interoper-
ability both at the technological level and at the functidegel. The overarching docu-
ment defines the Open Grid Services Architecture (OG$3)in terms of a set of capa-
bilities required to realize the Grid paradigm based on tinecjples of Service Oriented
Architecture (SOA) and incarnated in the Web Services (Vé8hnologies. Among the
defined capabilities, the Execution Management Servicesamncerned with the prob-
lems of instantiating and managing to completion units ofkwd he related core speci-
fications are the BES and the Job Submission Descriptionuagey(JSDL). JSDL is an
XML-based notation for describing computational jobs {£hile BES is a WSDL-based
interface for a Job Submission and Monitoring service [4].

The current state of art is characterized by many Grid migalte suites all adopting
the SOA paradigm with particular incarnation in WS techgads. WS technologies

LOGSA, Open Grid Services Architecture, OGF and Open Gridifsaare trademarks of the OGF

are widely adopted, nevertheless they introduce an higél lEvcomplexity due to the
richness of modeled functionalities and the availabilitg@mpeting specifications. The
interoperability is therefore still a challenging task &ese either different middleware
rely on different set of WS specifications or because of ingatibilities about how the
specifications are implemented.

WS technologies are not the only possible incarnation o5& paradigm on top
of the Web architecture. Another approach which is gainiogytarity is the adoption
of plain HTTP-based applications designed to comply withREST architectural style.
REST is a coordinated set of architectural constraintsdttampts to minimize latency
and network communication, while at the same time maxingizire independence and
scalability of component implementations [3]. Many distried applications that suc-
cessfully build on RESTful HTTP technology are today av@#athus implying that WS
technologies are not the only solution for Web-based thisteid systems.

In this paper, we describe how the BES functionalities cambpped into a REST-
ful HTTP-based approach. The goal is to show that this swius viable and reduces the
complexity of the considered service, while bringing inta# benefits of the REST-based
approach.

The paper is organized as follows: in Section 2, we deschbdES specification;
in Section 3, we present our mapping of the BES functioralitollowing the REST
architectural style into the HTTP context; finally, in Secti4, we draw up the conclusions
and plan for future work.

2 The OGSA-BES Specification

The BES specification describes a Web Service interfacedation, monitoring and con-
trol of computational jobs. The meaning of “computatiortdd’jis quite broad: it could
be a UNIX or Windows processe, a Web Service or a parallelrarad4]. In the BES
terminology, such a computational job is called activitgtifities can be described using
the JSDL [2] notation.

The BES WSDL document defines three WS port-types, which laoes in Ta-
ble 1 with their corresponding operations. The specificatequires that all BES im-
plementations must support a simple operation for retngp\all service attributes in a
single document (th&etFactoryAttributeDocumemperation). However, the specifica-
tion allows that a specific BES implementation may suppdrépaccess mechanisms. In
particular, an implementation may compose appropriatetgpes, e.g., those defined in
the WS-RF [8], WS-Transfer [10] specifications with the pgyies defined in the BES
specification.

Table 1: BES Port-Types and Operations
BES-Management Port-type
StartAcceptingNewActivities Administrative operation: Request that the
BES service starts accepting new activities

StopAcceptingNewActivities Administrative operation: Request that the
BES service stops accepting new activities

BES-Factory Port-type

CreateActivity Request the creation of a new activity; in
general, this operation performs the submis-
sion of a new computational job, which is
immediately started

GetActivityStatuses Request the status of a set of activities

TerminateActivities Request that a set of activities be terminated

GetActivityDocuments Request the JSDL document for a set of
activities

GetFactoryAttributeDocumentRequest the XML document containing the
properties of this BES service

The BES-Management port-type is used to control the BESceitself. In the
current specification, this port-type contains two operatiwhich are used to start the
service for accepting new requests, and to stop it resgdygtivlhis port-type should
normally be used by the system administrators.

