

ISTITUTO NAZIONALE DI FISICA NUCLEARE

Sezione di Pisa

 INFN/TC-05/15
 December 22, 2005

USING GNU AUTOTOOLS FOR THE GDMP PACKAGE

Flavia Donno1, Maria Santa Mennea 2,

1) INFN Pisa, Italy
2) INFN & University Bari, Italy

Abstract

In this document we give a short introduction to the GNU Autotools functionality and
we explain their use to manage the GDMP package, pointing out the problems encountered
and outlining, where necessary, the need to review the structure of the package.

\

Published by SIS–Pubblicazioni
Laboratori Nazionali di Frascati

— 2 —

1 The GNU Autotools: a short summary
Here we give a short summary of the way the GNU Autotools used to manage the

GDMP package work. The GNU Autotools try to simplify the development of portable
programs and the building of programs that are distributed as source code. In particular,
we describe the tools autoconf, automake and libtool.

1.1 Autoconf

Autoconf is a tool for producing shell scripts that automatically configure software
source code packages to adapt it to many kinds of UNIX-like systems.

The autoconf program produces a configuration shell script, named configure, which
probes the installer platform for portability related information which is required to
customize makefiles, configuration header files, and other application specific files. Then
it proceeds to generate customized versions of these files from generic templates. This
way, the user will not need to customize these files manually.

To produce a configure script, the package manager needs to create a file called
configure.in which contains invocations of the Autoconf macros that test the system
features the package needs or can use. A good start for writing configure.in file is given by
the autoscan program [3.1].

1.2 Automake

Automake is a tool for generating Makefiles (descriptions of what to build) that
conform to a number of standards. Automake substantially simplifies the process of
describing the organization of a package and performs additional functions such as
dependency tracking between source files.

The automake program produces makefile templates, Makefile.in to be used by
Autoconf, from a very high level specification stored in a file called Makefile.am provided
by the user. Each Makefile.am is written according to make syntax; Automake recognizes
special macro and target names and generates code based on these.

When we deal with pluri-directories projects, such as GDMP, we use the SUBDIRS
variable in the Makefile.am file to list the subdirectories that should be built.

1.3 Libtool

The Libtool tool takes care of all the peculiarities of creating, linking and loading
shared and static libraries across a great number of platforms, providing a uniform
command line interface to the developer. Using Libtool to manage project libraries, the
package manager only need to concern him/herself with Libtool's interface: when
someone else builds the project on a platform with different library architecture, Libtool
invokes that platform's compiler and linker with the correct environment and command
line switches. It installs libraries and library using binaries according to the conventions of
the host platform, and follows that platform's rules for library versioning and library
interdependencies. Although Libtool is usable by itself, either from the command line or
from a non-make driven build system, it is also tightly integrated into Autoconf and
Automake adding a few macros to configure.in and modifying Makefile.am.

Since GDMP is structured in subdirs, one per service, it seems a good idea to create
a convenience library per service. Convenience libraries are libraries that are not installed
in the install directory under lib. They can be combined in a big, exportable package
library which can be installed in the lib directory. Package binaries can be built against the

— 3 —

exported package library and installed in the bin directory under the package install
directory. Libtool generates a convenience library, one of the three library types that can
be built with libtool. Convenience libraries are a portable way of creating such a partialy
linked object: Libtool will handle all the low-level details in a way appropriate to the
target host.

The key to creating Libtool convenience libraries with Automake is to use the
noinst_LTLIBRARIES macro [3.4].

2 Old GDMP configuration

Before using the Autotools to manage GDMP, the package was structured as
follows. Under the top directory, the source code and header files were organized in
subdirectories, one per service:

Common Main
ControlMsgs Misc
DBManager ReplicaCatalogue
DataMover RequestManager
FlatFile ScriptStaging
GDMPCatalog Security
GDMPFile StagingPlugins

GDMPHost Threads
HRMIDL

For a description of the content of the files in those directories refer to [5]. The

Main directory contains the source code for the executables to be delivered with the
package. Other directories in the package are:

bin tmp
doc utils
etc var

In the bin directory, the package binaries are installed after build. In the bin

directory the executable gdmp_setup is used to create the file gdmp_environment, a shell
script that sets up the environmental variables needed to the gdmp server and clients.
Instead of using the executable gdmp_setup to generate the gdmp_environment file, the
Autotools can help generating one automatically starting from a template for the specific
gdmp installation.

