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Abstract 
 

Data replication is an important aspects in a Data Grid for increasing fault tolerance and 
availability. Many Grid replication tools or middleware systems deal with read-only files 
which implies that replicated data items are always consistent. However, there are several 
applications that do require updates to existing data and the respective replicas. In this article 
we present a replica consistency service that allows for replica updates in a single-master 
scenario with lazy update synchronisation. The system allows for updates of (heterogeneous) 
relational databases, and it is designed to support flat files as well. It keeps remote replicas 
synchronised and partially ("lazily'') consistent. We report on the design and implementation 
of a novel ``relaxed'' replica consistency service and show its usefulness in a typical 
application use case. 
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1 Introduction

A Data Grid is a wide area computing infrastructure that provides storage capacity and

processing power to applications that handle very large quantities of data. Data Grids

rely on data replication to achieve better performance and reliability by storing copies

of data sets on different Grid nodes. Grid data management middleware (such as [18])

usually assumes that (i) whole files are the replication unit, and (ii) replicated files are

read-only. However, there are requirements for mechanisms that maintain consistency

of modifiable replicated data. Furthermore, such data are often highly structured, as in

the case of databases, thus making the coarse granularity of file replication impractical if

not unfeasible. To address these requirements, we propose a Replica Consistency Service

(named CONStanza) that is general enough to cater for most types of applications in a

Grid environment and meets the more general requirements for Grid middleware, such as

performance, scalability, reliability, and security.

The known solutions for the consistency problem in databases [5] are only partially

applicable to Grid architectures. Whereas a DBMS has full control of all data it manages,

and the data have a homogeneous format, Data Grids usually rely on the underlying file-

systems for data manipulation, and the data have widely different formats across different

applications and even within each application. File-systems usually do not offer transac-

tions and therefore make consistency harder to maintain. Further considerations on Data

Grids and consistency can be found in our earlier work in [13].

Other important differences between Data Grids and distributed databases are the

very large number of files a Grid is expected to handle, the dynamic Grid configuration,

and the need for scalability.

We present a service designed to deal with two basic cases: file replication and

database replication of (heterogeneous) relational database systems. In the former case,

the service provides a simple file replacement model when an update is done, but more

sophisticated update methods such as the binary difference between two files are possible.

In the latter case, the service extracts logs from an updated database and then applies

these logs at remote replicas. The system allows for heterogeneous replication since the

master database may come of a certain vendor (Oracle or MySQL) whereas the secondary

databases may come of another vendor (MySQL). The presented service provides users

with the ability to update data using a certain consistency delay parameter in order to

adapt to the application requirements. Therefore, we talk about relaxed consistency that

is fit for applications that do not need fully synchronised data at every given point in

time. Furthermore, in the current implementation we support only database replication

and leave file replication for future work.
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In this article, we first review some related work (Section 2). We then expose a basic

domain analysis in Section 3. Next, we outline a Replica Consistency Service (RCS)

(Section 4) and discuss its high-level architecture (Section 5) that we have prototyped.

Finally, in Section 6 we report some preliminary experimental results. A simulation of

the architecture implemented in this work was reported in a previous paper [12].

2 Related Work

There is a large number of research papers and development projects focused on either

file or database replication, but there does not seem to be any working system that allows

for both. In particular, and to the best of our knowledge, there is not much literature about

updating databases in a Grid environment. Here, we only provide a short, selected list of

products having in mind that many commercial systems exist for database replication.

A project dealing explicitly with file sharing and data consistency in Grids is pre-

sented in [3]. This paper proposes to decouple data consistency issues related to per-

formance from those related to fault tolerance. The design of the parts of a consistency

service related to performance draws on solutions from the field of Distributed Shared

Memory architectures while the parts related to fault-tolerance are designed according

to solutions from peer-to-peer systems. Unlike our system it does not provide database

features.

A work more closely related to standard Grid architectures is presented in [15], a

paper that proposes an update propagation strategy based on reliable multicast commu-

nication. The model has been demonstrated in a prototype implementation on a small

network. However, for our system multicast is not a viable solution.

