INFN - |ISTITUTO NAZIONALE DI FISICA NUCLEARE

Sezione di Trieste

INEN/TC-07/10
July 18, 2007

THE UPDATE OF THE RICH CONTROL SYSTEM

Veronica DiaZ
D INFN, Sezione di Trieste, Padriciano 99, 1-34012 Trieste, Italy

Abstract
In this note, | report the features of the RICH Control Systftware package. This
performs the programming and control of the COMPASS RICHddrout. The porting
of the all the software modules of the system to Windows XPr@pey System and the
Update of the hardware of the richctrl computer will allonwtork with the updated XP
Operating System that will be supported by CERN in the nerting years.

Published by SI S-Pubblicazioni
Laboratori Nazionali di Frascati

1 INTRODUCTION

The COMPASS is the NA58 (http://wwwcompass.cern.ch) mtoge CERN in Geneve,
Switzerland. The COMPASS RICH-1 [2] is a large-size Ring ¢imng Cherenkov de-
tector which performs hadron identification. Its largeuwrak vessel is filled with C4F10
radiator gas. Cherenkov photons emitted in the gas are tedldxy two spherical mir-
ror surfaces. The photons are converted to electrons byshph®ton cathodes of eight
Multi-Wire Proportional Chambers (MWPC), which amplifyettsingle photoelectrons
and detect them. The quest for sufficient number of Cherepkotons for this gas deter-
mines the overall length of the radiator vessel to be of aBout The RICH-1 geometry
results in a photon detector surface of 5.6m2. The surfacevsred with eight pro-
portional chambers (MWPCs), equipped with Csl photon cdrvéayers. A dedicated
radiator gas system establishes continuous gas circulatia closed loop and ensures
both optimum VUV transparency and constant relative pressithe vessel.

The general architecture of the COMPASS RICH-1 read-ouwtssdbed in [1].

The RICH Control System is a set of programs that allows @nogning and con-
trolling the read out system of the RICH-1 [1,4] of COMPASS.

In a nutshell the system is controlled by the RICH Control @ater (richctrl.cern.ch),
a PC, that programs and controls the data acquisition tiegvof 192 DSPs (Digital Sig-
nal Processor), organized in a daisy chain with time-siggsmotocol, and an equal num-
ber of FPGAs (Field Programmable Gate Arrays).

The RICH Control PC has a dedicated multiprocessor cust@rdhoalled DOLINA,
to handle the complete RICH read out system.

The first version of the system as presented here, was edtdilring 2001 and
was improved with new features during 2002 and 2003 in séleyars of the system.
It was used with good performance during 2002 and 2004 detag®f the COMPASS
Experiment.

A new version updated of the all modules presented here,mplemented by the
author during 2005. The updated system was made in bothtaspehardware level
changing the control computer and at software level New &y System. Both aspect
will be explained in detail in this document.

ONE CHAMBER
UPPER 4 /

CHAMBERS
WIIIIIIIIIII LT
i

FIBRESTO CATCHES ~ BORA 12
DATA CONNECTIONS

[THITH

............

. “.. OPTOISOLATED LINES
. DOLINA ! o

240 A

CHAMBER7 ~ CHAMBER 6,II

! BORA 23

END OF STARTOF ! /
CHAMBER3 CjIAMBER2

| BORA 11
o Tt FIBRES FROM CATCHES
4:5_._‘_”— [l EVENT TRIGGER BORA O
FIBRE FROM "
TRIGGER CONTROL
\\ RICH CONTROL PC ||
\

Figure 1: A top-level view of the front-end data acquisit@frRICH-1

2 DESCRIPTION OF THE SYSTEM

The system can be described by the following scheme. Theaetslstem for the 82944
RICH-1 channels is located in the COMPASS experimental Avadding 888 at CERN
(see figure 1). It is based on 192 BORA [1] boards connecteuktpiikels of the detector
and organized in eight chambers with 24 boards by chamber.

As we mentioned before, the overall operation of the boaoigrolled by a DSP
complemented by a FPGA that acts as a parallel co-procetdoe DSP.