The BES-Factory port-type defines operations for creattrmhraanipulation of ac-
tivities and set of activities. Moreover, it contains an igen GetFactoryAttributeDoc-
umenj for retrieving attribute information about the BES seevitself. Such information
contains, among others, the human-readable service naengtal number of activities
currently active in the service, the Endpoint ReferenceR)EP activities currently active
in the service, and the number of contained resources alleey the BES.

The BES specification mandates that the activities must §eritbed using the JISDL [2]
specification. Attributes are uniquely identified using W@&dressing Endpoint Refer-
ences [7]. The BE®reateActivityoperation returns an EPR, which can be used by clients
to refer to this activity. During execution, activitiesyease a number of states. The ba-
sic state model comprises the following states: g&nding the service has created the
activity, but the latter is not yet running on any computaéibresource: (2)unning the
activity is executing on some computational resourcefi(83hed the activity success-
fully completed execution; this is a terminal state, {@minated the activity has been
terminated by calling thderminateActivityBES operation; (5¥ailed, the activity has

failed due to some error or failure (terminated and failesltarminal states). The state
model can be extended to consider new states.

3 RESTful BES

The REST architectural style was derived from the Web agchite and can be applied
to different systems to obtain the following benefits: sbdity of component interac-
tions, generality of interfaces, independent deployménbmponents, and intermediary
components to reduce interaction latency, enforce sgcuarid encapsulate legacy sys-
tems [3]. Due to its origins, it is a natural application tetdbuted systems based on
the HTTP protocol, nevertheless it can be applied also toba&d distributed systems.
The core architectural elements of REST are: REsourcethat is any entity which is
needed to be identified; it is a conceptual mapping to a settitfes, not the entity that
corresponds to the mapping at any particular point in tirRgResource ldentifiethat is

a Uniform Resource Identifier (URI) identifying a resour(®;Resource Representation
that is data and/or metadata describing the current ordetstate of a resource.

The main constraints posed by this architectural style see (3] for a complete
list): statelesseach request from client to server must contain all of tHermation
necessary to understand the request, and cannot take agwaritany stored context on
the servergachethe data within a response to a request be implicitly or exptilabeled
as cacheable or non-cacheable; if a response is cacheadxhea tclient cache is given
the right to reuse that response data for later, equivantest;uniform interfacethe
operations identify only actions with a well-defined senzdnd properties of safety and
idempotency; no scoping information is provided in the atien name. In the remaining
part of this section, we propose the mapping of the BES spatin into the RESTful
HTTP protocol, that is using the HTTP protocol with respectite REST architectural
style.

The methodology adopted to achieve this mapping considtsedbllowing steps:
(1) identify the interesting resources; (2) name the ressiwith URIs; (3) define the
operations on the resources; (4) design the represerdatamepted from the clients; (5)
design the representations served to the client; (6) define @nditions to be handled.

3.1 Modeling Resources and Resource ldentifiers

In this section, we present the definition of the resourcaswle consider useful in the
RESTful BES; we also propose the URI structure for them.

/activities the list of all activities present in the service

/activities/id the current representation of a specific activity is the local identifier
of the activity)

/activities/id/submitted the JSDL documentwhich has been used to instantiate the
activity

/activities/id/status the current status of the activity

/ representation of the service capabilities (BES factamybattes document)
/status current status of the BES service

/activities/id; [;id;]1* the current representation of the activities identifieddyy i

/activities/id;/status[;id;/status]* the currentrepresentation of the activity sta-
tuses identified by id

In the last two cases, a resource overlaps other resourctt® sense that it maps
into a set of entities captured by other resources. In RE#S |4 permitted since entities
may map into different resources.

3.2 Modeling Operations

In this section, we describe how the BES operations can beeakpto standard HTTP/1.1
operations (GET, PUT, POST, DELETE) with respect to the RE&Tstraints. The map-
ping of the WS-based BES operations onto the RESTful BESatipass is summarized
in Table 2.