A good survey of data consistency models and protocols is found in [21], discussing

lazy (similar to our methodology) and only optimistic eager replication approaches.

The problem of maintaining consistency among heterogeneous replicas of databases

is addressed in a few commercial products such as Oracle, IBM, Sybase, Easysoft.com
etc. and several off-the-shelf tools such as Enhydra Octopus and DBMoto.

Oracle Streams [20] are used to propagate information within a database or from

one database system to another. More precisely, a Streams system can capture, stage and

manage events in the database (such as changes in its contents or its schema) automati-

cally. Oracle streams are used and work well with Oracle homogeneous databases. The

Oracle Heterogeneous Connectivity layer provides a way to update non-Oracle database

systems, given one uses proprietary Oracle-MySQL drivers. This is rather impractical in

a heterogeneous, open-source Grid environment. This motivates the development of an

alternative solution such as ours.
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Enhydra Octopus [14] is provided by ObjectWeb Consortium, under LGPL�. This

application loads data from a JDBC data source (database) into a JDBC data target, and

may perform many transformations defined in an XML file. It supports Oracle to MySQL

data transfer. Enhydra Octopus, currently, provides Oracle to MySQL database replica-

tion but not propagation of incremental updates, since it performs replication by replacing

the database files entirely.

DBMoto is a product developed by HITSoftware [9]. DBMoto runs on Windows:

the entire replication process is configured and managed from a Windows platform. There-

fore, such a system cannot be well adapted to the Grid heterogeneous environment. In

Mirroring mode, DBMoto performs a real time incremental replication based on log man-

agement. It does not deal with file consistency.

Another database replication tool is CORSO [17] which provides proprietary mid-

dleware for distributed applications.

3 Consistency in a Grid environment

In this section we describe the context where a Replica Consistency Service operates and

we introduce the main concepts and assumptions. In particular, we describe a typical Data

Grid environment.

We will refer to a generic Grid environment with two kinds of Grid nodes: Com-

puting Elements (CE) that provide computing power, and Storage Elements (SE) that

provide storage capacity. Several services compose the Grid middleware, providing such

functionalities as Grid-wide job scheduling, resource allocation, and data management.

The latter class of functionalities includes the Replica Management Service (RMS) [8]

and the Replica Consistency Service (RCS).

The RMS can replicate files to optimise access time and availability. The RMS

keeps track of the replicas and is able to determine which replica is most convenient for a

job running on a given CE. The RMS uses the Replica Catalogue (RC; also referred to as

Replica Location Service, RLS) [7], a database holding the information about the replicas

of each file.

We model a file as an association of its replicas with one logical file name (LFN).

Replicas are kept on Storage Elements and have the file’s contents as an attribute. An-

other attribute is the name (see Figure 1). We call physical file name (PFN) the informa-

tion needed to access a given replica: this information includes the address of the SE, a

pathname within the SE’s file system (or some equivalent information), and possibly an

access protocol honoured by the SE (e.g., GridFTP).

�Lesser GNU General Public License
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The property of strict consistency for a set of file replicas can be simply defined as

follows:

For any pair of replicas of the same logical file, their contents are equal.

In Figure 1, the above definition is expressed (in UML’s OCL) as a constraint on the

association.

StorageElement

Replica

pfn
contents

LFN
1

implies a.contents = b.contents }

and a.file = b.file)

and b.isTypeOf(Replica)

{ (a.isTypeOf(Replica)

1..*

1

replica

*

file

Figure 1: Files and replicas.

The above model must be extended to other kinds of datasets. A dataset may be

a flat (or unstructured) file, or a structured dataset. Flat files are those whose internal

structure is either unknown or ignored for the purposes of replication and consistency, and

are accessed with low-level operations (such as byte-oriented ������ or ������� calls).