Each BORA communicates with the outside world through i) & ¥bit/s fibre
optics link, used to transmit event data to the COMPASS CA&S€Hhat constitutes the
subsequent processing stages of the COMPASS acquisistersyand ii) through a serial
connexion with DOLINA board, via a dedicated DSPs seriavogk formed by 24 DSPs
for each chamber.

BORA boards are plugged directly onto the detectors and aheidocated in the
experimental area. The rest of the system is placed outsglarea, in the RICH Barrack.
There are two dedicated PCs to operate the RICH: richctrpeder and richsrv computer
(standing for RICH server). Both PCs are interconnecteduiiin a dedicated ethernet
link, which guarantees a high speed in the data transmisstween the two computers
(see figure 2).

There is a set of Application programs that allow the copntmabnitoring and pro-

gramming of all the programmable chips in the system. Thisfsgrograms is described
in detail in the section 3.1.

The richctrl computer (richctrl.cern.ch), is an Intel XEQMNal processor of 2.80
GHz, 2 GB of RAM, and has a large amount of storage capacity several hard disks.
This is the actual hardware configuration of the computeraswpdated during 2005.

The jobs are CPU intensive and the main application thatiruttss computer has
multiple threads to be executed on it. The software of theegyprofits the speed and the
parallelism of the two processors.

Plugged in this computer we have the DOLINA; a custom muditessor board
with PCI interface and eight DSP’s inside. Each DOLINA DSPkgoas master of one
of the serial chamber networks introduced before, alloviegcontrol and supervision of
the complete RICH electronics.

("\

Rich Barrack Experimental Area
[NERN TR [NENN [NREN
pii pii RN pri
IR
i HiH i N
Dex

Dolina Board

O IR Y
£ &

richsrv.cern.ch richctrl.crn.ch

dicated Tink

Front end electronics

Figure 2: RICH ReadOut components organization

The richsrv computer (richsrv.cern.ch) stores the acduitata that are remotely
saved from the richctrl computer. Due to this architectbeerhost relevant feature of this
computer is the storage capacity, 400 GB disk storage. Tikeofalata arriving from the
data acquisition system generates about 3,5 GBytes per day.

To allow the RICH Control Applications to communicate witlethardware, we
have developed the DOLINA Device Driver working on WindowB Rperating System,
as was updated during 2005. This module will be describe@taildn section 4.

To complete this scheme, there is a third level composed by af scripts embed-
ded in the main Central DAQ System of the experiment [11]sThodule of the system
is executed from the Central DAQ System of the experimenighvis physically located
in the run control machine cluster.

These scripts embedded in the COMPASS DAQ System consissetf@t instruc-
tions and commands defined in the RCSL (RICH Control Scrigptianguage); more
details of this module can be found in section 3.2.

3 THE USER APPLICATIONS

There is a set of User application prograAf running in the computers of the RICH
barrack: each one has a specific function in the system.

Some of these programs share some files and resources, sdstharnique struc-
ture for the set of processes that intercommunicate amaarg th order to synchronize
specific tasks.

The RICH Control Application system consist of the follogiprograms:

1. RICH Control application

2. RICH Control Server application
3. RICH Event Viewer application
4. RICH Noise Viewer application

5. RICHDataBackup application

3.1 RICH Control Application

Description:

This program is the main application used by the RICH operdtgerforms the
communication between him and the RICH Control Data AcgoisiSystem. During the
execution time this process communicate with the othericghipns sending messages
and sharing data.

This application is executing in the richctrl computerpailt the user to send com-
mands and programs through the RICH DSP network to the BOR#dsaand indirectly
to the CATCHes [11] using the optical fibres from the BORA Bisaroffering the com-
plete control of the system by the user.

This application performs three fundamental set of tasks:

1. The communication with all the devices available in thstes: This is the main
task of the RICH Control Application which properly contsathe Data Acquisition
System, and allows the study of the RICH Read-Out behavidrthe hardware
programming.

In this set of tasks the program manages several kinds ohaitdata packets: en-
gineering frames, calibration and noise measuremengshbids, events samples,
commands, programs and generates several kinds of fileadiegeon data. More
information about the different kind of packets can be foimd3].