The BES specification defines operations that act not onlyiragiesactivities, but
also on set of activities (see Table 1). In particufaetActivityDocumenisGetActivi-
tyStatusesnd TerminateActivitieoperate on a set of activities at the same time. This
approach enables for instance to terminate multiple dietsavith a single BES operation
invocation. This feature is particularly desirable as duees round-trip delays caused
by multiple individual request/response interactionsal$éio allows the BES service to
process operations more efficiently by batching them.

When considering the mapping of the WSDL-based BES op@siioto HTTP
operations, we need to consider that the HTTP protocol tg&om a single resource and
does not support operations on a collection of resourceis. i3$ue is typically faced by
defining a resource which maps to a set of entities (see $eii).

Table 2: RESTful BES Actions

Resource Operation Description BES counterpart
GET List all activities of the re- none
/activities/ quest issuer
PUT Create a new activity CreateActivity
/activities/id [;id;]1x GET Get the current representaGetActivityDocuments
tion (JSDL document) of one
or more activities
DELETE Remove (purges) one ofnone
more activities
/activities/id;/status GET Current status of a set ofGetActivityStatuses
[;id;/status]* activities
POST Change the status of a set dferminateActivities
activities (e.g., terminate the
activities)
/ GET Get the attributes of the BESGetFactoryAttributesDocument
service
/status GET Get the status of the BESIsAcceptingNewActivities
service
POST Change the status of the BESetAcceptingNewActivities

service (e.g., stop accepting
new activities)

3.3 Modeling Representations and Status Codes

We now analyze each operation listed in Table 2 and desdnibexchanged resource
representations together with the involved status codes.

As regards the HTTP status codes, if not differently spetifie act as follows: for
each operation, the server returns4hé Unauthorized HTTP response code if the user
is unauthorized to access tboleBES service; this corresponds to thec AuthorizedFault
BES fault; for each operation involving the client sending>ML document in the
request body (e.gBUT /activities/), the server returns 400 Bad Request Status
code when the XML document in the request body is invalid.

Another general case to be considered is the one about mperatorking multiple
entities, for which individual status codes are needed,(a.¢erminate operation on an
activity can be successful while on another can fail). Th@RAPprotocol does not provide
native support for this case, in fact extensions were pregde solve this issue (see
WEBDAV specification and the multi-status code [6]). In tb@ntext, we prefer to act as
follows: multiple response values are inserted into the AT@sponse body. The HTTP

202 Accepted status code will be issued by the BES service to denote teatetuest
has been accepted and processed, and to signal the clietite¢hrasults are contained in
the response body.

3.3.1 GET /activities/

This operation retrieves the list of all activities subeitby the caller which have not yet
been removed. This operation has no equivalent in the BESf&agion.

HTTP Response Code

200 0K Denotes that the request completed without errors. Thensgpbody contains
an XML document with the (possibly empty) list of URIs eaclpresenting an
activity.

HTTP Response BodyThe response body contains the list of URIs corresponditigeto
base path of each activity owned by the caller. The respoodg tontains aext/xml
document with the following structure:

<activities>
<activity>/activity/ID</activity>*
</activities>

3.3.2 PUT /activities/

This operation requests the creation of a new activity. Ehexjuivalent to th€reateAc-
tivity BES operation.

HTTP Request Body The request body contains a BEStivityDocument XML el-
ement as defined in [4]. This element basically contaifsdl : JobDefinition Sub-
element which describes the structure and requirementseddtivity being created [2].
The format of the request body is the following:

<bes:ActivityDocument>
<jsdl:JobDefinition>

</jsdl:JobDefinition>
<xsd:any> *
</bes:ActivityDocument>

HTTP Response Code

201 Created Upon successful creation of the activity, this status cedesiurned (the
HTTP Location header will contain the URI for the newly created activity)

501 Not Implemented Thisresponse code corresponds toh®upportedFeatureFault
fault returned by the BES when it does not support some ofghtifes requested
by the JSDL. The HTML response body should describe the fesituhich are not
supported

503 Service Unavailable Thisresponse code corresponds totheAcceptingNewActivities
fault returned by the BES if it is not accepting new actigtie

HTTP Response Headers

Location: URI Upon successful creation (HTTP return c@de Created), thisheader
is used to return to the client the base URI of the newly ceatdivity, as follows:

HTTP/1.1 201 Created
Location: /activities/ACT001

3.3.3 DELETE /activities/id; [;id;]*

This operation is used to remove (purge) one or more a@ssitiom the BES service.