Structured datasets are those that can be acted upon by means of high-level operations,

such as record-oriented ones. A relational database is a typical example of a structured

dataset that is accessed through SQL commands. Databases add another facet to the issue

of consistency, since a database with a given schema could be replicated on different

systems each having a different implementation. For example, a RC could be replicated

to two Grid sites that have database servers from different vendors. These servers would

store the same logical information with different physical representations.

To extend the notion of consistency to datasets (including databases), we should

then distinguish between the logical contents and their physical representation. We define

the semantic function ���� of the i-th replica of dataset d as the mapping of the physical

representation constituting the replica to its logical contents. For flat files, the semantic

function is the identity function, and for databases it is the mechanism that extracts infor-

mation from the database. Then, replicas � and �, containing the representations �� and ��,

respectively, of a dataset �, are consistent iff �������� � ��������.
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The above definition does not take physical constraints into account. Such con-

straints arise from the large-scale distributed structure of the Grid, where latencies may

be high and communication failures rather frequent. Therefore, different replica synchro-

nization policies exist, each dealing differently with the constraints.

In our system it is important to distinguish between the following types of replicas

since they have different semantics and access permissions for end-users:

� Master replica, i.e. one replica that can be updated by end-users of the system.

The master replica is the one that is by definition always up-to-date.

� Secondary replica (also referred to as secondary copy) is a replica that is to be up-

dated/synchronised by CONStanza with a certain delay to eventually have the same

contents as the master replica. Obviously, the longer the update propagation delay

is, the more un-synchronised are the master and the secondary replica, and the big-

ger is the probability to experience stale reads on secondary replicas. Furthermore,

end-users only have read-access to secondary copies since updates are only made

by CONStanza to avoid conflicts in the update process.

Use Cases

In order to prove the usefulness of our system, we applied it to several real-world use cases

from the LCG [19] and EGEE [10] projects. One use case deals with updates of user

group information used by the Virtual Organisation Membership Service (VOMS) [2].

The service stores several kinds of user authentication information in a relational database

which is currently a single, central database.

For fault tolerance and load balancing reasons the application server and its database

are replicated to a few sites (in the order of 10). The database backends are heterogeneous

(i.e. from different vendors), the master being either Oracle or MySQL. An important fea-

ture is the High Energy Physics computing model (that is used in both LCG and EGEE):

a hierarchical, multi-tier architecture is used for the distribution of computing and storage

resources where lower tiers often use open source systems such as MySQL and higher

tiers use Oracle. Data is then partially replicated mainly from higher to lower tiers, mean-

ing that only some master tables are replicated and need to be synchronised. As of writing

there are more than 150 sites (belonging to different tiers in the distributed architecture)

with several Grid services requiring VOMS authentication. Each of these services ac-

cesses the VOMS server every 6 hours. New user information is inserted into the master

database at a frequency of about once a day per virtual organisation. Consequently, the

update frequency is rather low and can easily be managed by the proposed system.
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In case of LCG’s file catalogue (LFC [4]), which is currently centralised with a

single database backend, we have seen that during periods of heavy usage updates to the

database occurred at a frequency of once in a few minutes. Even if in this use case the

update frequency is higher, the user tolerates an update delay for secondary replicas in the

order of one hour. The number of foreseen LFC replicas is about 5 to 10, i.e. well within

the limits of our system.

4 Architecture

An application (including other middleware components) sees the dataset as a single log-

ical entity identified by a Logical Dataset Id (LId) (an LFN being a special case of LId).

When it needs to modify the dataset, it accesses one of the replicas, it modifies its con-

tents, and then tells the RCS to propagate the change to all the other replicas. Therefore,

we distinguish the following steps in the overall replication system:

� Update dataset: the process of modifying a single replica.

� Update propagation (UP): the process of reproducing the modification on the set

of all replicas.

� Update replica process (URP): this includes all steps required to identify which

changes have been done on a given dataset (master replica) and then apply the

update propagation process to all existing replicas.