In order to have the control and a good administration of thekpts that arrives
to the PC, there is one set of threads running permanentlyngdor each type of
packet.

The packets arrives to the memory of the DOLINA board and @nmed in a buffer
in the RAM memory of the richctrl computer. Each thread iglsef@r processing or
dispatching (o sending a pointer to) a piece of memory (pt&enother specific
thread to complete the processing. The specific thread dmstruicts the data files
or answer an specific command possibly put themselves tp slaiging for another
packet in order to complete the piece of information neaggdsesaves in a file or
sends an answer or acknowledge depending of the packentonte

This scheme using multi threading programming makes thduteacomplex due to
the threads synchronization and the interaction with DOA_ti¢vice. A complete
description of this scheme is described in the RICH Contyst&n Web site.

. The communication between the user and the data acquisistem provided by
the windows application Graphic User Interface (GUI), tke editor and the
main view application.

This set of tasks forms the main User Interface. It is formedib user friendly
interface with pop-up menus, several dialogs that allowserse kind of activities
and one editor where you can entry a new script or select mredsscript that
performs one RICH standard task. You can see a view of thisasldh example in
figure 3 and all the details of this application and settirrgsexplained in the RICH
Control System Manual [5].

This module defines the control of the basic settings of tteHRControl System
application. Their values are saved in the RICH control gumtition file.

There is another application that shares the access tolthighfe "RICH Control
Server Application”, which is described in section 3.2.

Both processes communicates between them using messagefITH Control

Server process sends to the main application messages wiem e@eommand ar-
rives from the Compass Control Room. Then the main applinanswers back
and changes the settings in the configuration file when isssacg

_Contral B =[]

File view Thresholds Send Rum Options Help

RC NOT RUNNING

d200alit> Laader is waiing for a PC_Start Command |
Packing and sending a dsp progiam (0 dolina 5. Please wal .

Dare.

ERROR: Aknowledge expected
WARNING: ERROR FOUND....
The command is Are you alive?

Doli

eset to it
d200c0 is wailing for & PC_Start Command
Packing and sending dsp progiam to dolina 6. Plesss wait
Dare:
Dolina 6 is Alive
Fleset to Dolina sent
d200eDit> Laader is waiting for & PC_Start Command
Packing and sending a dsp progiam to dolina 7. Pleass wait
Dare:
Dalina 7 is Alive
The Script il execution dane
File apened D \RichSoript_filesiblive_all_chambers\live_dalinadsps.da
file apened d:5RichiLog_fizs42006.02.08_20.48.44.log
Dalina s Alive
Dalina 1 is Alive
Dalina 2 is Alive
Dalina 3 is Alive
Dalina 4 is Alive
Dalina 5 is Alive
ve

Doli

Ready UM

Figure 3: A view of the main RICH Control Application

3. There is a scripting language implemented in the coreeRICH Control appli-
cation. The RCS. (RICH Control Scripting Language), is a script language that
follows the philosophy of Tcl/Tk or Pearl and easily allows treation of complex
task using a set of atomic commands. More details of this <€8LRThe RICH
Control Scripting Language) document.

3.2 RICH Control Server Application

This process allows the control of the RICH Data Acquisifimm the Control Room.

It is possible to send commands from the Control room in otdeétart and Stop
the acquisition, for instance.

In this application the client/server model in network peogming is used.

A client application has to make a request to be recognizednogher computer
in the network. This second computer has a server applicationing that fulfills the
clients request and returns the information.

In our case the richctrl computer (in the RICH Barrack) wilie the RICH Control
Server process (socket server) running continuouslyjnggaftistening) for a command,
while the client process will be running on the computer ef @ontrol Room, sending a
request each time it is necessary.

This server process locally exchanges messages and iriffomvaith the RICH
Control application which, in its turn, sends the commaidsé BORA'S.

Both processes communicates using interprocesses mesaagj@ccess to some
memory locations where important information is sharedveen both processes.

The status of the exchanged information and the final valsi@egistered in the
RICH configuration file. This file is accessed for the main aggpion too.