The etc directory contains instead data files needed only to use the package. In
particular in this directory you can find the server certificate, key and proxy.

The utils directory contains shell script (bash and perl) files useful for package
operations. For instance the shell script gdmp_server_start is a useful template to create
the script to be run by the inetd superdaemon in order to launch gdmp_server. This script
needs to be customized by the package installer. Also this can be a good example to use
the autotools in order to generate an installation specific script, starting from this template.
Other scripts in this directory can be used as is.

— 4 —

The var and tmp directories are only used during package operations, so just while
using the package.

The doc directory contains the package documentation.
One comment about the structure above is that no distinction is made among

directories needed during the building process and the directories needed by the
installation process. Such a distinction is instead very important for package installers and
for standard installation tools, such as RPM [6].

Another note is about the absence of defined user headers and library. For this
reason the standard [7,8] directories lib and include are missing.

In the package top directory one can find the main Makefile for the package. Such
Makefile defines interlibraries dependencies for the package (GDMP at the moment
depends on Globus, GSINCFTP and the Globus Replica Catalogue), the compilers to be
used, compilation flags, etc. It also includes a Globus specific makefile_header which
hardcodes Globus specific flags and redefines internally variables that are used/defined by
the Autotools (an example is given by the macros includedir and LIBS). The Globus
makefile_header itself is, in fact, the result of the GNU Autotools used for managing the
Globus package. The macro definitions in the Globus makefile_header can collide with
the use of autotools for a package like GDMP if certain precautions are not taken. In the
same make_header file, also compilation and loader flags are defined.

Other secondary files reside in the top directory of the GDMP package, such as
README, a file reporting the CHANGES in the release, some source files for building
internal executable tests. All those files should be distributed with the package.

A test directory containing a set of test executables to be invoked as a check for the
various functionalities of the package is missing.

3 A first attempt to use GNU Autotools within GDMP

First of all, using the GNU AutoTools with GDMP, we restructure sligthly the
package in order to introduce the concept of user header and library files, and to provide
the possibility to specify an installation directory which must be different from the
package build tree.

As described above, the Autoconf utility requires the package manager to provide
two main files: configure.in and Makefile.am.

In order to generate configure.in file, one can take advantage of the autoscan tool
that can generate a template as a good starting point.

3.1 Using autoscan

The autoscan program can help create a configure.in file. It examines source files in
the directory tree. It searches the source files for common portability problems and creates
a file configure.scan that is a preliminary configure.in for that package.

We need to manually examine configure.scan before renaming it to configure.in and
apport some adjustments. The configure.scan that has been generated by running
autoscan for the gdmp package (after deleting the Makefile from all directories) is the
following:

dnl Process this file with autoconf to produce a configure script.
AC_INIT(Common/gdmp_common.C)
dnl Checks for header files.
AC_HEADER_DIRENT
AC_HEADER_STDC

— 5 —

AC_CHECK_HEADERS(fcntl.h malloc.h sys/file.h unistd.h)

dnl Checks for typedefs, structures, and compiler characteristics.
AC_C_CONST
AC_TYPE_SIZE_T

dnl Checks for library functions.
AC_FUNC_UTIME_NULL
AC_OUTPUT()

Running autoscan when the Makefile file is present in all package directories
produces the following result:

dnl Process this file with autoconf to produce a configure script.
AC_INIT(Common/gdmp_common.C)

dnl Replace `main' with a function in -lStrn:
AC_CHECK_LIB(Strn, main)
dnl Replace `main' with a function in -lncftp:
AC_CHECK_LIB(ncftp, main)
dnl Replace `main' with a function in -lpthread:
AC_CHECK_LIB(pthread, main)
dnl Replace `main' with a function in -lsio:
AC_CHECK_LIB(sio, main)

dnl Checks for header files.
AC_HEADER_DIRENT
AC_HEADER_STDC
AC_CHECK_HEADERS(fcntl.h malloc.h sys/file.h unistd.h)

dnl Checks for typedefs, structures, and compiler characteristics.
AC_C_CONST
AC_TYPE_SIZE_T

dnl Checks for library functions.
AC_FUNC_UTIME_NULL
AC_CHECK_FUNCS(putenv strdup strtoul)

AC_OUTPUT(Threads/Makefile DataMover/Makefile ControlMsgs/Makefile
RequestManager/Makefile Security/Makefile DBManager/Makefile)

The presence of the original Makefiles in place when autoscan is run generates a
configure.scan file with more macro definitions in it, which has been very useful in order
to write a more complete configure.in file. The macro descriptions are explained in the
next paragraph.