We can distinguish between synchronous and asynchronous propagation [16,1]. A

synchronous propagation policy ensures that no replicas are available until they all have

been updated. An asynchronous propagation policy allows replicas with old contents to

be accessible while others are being updated. This means that the consistency requirement

is violated for the time necessary to complete update propagation, but this relaxed policy

is more realistic in a Grid environment. However, there may be situations where syn-

chronous propagation is required. Therefore, the RCS design allows for adding different

update propagation policies.

Currently, we have implemented the asynchronous update protocol which uses a

single master approach, where only one replica can be modified by the users. This is a

standard solution that can be found in many commercial products such as Oracle, MS

SQL-Server etc.
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4.1 Main Components

In the proposed design, the following basic components provide the required functionali-

ties:

Global Replica Consistency Service (GRCS): the main service front-end toward appli-

cations. In other words, the GRCS represents the main entry point for update requests

whereas the system itself consists of several other distributed components (see below).

Local Replica Consistency Service (LRCS): it is responsible for the registration of new

local replicas that it manages directly as well as the update of these replicas. Internally,

each of these local services has a catalogue to manage specific metadata that are required

to update the local dataset.

Replica Consistency Catalogue (RCC): to store the metadata used by the RCS, such as

location and status of each replica as well as LRCS information.

The interaction of the above components is shown in Figure 2. These components

are general enough to be applied to various types of datasets (i.e., flat files or database

files) which require additional components that take care of the actual update operations.

The basic interface to the RCS for an end-user is a command line client that sends

update requests to the Replica Consistency Service. In more detail, end users can modify

only master replicas (controlled by a Master LRCS) whereas secondary copies can only

be accessed in read mode. That is the classical master-secondary approach that allows

for fast read access (taken into account that reading from secondary copies can result

in reading non-synchronised, out-of-date contents, i.e stale reads), and limited and cen-

tralised write access. There are certainly other, more complicated replication scenarios

with several masters for a given set of replicas but in our approach we keep the number of

transactions between services minimal in order to limit the complexity of the system. Ex-

perience shows that overly complex Grid middleware has sometimes failed to be deployed

for production service.

In the most basic scenario, a user first needs to update the master replica and then

issues the 	
���� client command to have the RCS replicate the change. The system also

assumes that the data are already replicated to a few sites and their locations are stored

in the replica consistency catalogue. We use a subscription model to achieve this. In par-

ticular, LRCSs subscribe with the GRCS in order to retrieve updates on local, secondary

replicas.

We now discuss replication for files and databases, assuming a single-master policy,

where a single LRCS holds the master files that can be updated by end-users.
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GRCS client

LRCS client LRCS clientLRCS client

RCCGRCS server

LRCS server LRCS server LRCS server

Figure 2: Architecture of the consistency service.

4.2 File Replication

4.3 File Replication

The master LRCS module (i.e. the service that sits on a Storage Element where updates

are allowed for end users) receives and executes update requests for the files under its

control. The difficult part is here how to lock the master and the secondary files that

reside in the storage system since conventional file systems only provide advisory locks.

Therefore, the preferred operation model is to use a storage system that provides such

features and does not allow users to delete files while another one writes them. Grid

storage systems such as Castor [6], dCache [11] etc. have such features.

For the update of the secondary replicas, there are two basic scenarios. One one

hand, one can use a binary difference tool that detects the file changes and then applies

them. On the other hand, in some cases where the file is small and the update is compara-

bly big, the binary update is not efficient and one can simply replace the entire file.

For the file replication use case, the update propagation process starts immediately

after a master file has been modified and the end user has called the client program

���	
��������. This is in contrast to the database use case (see below) where a

Log Watcher component is used to collect certain updates which are then propagated at

certain intervals. Such an approach would also be possible for files (the GRCS would

need to collect all updates on individual files) but is a bit of an overhead since there is no

central log creator/collector for files residing in a file system.
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RCCGRCS
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Log WatcherDB
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slave
DB

LRCS

DBUpdater

slave
DB

Site A

Site B Site C

Figure 3: Architecture of the consistency service.