The RICH Control Server process sends to the RICH ControliGgipn some
messages when a new command is arrived from the Compass{eatrm. The RICH
Control Application sends back the answer message to thergamocess after a specific
task is completed.

For instance it sends the "The RICH is started” message #feeRICH BORA
boards have received the "Start Of Run” command through e Berial network.

3.3 The Viewers Application

The "RICH Event Viewer application” allows the visualizari of a complete RICH event
acquired by the control PC.

The events are saved by the RICH Control application on tba ldisk in a file in
the event folder and this feature allows recovering eventdbe, run number, etc.

This application shows in color scale the event values ahall82344 channels of
the RICH and it is possible positioning the mouse over a piatl the specific hit value,
it is possible perform a zoom of a interesting area too.

When the events arrive to the RICH Control computer they aved on the local
disk by the RICH Control application in a file with extensioevt” in the event folder,
where it is possible to find the date, the run number and th& bumber.

This file has only two data per channel: the address of thd pin the hit value.
Then an event file is saved remotely on the richsrv computezdoh BORA board with
the complete event information: event header, quantityitsfdnd event trailer. More
details about the event file information is given in [5].

The same procedure is used to visualize the noise or theai#hib values of all the
82344 channels of the detector in this case the "RICH Noisavgf application” is used
See figure 4.

The noise measurement start with a "channel test” commamdtnitted from the
PC to the BORA DSP to request the measurements of the noiskded pedestals of
individual channels corresponding with the BORA (432 cledgh The format of the
packets for channel test command (short packet) is presemtg3]. The number of
samples (samples-number) to be used in the measurememtsi(fo 2048) is a parameter
of the channel test request.

When a "channel test” packet arrives to the BORA DSP, the D8§rpm calculates
the sum of the raw values obtained by channel and the sum sfjtrees of the raw values
obtained by channel taking "samples-number” samples.

Then the DSP sends the packets to the PC containing such sgatkér with the
corresponding channel ID. The format of the noise netwodkets (long data packet) is
presented in [3].

The RICH control Application uses the sums to calculate ptde (average output
voltage when the input has no signal) and noise level (thelsta deviation without input
signal) by channel.

The raw channel values acquisition is done by the BORA FPGér aéceive an
internal or external trigger and more details of this prageds presented in [3].

This allows perform specific studies about the performanmak Behavior of the
electronics and its interaction with the environment.

| Prorsilion: 263,00 Value: T,0184

Figure 4: Noise viewer

3.4 RICH DataBack Up Application

The rate of data arriving from the Front-End system to thet@brPC is around 3,5
GBytes per day, the events are saved remotely on the richishsKv.cern.ch) computer
in the RICH Barrack, as we mentioned before.

There is an application called RICHDataBackup running icorausly copying the
data from the specified RICH data directory to the rewrit&kiles.

When the application starts running it automatically baxcill the files in the spec-
ified directories to the destination CD. When the applicatietects the CD is full, check
the second CD drive and start to backup the files there.

The source directories and the destinations drives ardfiguemn the RICH data
backup configuration file.

When the application is minimized, it stays on the systemarad continue running
in the background.

The application shows the status of the CD’s and the progife® saving process
as well. More details about this process, setting of thefigani”, configuration file and
the complete information and a view of the user interfacevisrgin [5].

4 DOLINA DEVICE DRIVER

A device driver provides a software interface to the haréwannected to a computer.
It is a trusted part of the operating system. User applioghimgrams can access hard-
ware in a well-defined manner, without having to worry abaw lthe hardware must be
controlled.

The DOLINA device driver is responsible of controlling theODINA card and
makes this card accessible to the user application. It altbw user application to com-
municate with the DOLINA DSPs acquiring data.

The Dolina driver is a piece of software that becomes part@foperating system
kernel when it is loaded. A driver makes one or more devicagae to the user mode
programmer, each representing physical or logical pie¢eacdware.

The Dolina device driver was written following the archiiee of one standard
monolithic device driver of the Microsoft Windows family operating systems. You can
find a description of the Windows driver structure and feagun [10] and [9].