3.2 The configure.in file

The following file shows the final configure.in file for GDMP package.

dnl Process this file with autoconf to produce a configure script.
AC_INIT(Common/gdmp_common.C)

dnl set config options
AM_CONFIG_AUX_DIR(config)
AM_CONFIG_HEADER(config.h)
AM_INIT_AUTOMAKE(gdmp,1.2.2)

dnl Checks for programs.
AC_PROG_CXX

dnl Checks for use of libtool
AM_PROG_LIBTOOL

— 6 —

dnl Checks for libraries.

dnl Replace `main' with a function in -lpthread:
AC_CHECK_LIB(pthread, main)

dnl Checks for header files.
AC_HEADER_DIRENT
AC_HEADER_STDC
AC_CHECK_HEADERS(fcntl.h malloc.h sys/file.h unistd.h)

dnl Checks for typedefs, structures, and compiler characteristics.
AC_C_CONST
AC_TYPE_SIZE_T

dnl Checks for library functions.
AC_FUNC_UTIME_NULL
AC_CHECK_FUNCS(putenv strdup strtoul)

dnl Get globus install directory from command line option or environment
dnl variable GLOBUS_INSTALL_PATH.
AC_MSG_CHECKING([for globus-install directory])
AC_ARG_WITH(globus-install,[--with-globus-install=<dir> Default is
\$GLOBUS_INSTALL_PATH],

globus_install="$withval", globus_install="$GLOBUS_INSTALL_PATH")
if test -d "$globus_install" ; then

AC_MSG_RESULT([found $globus_install])
GLOBUS_INSTALL_PATH=$globus_install

else
AC_MSG_ERROR([no such directory $globus_install])

Fi

dnl Determine globus flavor from command line option.
dnl If command line option is not given, look in
dnl $GLOBUS_INSTALL_PATH/development for a directory with threads (but not
dnl nothreads) in the name.
echo "Attempting to determine globus flavor..."
AC_ARG_WITH(globus-flavor,[--with-globus-flavor=<dir> Default is
<globusinstall>/development/<directory with threads>],
globus_flavor=$withval, globus_flavor="")
if test -z "$globus_flavor" ; then

globus_flavor_tmp=`ls -1 $GLOBUS_INSTALL_PATH/development 2>/dev/null |
grep thread | grep -v nothread`
globus_flavor=$GLOBUS_INSTALL_PATH/development/`echo
"$globus_flavor_tmp" | head -n 1`

fi

echo "globus flavor is \"$globus_flavor\""
GLOBUS_FLAVOR=$globus_flavor

dnl We need globus flavor in order to get the globus makefile_header.
dnl Make sure we can find it.
AC_MSG_CHECKING([for makefile_header in globus-flavor])
if test -f "$GLOBUS_FLAVOR/etc/makefile_header" ; then

AC_MSG_RESULT([yes])
else

AC_MSG_ERROR([$GLOBUS_FLAVOR/etc/makefile_header not found])
Fi

dnl Get gsnicftp source directory from command line option or environment
dnl variable NCFTP_SOURCE_DIR
AC_MSG_CHECKING([for gsincftp source directory])
AC_ARG_WITH(gsincftp-src,[--with-gsincftp-src=<dir> Default is
\$NCFTP_SRC_DIR],
ncftp_src_dir="$withval", ncftp_src_dir="$NCFTP_SRC_DIR")
if test -d "$ncftp_src_dir" ; then

AC_MSG_RESULT([$ncftp_src_dir found])

— 7 —

NCFTP_SRC_DIR=$ncftp_src_dir
else

AC_MSG_ERROR([no such directory $ncftp_src_dir])
Fi

dnl Make sure we can find ncftp.h in NCFTP_SRC_DIR.
AC_MSG_CHECKING([for ncftp.h in gsincftp-src])
if test -f "$NCFTP_SRC_DIR/libncftp/ncftp.h" ; then