4.4 Database Replication

For the database scenario we automated the update step by adding a Log Watcher com-

ponent to the LRCS (see Figure 3). It periodically checks if changes have been made

to the master database, it extracts the last update statement from the log and prepares an

update unit (also referred to as “log file”) to be sent to the GRCS with update command.

Afterwards, LRCSs holding secondary replicas retrieve the update unit and apply it lo-

cally to the secondary replica to make it consistent with the master replica. In this way,

the RCS can be set up to synchronise databases at predefined intervals and does not re-

quire any user interaction. In other words, the update delay (and therefore the relaxation

of the consistency between replicas) can be configured, depending on the needs of the

applications.

In detail, all updates are done at the master database that keeps track of all the

changes done on the data. At a certain point in time (i.e. based on the configurable

interval with which the Log Watcher checks the contents of the master database) these

changes are recorded and stored in a database log file. In other words, we do not support

synchronous replication, but only propagate updates that have been collected and logged

over a certain time that can be defined by the service administrator.

The longer the time between two log generation events, the more likely it is to have

inconsistent secondary replicas. The details of log generation depend on the database

management system and are handled by the Log Watcher component which includes the

log generation functionality.
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Figure 4: Subsystems of the consistency service.

Once the database log (a list of SQL statements) has been generated, it is retrieved

by LRCSs holding secondary copies of the data (DB secondary replica in Figure 3) and

then applied to all the secondary replicas. This is done by the DBUpdater component. It

is a specialised component to support different vendors.

5 Design and Implementation

An advanced prototype for the RCS has been designed and implemented in C++ (gcc 3.2.x

on GNU/Linux) and gSOAP 2.7 for the communication between the components of the

RCS. The design allows for replication of flat files and relational databases. Currently,

we have mainly implemented the database update scenario due to its high priority for

our nearest user communities. However, the basic building blocks for the file replication

scenario are there and can easily be extended to have a full system that also replicates

files.

The RCS has a Web Service interface, but its modular structure allows for alterna-

tive solutions to be used if needed (i.e. other communications systems and/or protocols).

Figure 4 shows the main subsystems of the service.

Each subsystem has a ���� package implementing the subsystem functionality, and

a ���� package supporting communication among the subsystems and between the

RCS and its clients. Other packages interface the subsystem to other internal or external

components: to the Replica Management System, to the Grid security mechanism, to the

Grid information and monitoring system, to the database used by the RCC, and to the

datasets.

The ����	��
 module applies updates to the different kinds of datasets. In the case
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of flat files, this module interacts with the Storage Elements and it must be general enough

to work with the different SE interfaces used or being developed in different Data Grid

projects.

In the case of structured datasets, it must be able to update heterogeneous DB repli-

cas, i.e., DBs that share the same logical schema but have different physical representa-

tions. Most DBMSs provide means to extract logs of updates.

The Log Watcher component currently has two specialised versions to deal with

both MySQL and Oracle databases. Using the LRCS client interface we can instruct an

LRCS server to monitor a database specifying the vendor type (e.g MySQL or Oracle).

If we choose the MySQL type, the Log Watcher will monitor the database through the

mysqlbinlog utility. In case of an Oracle type instead, the Log Watcher will make use

of the Oracle Log Miner package to view the Oracle on-line redo logs�. When a log is

extracted from an Oracle database to be sent to MySQL replicas, a translation process is

needed to resolve some SQL difference in the dialect used by the two database systems.

In our RCS this process is automatically done inside the Log Watcher component with

a module that uses Flex and Bison to parse/translate the log file. Currently, the SQL

translation is general enough to support our specific use cases.

The RCS can then send a log to the LRCSs responsible for the DB replicas, where

the ����	��
��� will apply them through a �����	�� module.

Fault Tolerance

Most of the problems in implementing a reliable consistency service, in the case of a

fairly simple protocol like the asynchronous single master, come from the unreliability of

the connections among RCS’s internal and external components, that is a main concern

in a highly dynamic environment such as a Data Grid. Since the GRCS and the LRCSs

can be geographically distributed, their connections are subject to failures. Also the link

between an LRCS and its database replica can be temporarily unavailable. It is mainly

built around a queue that stores undelivered messages when an endpoint is unreachable.