This driver provides the Kernel functions for the user ifgee functions of the op-
erating system. These kernel driver functions allow the apelication to communicate
with the device hardware using an object handle. This isiplesbecause in Windows a
driver makes a device look like a file. A handle to the deviaeloa opened. An applica-
tion program can then issue read and write request to therdhbefore the device handle
is finally closed.

You can find the main functions provided by the Dolina deviceeat in 6. One
complete description of the driver functions specificasiand parameters is available in
the Microsoft Developer Studio Manual [8] and [7].

10

5 CONCLUSIONS

The architecture and the set of programs that form the RIChtIGbSystem is installed
and it was working with excellent performance in the lastéyears (2002-2004) of data
tacking of the Compass Experiment at CERN (http://wwwcosspzern.ch).

During the year 2005 one complete update of the system wasingmted by the
author. At the lower level the DOLINA Device Driver, that itas written initially to work
on Windows NT, now is updated to work under Windows XP. Themagiplications were
updated to follow the requirements of the new Operatingesystnd same improvements
were added as well. The RICH control computer was updatechasiescribed before.

The first version of this package modules was developed uhdelirection of Prof.
Alberto Colavita and tested in collaboration with all resérs and technical members of
the Microprocessor Laboratory up to 2004 year. In particDia Razaq ljaduola played
a fundamental role in this work as developer of DOLINA Devizxéver under Windows
NT operating system.

11

6 APENDIX: The DOLINA Device Driver Functions
We will describe here the main functions provided by the@usbDolina device driver:

1. HANDLE CreateFile(LPCTSTR IpFileName, DWORD dwDeskedess, DWORD
dwShareMode, LPSECURITYATTRIBUTES IpSecurityAttribai® WORD dwCre-
ationDistribution, DWORD dwFlagsAndAttributes, HANDLE&mplateFile);

Parameters:

IpFileName : Points to a null-terminated string that spesithe name of the object
to create.

dwDesiredAccess : Specifies the type of access to the objecapplication can
obtain read access, write access, read-write access, icedpiery access.

dwShareMode : Set of bit flags that specifies how the objectbeashared. If
dwShareMode is 0, the object cannot be shared.

IpSecurityAttributes: Pointer to a SECURITATTRIBUTES structure that deter-
mines whether the returned handle can be inherited by childgsses. If IpSecu-
rityAttributes is NULL, the handle cannot be inherited.

dwCreationDistribution: Specifies which action to take ¢esfthat exist, and which
action to take when files do not exist.

dwFlagsAndAttributes : Specifies the file attributes andsfiay the file.

hTemplateFile : Specifies a handle with GENERREAD access to a template
file. The template file supplies file attributes and extendédbates for the file
being created.

Return Values

If the function succeeds, the return value is an open haodleet specified file. In
this case a object handle to the DOLINA device object thatwalio reference the
device.

2. BOOL ReadFile(HANDLE hFile, LPVOID IpBuffer, DWORD nNuperOfByte-
sToRead, LPDWORD IpNumberOfBytesRead, LPOVERLAPPED kpapped);
Parameters

hFile : ldentifies the file to be read. The file handle must haenkcreated with
GENERIC READ access to the file.

IpBuffer : Points to the buffer that receives the data reathfthe file.

12

nNumberOfBytesToRead : Specifies the number of bytes todzbfrem the file.
IpPNumberOfBytesRead : Points to the number of bytes read.

IpOverlapped : Points to an OVERLAPPED structure. Thiscitme is required

if hFile was created with FILEFLAG_OVERLAPPED. If hFile was opened with
FILE_FLAG_OVERLAPPED, the IpOverlapped parameter must not be NULL. It
must point to a valid OVERLAPPED structure. ReadFile dogsreturn until the
read operation has been completed.

Return Values
If the function succeeds, the return value is nonzero.

If the return value is nonzero and the number of bytes readris, zhe file pointer
was beyond the current end of the file at the time of the readatipa. If the
function fails, the return value is zero. To get extendedremformation, call
GetlLastError.

Remarks

The ReadFile function reads data from a file, starting at thetjon indicated by
the file pointer. After the read operation has been compldtezifile pointer is
adjusted by the number of bytes actually read, unless theditéle is created with
the overlapped attribute.