AC_MSG_RESULT([yes])
else

AC_MSG_ERROR([$NCFTP_SRC_DIR/libncftp/ncftp.h not found])
Fi

AC_MSG_CHECKING([for globus replica catalog source directory])
AC_ARG_WITH(globus-rep-cat-src,[--with-globus-rep-cat-src=<dir> Default is
\$GLOBUS_REP_CAT_DIR],
globus_rep_cat_dir="$withval",
globus_rep_cat_dir="$GLOBUS_REP_CAT_DIR")
if test -d "$globus_rep_cat_dir" ; then

AC_MSG_RESULT([$globus_rep_cat_dir found])
GLOBUS_REP_CAT_DIR=$globus_rep_cat_dir

else
AC_MSG_ERROR([no such directory $globus_rep_cat_dir])

fi

dnl Make sure we can find globus_replica_catalog.h in GLOBUS_REP_CAT_DIR.
AC_MSG_CHECKING([for ncftp.h in globus-rep-cat-src])
if test -f "$GLOBUS_REP_CAT_DIR/libraries/catalog/globus_replica_catalog.h"
; then

AC_MSG_RESULT([yes])
else

AC_MSG_ERROR([$GLOBUS_REP_CAT_DIR/libraries/catalog not found])
Fi

dnl Get staging option default is script
dnl variable STAGING_PLUGIN.
AC_MSG_CHECKING([for staging plugin option])
AC_ARG_WITH(staging-plugin,[--with-staging-plugin=<option> Default is
script],
staging_plugin="$withval", staging_plugin="script")
if test x$staging_plugin = xhrm || test x$staging_plugin = xscript ; then

AC_MSG_RESULT([$staging_plugin selected])
STAGING_PLUGIN=$staging_plugin

else
AC_MSG_ERROR([invalid option $staging_plugin])

Fi

if test x$STAGING_PLUGIN = xhrm ; then
dnl Get orbacus source directory from command line option or environment
dnl variable ORBACUS_DIR.
AC_MSG_CHECKING([for orbacus directory])
AC_ARG_WITH(orbacus-install,[--with-orbacus-install=<dir> Default is
\$ORBACUS_DIR],
orbacus_dir="$withval", orbacus_dir="$ORBACUS_DIR")
if test -d "$orbacus_dir" ; then

AC_MSG_RESULT([$orbacus_dir found])
ORBACUS_DIR=$orbacus_dir

else
AC_MSG_ERROR([no such directory $orbacus_dir])

Fi
fi

AM_CONDITIONAL(STAGING_SCRIPT, test x$STAGING_PLUGIN = xscript)
AM_CONDITIONAL(STAGING_HRM, test x$STAGING_PLUGIN = xhrm)

dnl Just set GDMP_INSTALL_DIR
GDMP_INSTALL_DIR=`pwd`

— 8 —

dnl Define required variables.
dnl GLOBUS_ARCH given by $(host_alias)
AC_SUBST(GLOBUS_INSTALL_PATH)
AC_SUBST(GDMP_INSTALL_DIR)
AC_SUBST(NCFTP_SRC_DIR)
AC_SUBST(GLOBUS_REP_CAT_DIR)
AC_SUBST(GLOBUS_FLAVOR)
AC_SUBST(GDMP_INSTALL_DIR)
AC_SUBST(ORBACUS_DIR)
AC_SUBST(STAGING_PLUGIN)

AC_OUTPUT(Common/Makefile Threads/Makefile DataMover/Makefile
ControlMsgs/Makefile RequestManager/Makefile Security/Makefile
DBManager/Makefile FlatFile/Makefile HRMIDL/Makefile
ReplicaCatalogue/Makefile StagingPlugins/Makefile Misc/Makefile lib/Makefile
Main/Makefile Makefile etc/gdmp_environment etc/Makefile
utils/gdmp_server_start utils/Makefile)

Lines which start with the m4 builtin macro dnl are comments that don't appear in
the generated configure script. The macros that begin with AC come with autoconf, and
those that begin with AM usually come with automake.

These macros are written in m4 [9] and reside in /usr/share/aclocal, if you installed
autoconf/automake under /usr.

These are the macros presents in the GDMP configure.in file:

• AC_INIT is always the first macro in configure.in. It expands to a lot of boilerplate
code shared by all configure scripts; this code parses the command line arguments
to configure script. The macro's one argument is a file that should be present in the
source directory; this is used as a sanity check, to be sure configure has correctly
located the source directory. In our case for example it is the first file in the GDMP
Common dir.