This system is flexible enough to be used with both push and pull based algorithms.

In a push method it is up to the LRCS that comes up to request its pending updates while

in a pull scenario it is the GRCS that periodically checks if the LRCS is again available.

Currently, we have an LRCS client call to execute the push method.

Support for a quorum system [22] is also provided, giving the client the possibility

to execute an operation only when a specified number of replicas are available.

In our design the GRCS plays a main role. It is very important for fault tolerance

�http://oraclesvca2.oracle.com/docs/cd/B14117 01/server.101/b10825/toc.htm
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and load balancing reasons to be able to run more than one GRCS at the same time. A

few GRCSs can work in parallel accessing the same RCC.

As regards the RCC, it might represent a single point of failure. In order to avoid

this we replicate it using its native solutions, such as MySQL replication. In particular,

the RCS knows several locations of the RCC database and connects to an alternative,

replicated RCC database if the original database is not available.

6 Experimental Results

In this section we provide several experimental results on wide-area replication of rela-

tional databases. We focus on showing the functionality and some performance aspects

of the system in order to encourage further development and allow for an analysis of its

limitations. In order to make a first evaluation of CONStanza we concentrated on issues

such as configurability, load balancing and fault tolerance.

We ran a set of tests demonstrating the functionality of replication between a MySQL

or Oracle master and MySQL secondary databases. For MySQL-to-MySQL replication,

each database is co-located with an LRCS (master or secondary), i.e. the CONStanza

service and the database management system run on the same machine. The main CON-

Stanza service (GRCS) is also located at the site (machine) where the master database

is located. For the Oracle-to-MySQL case, the database server is located on a separte

machine.

In the experimental setup we used several machines on 4 different sites (INFN Pisa -

Italy, University of Pisa, INFN Bologna - Italy, University of Vienna - Austria) connected

via wide-area network links. All machines have heterogeneous, standard off-the-shelf

hardware devices (mainly Pentium IV with either 1 or 2 processors, between 1.7 and

2 GHz, 512 MB RAM, with FastEthernet network cards). The Oracle server is hosted

on a machine with 4 CPUs Intel Xeon 2.20 GHz, 2 GB RAM. All our machines run the

GNU/Linux operating system (either RedHat Linux 7.3 or Scientific Linux CERN 3.0.x), a

standard environment for scientific applications. In order to demonstrate that CONStanza

can deal with hardware bottlenecks, we also included a rather old and slow machine (Pen-

tium III, 450 MHz, 256 KB RAM and a slow network card). The database management

systems we used are MySQL 4.0.25 and Oracle 10g Enterprise Edition Release 10.1.0.2.0.

6.1 MySQL-to-MySQL Replication

In the first set of tests we measure the end-to-end performance of an update process of

MySQL databases using CONStanza.

The tests have been set up as follows:
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� The MySQL master database is replicated to several machines and sites. It is

continuously updated by clients.

� The Master LRCS is located on the same machine as the master database, with the

Log Watcher checking the changes of the MySQL DB.

� Additionally, the GRCS - acting as the main entry point for clients of the system -

is located on the same machine.

� We dynamically add and remove several Secondary LRCSs on the same LAN as

well as at remote sites connected via WAN links with the round trip times (RTT)

ranging from 0.1 ms to 45 ms.

The Log Watcher at the master DB is configurable in order to change the time

interval with which logs are recorded. The GRCS then synchronises the secondary LRCSs

with that time interval. This is the main configurable parameter that can be used to relax

the consistency between the master and the secondary database. We refer to this as the

period t(Lg) of the Log Watcher that is expressed in seconds.