The removal of the activities includes also the removal bfcalal files and directories

that were generated by the activity itself. Note that theenirBES specification does not
provide any operation for purging a terminated activity.

HTTP Response Code

202 Accepted The request has been accepted. The response body will cdhéade-
tailed status information related to the removal of eaclviddal activity.

HTTP Response Bodylhe response body is an XML document containingoiecivity>
element for each activity referenced in the request URhédkactivity> element con-
tains a<UnknownActivityIdentifierFault> element, then the activity was not found.
Other kind of fault elements could be defined to notify théezaif other, implementation-
related errors.

<deleteResponse>
<activity id="id">
<UnknownActivityIdentifierFault.../>?
</activity>
</deleteResponse>

3.3.4 GET /activities/id; [;id;]*

This operation gets the current representation of an agtivi the form of the JSDL
document which describes the activity. This is equivalerthe GetActivityDocuments
BES operation. Note that the current representation of avitganay be different from
the original one. This is because the BES service might hexeepsed and modified the
original JSDL to reflect the current status of an activity.eTdriginal representation for
activity id is thus accessible at the URdctivities/id/submitted.

HTTP Response Code

202 Accepted Therequest has been accepted. The response body willietiméal SDL
document for each individual activity.

HTTP Response Bodyif the response code @02 Accepted, the response body con-
tains an XML document with the following structure:

<ActivityDocumentResponses>
<ActivityDocumentResponse>
<ActivityIdentifier> uri </ActivityIdentifier>
<ActivityDocument>
{jsdl:JobDefinition}
</ActivityDocuemnt> |
<UnknownActivityIdentifierFault/>
</ActivityDocumentResponse>*
</ActivityDocumentResponses>

10

The response document contains the URI and the JSDL docuwmhéctt was used
to instantiate the activity or the current one (dependintherequest). If the activity does
not exist, the JSDL document is replaced byUaknownActivityIdentifierFault>
element.

3.3.5 GET /activities/id;/status[;id;/status]*

This operation retrieves the current status of a set ofiiesv This is equivalent to the
GetActivityStatuseBES operation.

HTTP Request Headers

Cache-Control: must-revalidate With this directive, the user mightrequestthe BES
server to ignore any cached status information, and expldieck for the job sta-
tus.

HTTP Response Code

202 Accepted The operation has been accepted by the BES service; reseltoa-
tained in the response body.

412 Precondition Failed TheCache-control: must-revalidate requestheader
was supplied by the client, but the server does not suppegadssibility of explic-
itly polling the job status.

HTTP Response Headers

Expires If the server is employing polling to query the status of tlegvaties, then it
might know the time of the next (possible) status update. BES& server could
then use th&xpires HTTP header to inform the client that the status information
is valid until the next update.

HTTP Response Body
If the response code 2 Accepted, the HTTP response body contains an XML
document with the following structure:

<ActivityStatusResponse>
<ActivityStatus>
<ActivityIdentifier> uri </ActivityIdentifier>
<ActivityStatus>
{bes:ActivityStateType}
</ActivityStatus> |
<UnknownActivityIdentifierFault.../>
</ActivityStatus> *
</ActivityStatusRespose>

11

where<ActivityIdentifier> containsthe URI of the activity (e.glactivities/ACT001).
If the operation was successful, thiectivityStatus> element contains a child element
of type ActivityStateType. In case of errors, theActivityStatus> element is re-
placed by<UnknownActivityIdentifierFault/>, which denotes that the activity ID
does not exist. BothctivityStatus andUnknownActivityIdentifierFault are de-
fined as in the BES specification [4].