• AC_CONFIG_AUX_DIR allows for an alternative directory to be specified for the
location of auxiliary scripts such as config.guess, config.sub, etc. In GDMP we
asked for the use of the config auxiliary dir.

• AM_CONFIG_HEADER specifies a header file to create; this will almost always
be config.h. The created header file will contain C pre-processor symbols defined
by configure. At a minimum, the symbols PACKAGE and VERSION will be
defined, which makes it easy to put the name and version of a program in the code
without hard-coding them.

• AM_INIT_AUTOMAKE initializes automake; the arguments to this macro are the
name and version of the package being compiled. (These arguments become the
values of PACKAGE and VERSION, defined in config.h).

• AC_PROG_CXX locates the C++ compiler.
• AM_PROG_LIBTOOL is used by automake to set up its use of libtool. This macro

allows to set several variables, such as host_alias where the type of the
operating system used is stored. For Linux RedHat 6.1 the value of such variable is
i686-pc-linux-gnu. This variable can be used instead of the environmental variable
GLOBUS_ARCH required by GDMP.

• AC_CHECK_LIB looks for the named function in the named library specified by
its base name. If the argument function is "main" than the library is searched for
and, by default, the C preprocessor macro HAVE_LIB_lib is set so that it could be
directly used in the code, and the flag -llib is automatically added in LIBS. Here,
only the check for the library pthread has been put (so automatically the C macro

— 9 —

HAVE_LIB_PTHREAD is defined and the flag - lpthread added to LIBS), but
other libraries could be searched as well, given that they are located in a standard
search path for libs. In order to locate a library wich is not in the standard library
search path, one can use the method as in the following example:

for dir in /usr/local/gsincftp /usr/local/globus ; do
 if test –d “$dir” ; then
 LDFLAGS=”$LDFLAGS –L$dir/lib”
 CPPFLAGS=”$CPPFLAGS –I$dir/include”
 break
 fi
done
AC_CHECK_LIB(gsincftp,onegsincftpfunction,[LIBS=”-lgsincftp $LIBS”])
AC_CHECK_LIB(globus, oneglobusfunction,[LIBS=”-lglobus $LIBS”])

The method described above to look for libraries has not been used at the moment
in GDMP.

• AC_HEADER_DIRENT searches a number of specific header files for a
declaration of the C type DIR.

• AC_HEADER_STDC checks whether the present system has the standard ANSI
standard C header files.

• AC_CHECK_HEADERS looks for a series of headers
• AC_C_CONST defines the C preprocessor macro const to the string const if the C

compiler supports the const keyword
• AC_TYPE_SIZE_T looks for the type size_t. If not defined on the system, it

defines it (as a macro) to be `unsigned'
• AC_FUNC_UTIME_NULL defines the C preprocessor macro

HAVE_UTIME_NULL if a call to utime with a NULL utimbuf pointer sets the
file's time stamp to the current time

• AC_CHECK_FUNCS looks for a series of functions
• AC_MSG_CHECKING notifies the user that configure is checking for any of the

external packages (globus, gsincftp, globus_replica_catalog, orbacus) or for a
particular feature like a staging plugin option. This macro must be followed by a
call to AC_MSG_RESULT to print the result of the check and the newline.

• AC_ARG_WITH macro allows the maintainer to specify additional packages
needed by GDMP (globus, gsincftp, globus_replica_catalog, orbacus). The user
indicates this preference by invoking configure with an option such as `-- with-
globus-install' for globus-install directory. If an optional argument is given, this
value is available to the shell code in the shell variable withval.

• AC_MSG_RESULT notifies the user of the results of a check that is almost
always the value of the cache variable for the check, typically `yes', `no', or a file
name. This macro follows a call to AC_MSG_CHECKING, and the result-
description should be the completion of the message printed by the call to
AC_MSG_CHECKING.

• AC_MSG_ERROR macro prints an error message on the standard error output and
exits configure with a nonzero status.

• AM_CONDITIONAL macro is used introduce a conditional. It takes two
arguments. The first argument is the name of the conditional. The second argument
is a shell condition, suitable for use in a shell ‘if’ statement. The condition is
evaluated when configure is run .