The number of operations for each update is related to the period ����� and to the

frequency of the operations issued by the database users. We started with a short period

of 5 seconds and analysed the overall performance of the update replication process. In

our tests we inserted 100, 1000, 10000 and 100000 entries into a table of a MySQL

database and measured the update time. In our tests, an entry consists of 6 attributes

(of type double). This was randomly chosen since neiter the data-type nor the number

of attributes per value has significant consequences for the overall tests performed. The

inserts took from 30 ms (100 inserts) to 11 min (100000 inserts) as indicated in Figure 5.

The entire update replica process (URP, introduced in Section 4) consists of the

following steps with performance figures shown in Figures 5 and 6:

1. Log generation: Creation of an log file (update unit) for a new log with the Master

LRCS (note that the log itself has been made available by the MySQL log creator

that is constantly monitoring activities done on the MySQL database). A log file

is created that only contains the changes made to the database since the last log

generation. The size of the log file depends on the number of inserts made during

�����. In our tests, the log generation time scales almost linearly from 180 ms (100

inserts) to 151 s (100000 inserts). The size of the log file scales in the same way

(27 KB, 270 KB, 2.6 MB and 26 MB, respectively).

2. Replica location and notification: This step consists of looking up the replicas

in the RCC for a given master database. Next, notification messages are sent to
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Figure 5: Time to insert values into the MySQL master database vs. size of the log
generated for 100 to 100 000 inserts.

LRCSs to update the secondary copies. Additionally, the acknowledgments from

the LRCSs are taken. Given the number of 3 secondary replicas and the WAN

latencies (RTTs of maximum 45 ms), this step takes about 100–200 ms.

3. Log Transfer: Transfer of the log file from LRCS Master to LRCS Secondary via

GridFTP. The transfer times varied between the different LRCSs since one is on

the same LAN as the GRCS and the other LRCSs are on remote sites connected

via WANs. For each file transfer a GSI handshake is required (a constant time

independent of the transfer size). The overall transfer time for the log files varied

between 1 s (27 KB log file transfer on a LAN) and 9 s (26 MB file transfer on a

WAN). Given the increasing number of inserts in the period �����, the file size has

a direct relation to �����.

4. Database Update: The received log file is applied by the DBUpdater in order to

update the secondary databases. Again, the time it takes to apply the entire log is

directly proportional to the size of the log file. In our tests it was in the range of 100

ms (100 entries) to 102 s (100000 entries) for the Pentium IV based LRCSs. The

Pentium III based LRCS had a severe performance problem due to small RAM and

slow processor, and the inserts ranged from 3.6 s (100 entries) to 360 s (for 10000

entries). We did not include this machine in the run with 100000 entries since the

update took too long compared to the other machines.
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Figure 6: Overall performance parameters in seconds for the update replica process for 3
LRCSs (M1, M2, M3) using 100 to 100 000 database inserts. Note the different scaling
on the y-axis or values greater than 20.

Consequently, the overall time seen by the GRCS for the entire update process of

all replicas depends on the single steps stated above. Note the GRCS is notifying all the

LRCSs in parallel (via parallel threads) which means that performance bottlenecks mainly

depend on the speed of the network and the slowest database operations. In our case, the

Pentium III was the performance bottleneck. If we only look at the two “fast” LRCSs,

the entire update process lasted between 2 s (for 100 entries) and 120 - 145 s (for 100000

entries). We also needed to adapt the log checking period ����� from 5 s (for 100 and

1000 entries) to 60 s (for 10000 entries) to 800 s since the time to create the batch insert

varied from 30 ms to 11 min.

The tests have shown that the system is fully functional and performs well for dif-

ferent update scenarios that are all within the requirements specified in the Use Cases in

Section 3.

6.2 Fault Tolerance

As a next step we tested the fault tolerance of the system and added also more LRCSs.

Given our master and secondary LRCSs, we now assume that one LRCS has crashed or

the network connection is lost. Shortly afterward updates have been made to the LRCS

master. However, the secondary LRCS gets no information about the changes made in

the master database. In this case, the GRCS keeps track of all the updates that were not
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correctly applied to the LRCSs. In particular, the GRCS keeps all log files locally in order

to allow for a fully serialised recovery of sites that did not receive the latest logs. That is

an advantage of a single master approach since all updates are maintained centrally.