3.3.6 POST /activities/id;/status[;id;/status]*

This operation changes the status of one or more activifiéds is similar to theTer-
minateActivitieBES operation, except that the REST counterpart would alf@wser
to request an arbitrary status change. This is useful inucatipn with specialized BES
state models allowing for example an activity to be suspemdsumed at any time. Cur-
rently the BES specification does not provide operationgf@nging an activity status,
except for theTerminateActivities

HTTP Request Body

<StatusChangeRequest>
<ActivityStatus>
<ActivityIdentifier> uri </ActivityIldentifier>
<ActivityStatus>
{bes:ActivityStateType}
</ActivityStatus>
</ActivityStatus> *
</StatusChangeRequest>

HTTP Response Code

202 Accepted The operation has been accepted by the BES service; resealtoa-
tained in the response body.

HTTP Response Bodyif the status code i202 Accepted, the response message will
contain an XML document with the following structure:

<StatusChangeResponse>
<ActivityStatus>
<ActivityIdentifier> uri </ActivityIldentifier>
<ActivityStatus>
{bes:ActivityStateType}
</ActivityStatus> |
<UnknownActivityIdentifierFault.../>
</ActivityStatus> *
</StatusChangeResponse>

12

For each successfully applied status change, the responsenént reports the URI
of the activity with the new (updated) status; in case olfa) the URI is followed by an
<UnknownActivityIdentifierFault> element.

3.3.7 GET /status

This operation is used to check the status of the BES sermViagjs, whether the server
Is accepting new activities. This is equivalent to th&cceptingNewActivitieBES oper-
ation.

HTTP Response Bodyif the response code @00 0K, the HTTP response body will
contain a single XML element as follows:

<ServiceStatus status="open" | "closed"/>

where thestatus="open" attribute denotes that the service is accepting new aesyit
while status="closed" denotes that the service does not accept creation of new-acti
ties.

3.3.8 PUT /status

This operation is used to change the status of the BES sdivisroperation is equivalent

to theStartAcceptingNewActivitiemdStopAcceptingNewActiviti&ES operations.

HTTP Request BodyThe request body contains a singlerviceStatus> XML ele-
ment, with attributestatus="open" to denote that the service should (re)start accepting

new activities, an@dtatus="closed" if the service should refuse creation of new activi-
ties.

<ServiceStatus status="open" | "closed"/>

3.3.9 GET /{?schema=<schema>}

This operation is used to request the capabilities of the B&Sice. In its simplest
form, (GET /) it returns the capabilities of the BES service as an XML doent of
type BESResourceAttributesDocumentType as described in [4]. This document con-
tains a summary of the capabilities of the BES service (hurobeontained resources,
operating system name, number of CPUs and so on). If the BRE®imentation supports
additional resource models (allowed by the specificatidh fhe client can access the
alternate resource descriptions by using thehema=<schema> query string, possibly
combined with thelccept: HTTP header to specify the resource rendering format. For
example, to get an XML rendering of a GLUE resource desaniytl] the client can issue
this request:

13

GET /7schema=glue HTTP/1.1
Host: bes-service.example.org
Accept: text/xml

3.4 Idempotent Execution

The BES specification allows an optional extension to supgdempotent execution se-
mantics This extension can be used to ensure that issuidiggateActivityrequest multi-
ple times for the same activity results in the creation of ashone instance of the activity.
It requires that a user-generated request ID should beiassd¢o theCreateActivityre-
quest, so that the BES server can ignore duplicate requests.

Idempotent Execution can be implemented within the stah&&rTP protocol in
different ways. The Post Exactly Once (POE) protocol [9] kgoby having the server
generate a unique URI for a POE resource, which is then us#telglient to perform the
actual POST operation. Should the server receive a duplR@IST for the same URI, it
will return to the client 2405 Method Not Allowed. While this approach has the ad-
vantage of being almost completely transparent to cliepliegtions (no need to send any
special HTTP header), it requires an additional requesienese iteration for the client to
get the unique URI to user for the POST request.