Using the DOLINA Device functions gets data from the dualtpoemory and

returns this data in the IpBuffer to the user applicatiorth# file handle is created
for overlapped input and output (1/0), the application magjust the position of
the file pointer after the read operation.

. BOOL WriteFile(HANDLE hFile, LPCVOID IpBuffer, DWORD nhmberOf-
BytesToWrite, LPDWORD IpNumberOfBytesWritten, LPOVERBRED IpOver-
lapped);

Parameters

hFile : ldentifies the file to be written to. The file handle mhiate been created
with GENERIC WRITE access to the file.

IpBuffer : Points to the buffer containing the data to be teritto the file.
nNumberOfBytesToWrite : Specifies the number of bytes toeatn the file.

IpNumberOfBytesWritten: Points to the number of bytes teritby this function
call. WriteFile sets this value to zero before doing any warkrror checking.

13

IpOverlapped : Points to an OVERLAPPED structure. Thiscitme is required if
hFile was opened with FILEELAG_OVERLAPPED.

If hFile was opened with FILEFLAG_OVERLAPPED, the IpOverlapped parame-
ter must not be NULL. It must point to a valid OVERLAPPED stwe. If hFile
was not opened with FILEELAG_OVERLAPPED and IpOverlapped is not NULL,
the write operation starts at the offset specified in the OMEIRPED structure and
WriteFile does not return until the write operation has beempleted.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get exteth@rror information, call
GetLastError.

Remarks

The WriteFile function writes data to a file and is designedioth synchronous
and asynchronous operation. The function starts writirtg tiathe file at the po-
sition indicated by the file pointer. Using the DOLINA Devifienctions the user
application putting (the content of the IpBuffer) data inb@ dual port memory
belonging to specific DSP. After the write operation has bemnpleted, the file
pointer is adjusted by the number of bytes actually writeacept when the file is
opened with FILEFLAG_OVERLAPPED. If the file handle was created for over-
lapped input and output (I/O), the application must adjbstposition of the file
pointer after the write operation is finished.

4. BOOL CloseHandle(HANDLE hObject);

Use the CloseHandle function to close an object handlenetuby CreateFile.

CloseHandle invalidates the specified object handle, demmnés the objects handle
count, and performs object retention checks. Once the &sdla to an object is

closed, the object is removed from the operating system.

There are other driver kernel functions to be used in spetEék to control the
board. Is possible to find the complete list and definitiontheffunctions in the RICH
Control System Web site.

14

References

[1] Baumet al, THE COMPASS RICH-1 READ-OUT SYSTEM, Instr. Meth. A 483
426, 1-41 (2003).

[2] E. Albrechtet al, Status and characterization of COMPASS RICH-1 and rete®n
therein, Nuclear Instruments and Methods in Physics RelsédliM-A) journal A
553, 215 (2005).

[3] V. Diaz, Rich Control System Web Site, http://www.ceaimveronica.diaz, (2005).

[4] E. Albrechtet al, COMPASS RICH 1, Nuclear Instruments and Methods in Physics
Research (NIM-A) journal A 502, 112 (2003).

[5] V. Diaz, Rich Control System Manual, Rich Group-INFN dste (2005).

[6] Microsof, Microsoft Developer Studio Integrated Demeinent Environment (IDE),
http://msdn.microsoft.com/virtuallabs/ (2005).

[7] Microsoft Corporation, Microsoft VisualC++ 6.0 Referee Library, ISBN 1-
57231-865-1, Microsoft Press (1998).

[8] Deitel, Deitel, Nieto and Strassberger, Visual 6 IDE émeoduction to MFC, Mi-
crosoft Press (1998).

[9] D.D. Burn, Getting Started with the Windows Driver Dewpinent Environment,
Reliable Technologies-Microsoft.com/whdc/driver/kelrApril 2005).

[10] C. Cant, Writing Windows WDM Device Drivers, R&D Book2@00).

[11] COMPASS Collaboration, Proceedings of IEEE Realtifd®2 Conference, |IEEE
Tran. Nucl. Scil (2003).

15