— 10 —

• AC_SUBST "exports" a variable into the files generated by configure. In order to
buid GDMP four environmental variables need to be set, as described in section 2.
They are GLOBUS_INSTALL_PATH, GDMP_INSTALL_DIR, NCFTP_SRC_DIR,
GLOBUS_REP_CAT_DIR. Instead of defining these variables as global, one could
define them in a build script or somewhere else at convenience.

• AC_OUTPUT lists the files to be created by the configure script. These will be
created from a file with the same name, with .in appended. For example, the output
file Common/Makefile is generated from Common/Makefile.in. A Makefile is
generated per subdir to create object files and convenience libraries. The Makefile
in Main invokes recursively all subdirs Makefiles and creates a global library to be
used with GDMP package. The top level Makefile can be used to generate a
package binary tarball. At the moment this feature has not yet been exploited. In
the lib subdir the Makefile is used to create a user GDMP library. Automake
generates the Makefile.in files, starting from the user provided Makefile.am files.

3.3 Creating GDMP makefile_header

In order to use a set of macro definitions needed to build the package, a
makefile_header has been written starting from the Makefile of the original package. Here
we list the makefile_header for GDMP:

MAIN_DIR = @GDMP_INSTALL_DIR@/Main
BIN_DIR = @GDMP_INSTALL_DIR@/bin
LIBGDMP_DIR = @GDMP_INSTALL_DIR@/lib
MISC_DIR = @GDMP_INSTALL_DIR@/Misc
COMMON_DIR = @GDMP_INSTALL_DIR@/Common
CONTROL_MSGS_DIR = @GDMP_INSTALL_DIR@/ControlMsgs
SECURITY_DIR = @GDMP_INSTALL_DIR@/Security
REQ_MAN_DIR = @GDMP_INSTALL_DIR@/RequestManager
DATA_MOVER_DIR = @GDMP_INSTALL_DIR@/DataMover
THREADS_DIR = @GDMP_INSTALL_DIR@/Threads
DB_MANAGER_DIR = @GDMP_INSTALL_DIR@/DBManager
REP_CATALOG_DIR = @GDMP_INSTALL_DIR@/ReplicaCatalogue
STAGINGPLUGINS_DIR = @GDMP_INSTALL_DIR@/StagingPlugins
GDMPHOST_DIR = @GDMP_INSTALL_DIR@/GDMPHost
GDMPFILE_DIR = @GDMP_INSTALL_DIR@/GDMPFile
GDMP_CATALOGUE_DIR = @GDMP_INSTALL_DIR@/GDMPCatalogue
if OBJECTIVITY_SELECTED
OBJECTIVITY_CFLAGS = -DOBJECTIVITY -I@OBJECTIVITY_DIR@/include
OBJECTIVITYLDFLAGS = -L@OBJECTIVITY_DIR@/lib -
L@OBJECTIVITY_DIR@/ToolKit/lib
OBJECTIVITYLIBS = -loo -looseccl -lpthread
Endif
if STAGING_SCRIPT
STAGING_CFLAGS = -DSCRIPT_STAGING=@STAGING_PLUGIN@
ORBACUS_CFLAGS =
ORBACUSLDFLAGS =
ORBACUSLIBS =
endif
if STAGING_HRM
HRMIDL_DIR = @GDMP_INSTALL_DIR@/HRMIDL
STAGING_CFLAGS = -DHRM_STAGING=@STAGING_PLUGIN@
ORBACUS_CFLAGS = -I@ORBACUS_DIR@/include
ORBACUSLDFLAGS = -L@ORBACUS_DIR@/lib
ORBACUSLIBS = -lOB -lJTC -lpthread -lCosNaming
Endif

DATAMOVER_CFLAGS = -I@NCFTP_SRC_DIR@/libncftp -I@NCFTP_SRC_DIR@/Strn \

 -I@NCFTP_SRC_DIR@/sio

— 11 —

REP_CATALOG_CFLAGS = -I@GLOBUS_REP_CAT_DIR@/libraries/catalog $(LDAP_CFLAGS)