Since each LRCS keeps a local database with references to its local replicas and

to its GRCS, the LRCS can easily recover its state. When the LRCS is up again, the

command line tool ������
�����
 needs to be called, which then synchronises all the

missing updates. This can also be fully automated by running a cron job that periodically

checks if the LRCS is still available and calls the recovery process if needed.

In our fault tolerance tests with 4 LRCSs we removed 1, 2, 3 and finally all 4 LRCSs

and then reconnected them again for recovery. The GRCS keeps track of all these failures

and therefore also reports how many replicas have been correctly updated for each update

request. The tests have proven that the system is fault tolerant for this type of LRCS

failures.

6.3 Orcale-to-MySQL Replication

In the following tests we show heterogeneous replication where the master database is

hosted in Oracle and secondary replicas in MySQL databases.

To test the heterogeneous replication we used an Oracle server located in Bologna

and two machines located at INFN-Pisa (pcgridtest2 and pcgridtest3). On pcgridtest2 we

ran the GRCS and the LRCS master with the Log Watcher component that remotely moni-

tored the Oracle database in Bologna. On pcgridtest3 we placed another LRCS to manage

the MySQL secondary replica. Note that for Oracle-to-MySQL replication the difference

with respect to the MySQL-to-MySQL replication is only the Log Watcher component

that monitors the master database. Thus, we focused our tests on this component.

The secondary replica has been created with the same schema as the Oracle database,

i.e. a table with 3 integer columns and 3 VARCHAR(40) columns. The Log Watcher has

been configured to watch the master database every 5 seconds. Then we updated the mas-

ter database with batches of inserts issued every 10 seconds. We repeated the test three

times using different batch sizes: 20, 100, 200 and 1000 insert statements. We measured

the time needed by the Log Watcher to create the update unit and to translate the SQL

statements.

1. Log Generation: this is the same measurement used for the MySQL-to-MySQL

replication with the difference that now the log generation phase involves a remote

query to the Oracle database. For this reason the measured time is greater with

respect to the MySQL-to-MySQL case, and its average values vary from 3.1 s (for

20 inserts) to 14 s (for 1000 inserts).

17



2. Log Translation: this measurement includes the time needed by the Log Watcher to

translate the SQL statement. This process is part of the Log Generation phase and

so this time interval is already included in the previous measurement. Its impact

however is minimal since its average has been proven to vary from 1 ms (for 20

inserts) to 56 ms (for 1000 inserts).

The logs are then transferred to the LRCS and applied to the MySQL database

in the same way as shown in the previous section. In summary, the Oracle-to-MySQL

replication process is more time consuming than the MySQL case, but the increased added

value for this functionality is very important for the end-users that allow for certain delays

in the replica update process.

7 Conclusions

Data Grids, with their large scale, heterogeneity of node architecture, variety of appli-

cation requirements and data formats, and autonomy of sites, are a new setting for the

long-studied problem of replica consistency. In this paper we have proposed a Replica

Consistency Service conceived for Data Grids, and outlined its main requirements and

its high-level architecture. A prototype of this service is operational and is going to be

deployed both as a production service and as a means to evaluate different propagation

protocols.

The system allows for a dynamic way of asynchronously updating replicas by chang-

ing the frequency of the checks for database modifications (inverse of the period �����).

Since we do not aim at a fully synchronous replications system (see problems in [16]),

our current prototype implementation satisfies the basic requirement for relaxed update

synchronisation.

The experimental results have shown that the system is functional for replicating

MySQL databases as well as contents of Oracle to MySQL systems. The latter is a much

needed feature that addresses the problem of heterogeneous database replication in a Grid

environment. Since the CONStanza design also provides for file replication and the neces-

sary stubs have been prepared, it can be considered as a general solution to simple update

synchronisation where data do not need to be fully synchronised all the time.
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