Another solution would be that of inserting a client-getedaunique 1D in the
HTTP requesPragma header, as follows:

POST /activities/ HTTP/1.1
Host: bes-service.example.org
Pragma: IdempotentActivityID=client_defined_id_01

As in the POE protocol, we let the service returf0& Method Not Allowed Iif it
receives a duplicate request. The response header wiltafgain aLocation field with
the complete URI of the existing (already created) activity

3.5 Lifetime Management

TheLifetime Managemergxtension allows the client to request a specific maximuen lif
time for an activity. After the lifetime expires, the sergrallowed to remove the asso-
ciated activity without further notice. Similarly to theddhpotent Execution extension,
the maximum resource lifetime can be defined with an appaisgHTTP header in the
request message, as follows:

POST /activities/ HTTP/1.1
Host: bes-service.example.org
Pragma: InitialTerminationTime=<datetime>

14

If the server, for any reason, is unable to comply with thelested activity lifetime,
it will reply with a 400 Bad Request error code. After the expiration of the activity
lifetime, subsequent attempts to access the resourceajerseer10 Gone HTTP status
code, denoting that the server permanently removed thesteg activity.

4 Conclusions

In this paper we considered the BES specification, whichasstandard interface to be
adopted by the different Grid middlewares for achievingiaperability. The specifica-
tion, in its current form, is described using a WSDL gramnvVale presented a mapping
of the BES functionalities into a REST-based approach ugiegHTTP protocol. We
showed that both the core BES functionalities and the optiertensions can be imple-
mented in a REST compliant way. The REST approach is gegearatisidered simpler
and easier to implement than the WS-based counterpart,oveneREST services could
in principle be tested using any HTTP client. Future work witlude security consid-
erations (which have been intentionally left out from theB&pecification [4], but are
nevertheless fundamental for any real-world implemeaoitdtiand the development of an
actual RESTful BES prototype.

References

[1] S. Andreozzi, S. Burke, F. Ehm, L. Field, G. Galang, B. anM. Litmaath, P. Mil-
lar, and J. Navarro. GLUE 2.0 Specification.
http://forge.ogf.org/sf/-docman/do/listDocuments/
projects.glue-wg/docman.root.public_comment. OGF Proposed Recom-
mendation in Public Comment.

[2] A. Anjomshoaa et alJob Submission Description Language (JSDL) Specification,

Version 1.Q0Nov. 2005.http: //www.gridforum. org/documents/GFD.56.pdf.

[3] R. T. Fielding and R. N. Taylor. Principled design of theaern web architecture.
ACM Trans. Interet Techngl2(2):115-150, 2002.

[4] I. Foster et al. OGSA Basic Execution Service, Version, AQg. 2007.
http://www.ogf.org/documents/GFD.108.pdf.

[5] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui, Arimshaw, B. Horn,
F. Maciel, F. Siebenlist, R. Subramaniam, J. Treadwell,Jarvtbn Reich. The Open
Grid Services Architecture (OGSA), version 1.5. OGF GFDXR0 2006.

15

[6] Y. Goland et al. HTTP Extensions for Distributed Authoring—WEBD&¢b. 1999.
RFC 2518http://www.w3.org/Protocols/rfc2518/rfc22518 . html.

[7] M. Gudgin, M. Hadley, and T. RogersWeb Services Addressing 1.0—Core, W3C
RecommendatigiMay 9 2006.

http://www.w3.org/TR/2006/REC-ws-addr-core-20060509

[8] OASIS Web Services Resource Framework (WSRF) TC.

http://www.oasis-open.org/committees/wsrf/.

[9] Post Once Exactly (POE).
http://www.mnot.net/ drafts/draft-nottingham-http-poe-00.txt.

[10] Web Services Transfer (WS-Transfer).
http://www.w3.org/Submission/WS-Transfer/

16