include $(GLOBUS_FLAVOR)/etc/makefile_header

INCLUDES = -I$(includedir) -I$(CONTROL_MSGS_DIR) -I$(COMMON_DIR) \

-I$(SECURITY_DIR) -I$(REQ_MAN_DIR) -I$(DATA_MOVER_DIR)\
-I$(THREADS_DIR) -I$(MISC_DIR) -I$(DB_MANAGER_DIR) -I$(HRMIDL_DIR)\
-I$(STAGINGPLUGINS_DIR) -I$(GDMPHOST_DIR) $(DB_MANAGER_CFLAGS) \
-I$(GDMPFILE_DIR) -I$(GDMPCATALOGUE_DIR) $(DATAMOVER_CFLAGS)
$(ORBACUS_CFLAGS) $(STAGING_CFLAGS) $(OBJECTIVITY_CFLAGS) \
-I$(REP_CATALOG_DIR) $(REP_CATALOG_CFLAGS) \
$(GLOBUS_COMMON_CFLAGS) \
$(GLOBUS_GSSAPI_CFLAGS) \
$(GLOBUS_IO_CFLAGS) \
$(GLOBUS_NEXUS_CFLAGS)\
$(GLOBUS_IO_CFLAGS)

DATAMOVERLDFLAGS = -L@NCFTP_SRC_DIR@/libncftp \

-L@NCFTP_SRC_DIR@/Strn \
-L@NCFTP_SRC_DIR@/sio

DATAMOVERLIBS = -lncftp -lStrn -lsio

REP_CATALOGLDFLAGS = -L@GLOBUS_REP_CAT_DIR@/libraries/catalog $(LDAP_LDFLAGS)

REP_CATALOGLIBS = -lglobus_replica_catalog $(LDAP_LIBS)

DATAMOVERLDFLAGS = -L@NCFTP_SRC_DIR@/libncftp \

-L@NCFTP_SRC_DIR@/Strn \
-L@NCFTP_SRC_DIR@/sio

DATAMOVERLIBS = -lncftp -lStrn -lsio

MYLDFLAGS = -L$(libdir) \
$(DB_MANAGER_LDFLAGS) \
$(DATAMOVERLDFLAGS) \
$(REP_CATALOGLDFLAGS) \
$(GLOBUS_COMMON_LDFLAGS) \
$(GLOBUS_GSSAPI_LDFLAGS) \
$(GLOBUS_IO_LDFLAGS) \
$(GLOBUS_NEXUS_LDFLAGS) \
$(ORBACUSLDFLAGS) \
$(OBJECTIVITYLDFLAGS)

MYLIBS = $(LIBS) \
$(DB_MANAGER_LIBS) \
$(DATAMOVERLIBS) \
$(REP_CATALOGLIBS) \
$(GLOBUS_COMMON_LIBS) \
$(GLOBUS_GSSAPI_LIBS) \
$(GLOBUS_IO_LIBS) \
$(GLOBUS_NEXUS_LIBS)\
$(ORBACUSLIBS) \
$(OBJECTIVITYLIBS)

GDMPOBJS = $(LIBGDMP_DIR)/libgdmp.la
MYGDMPLDFLAGS = $(MYLDFLAGS) $(MYLIBS)

The variables which appear in between the @ symbol are substituted with their
values by configure. They are ordinary shell variables that are set in configure. To make
configure substitute a particular variable into the generated output files, the macro
AC_SUBST must be called (in configure.in) with that variable name as an
argument.

— 12 —

The header file includes, as in the original Makefile, the Globus makefile_header
with a lot hardcoded and platform dependent macros. This inclusion should be avoided in
the future and proper variable definitions should be provided. The macro GDMPOBJS is
used to link against the GDMP user library, instead of using the object files.

3.4 Creating the Makefile.am files

The Makefile.am files have been created for each package subdirectory. The
Makefile.am in the top source directory is generally very simple; here is the one for the
GDMP package:

SUBDIRS= Common ControlMsgs Security RequestManager DataMover DBManager
Threads ReplicaCatalogue FlatFile StagingPlugins HRMIDL Misc lib etc utils Main

The SUBDIRS line instructs automake to recursively look for Makefile.am files in
the given subdirectories in the order specified. So for istance, the lib directory is processed
before Main so that the user library is built before the executable are linked against it.

The Makefile.am files for almost all subdirectories (except Main and lib) are similar.
For example for the Common directory:

include $(top_srcdir)/makefile_header noinst_LTLIBRARIES = libCommon.la
libCommon_la_SOURCES = gdmp_common.C gdmp_common.h

With the include directive the produced GDMP makefile_header is implicitly
included after being preprocessed by configure.

The noinst_LTLIBRARIES macro allows the package manager to create the Libtool
convenience library. For the Libtool library named in this macro, Automake will create the
Libtool convenience library which can subsequently be linked into other Libtool libraries.
The prefix noinst_ tells automake that the current library should not be installed, but
should be built anyway. Although not required for compilation, source.h
(gdmp_common.h) is listed in the SOURCES macro of library.la (libCommon.la) so that
correct source dependencies are generated.

For the Main directory the Makefile.am is:

include $(top_srcdir)/makefile_header

bin_PROGRAMS = gdmp_server gdmp_replicate_file_get\ gdmp_publish_catalogue
gdmp_host_subscribe gdmp_setup\ gdmp_get_catalogue gdmp_filter_catalogue
gdmp_stage_complete\ gdmp_cleanup gdmp_ping …..
gdmp_server_SOURCES = gdmp_server.C
gdmp_server_LDFLAGS = $(GDMPOBJS) $(MYGDMPLDFLAGS)
gdmp_replicate_file_get_SOURCES = gdmp_replicate_file_get.C
gdmp_replicate_file_get_LDFLAGS = $(GDMPOBJS) $(MYGDMPLDFLAGS)
.........

The bin_PROGRAMS macro lists the programs to be created. program_SOURCES lists
the source files to be compiled and linked to create the program. All files in this variable
are automatically included in the distribution.

The program_LDFLAGS macro is used to redefine, if needed, the global LDFLAGS
while building the specific program. In this case the global LDFLAGS is redefined using
the MYGDMPLDFLAGS and GDMPOBJS variables that list the flags to be passed to the linker.
The global LDFLAGS needed to be overwritten in the case of GDMP because of the
hardcoded definition present in the Globus makefile_header. The variables
MYGDMPLDFLAGS and GDMPOBJS are defined in GDMP makefile_header.

— 13 —

For the lib directory the Makefile.am is:

LINK =$(LIBTOOL) --mode=link $CC $(AM_CFLAGS) $(CFLAGS) -o $@
lib_LTLIBRARIES = libgdmp.la
lib_la_SOURCES=
lib_la_LDFLAGS=-no-undefined -version-info 1:0:1
if STAGING_HRM
libgdmp_la_LIBADD = ../Common/libCommon.la ../ControlMsgs/libControl.la \
../DBManager/libDBManager.la ../DataMover/libDataMover.la \
../Misc/libMisc.la ../RequestManager/libRequestManager.la\
../Security/libSecurity.la ../ReplicaCatalogue/libReplicaCatalogue.la
../FlatFile/libFlatFile.la ../Threads/libThreads.la\
libgdmp_la_LIBADD +=../HRMIDL/libHRMIDL.la\
../StagingPlugins/libStagingPlugins.la
endif
if STAGING_SCRIPT
libgdmp_la_LIBADD = ../Common/libCommon.la ../ControlMsgs/libControl.la \
../DBManager/libDBManager.la ../DataMover/libDataMover.la \
../Misc/libMisc.la ../RequestManager/libRequestManager.la\
../Security/libSecurity.la ../ReplicaCatalogue/libReplicaCatalogue.la
../FlatFile/libFlatFile.la ../Threads/libThreads.la\
libgdmp_la_LIBADD +=../StagingPlugins/libStagingPlugins.la
endif

The code tells automake that we want to build a library (libgdmp.la) for use within

the build tree. Since there are not source files by default, we need to define the variable
LINK at the top line, since libtool does not define it automatically. This seems to be a bug
in the current version of libtool (1.3.4). To pass any additional flag to libtool during the
build process, we need to use the LDFLAGS macro for libgdmp library, as follows:

lib_la_LDFLAGS=-no-undefined –version-info 1:0:0

We have used the -no-undefined option to require that all symbols are solved while

creating shared libraries. With the second option, we pass version information to be used
with shared libraries, for istance. Version info are specified using the syntax
current:revision:age. Current is the number of the current interface exported by the
library (you increase this number when the library user interface changes); revision is the
implementation number of the current interface (you increase this number if the user
interface does not change but the implementation does); age is the number of previous
additional interfaces supported by library.

4 Building GDMP

To build and install the package one must run the configure script which tests system

features. The actual build is performed using the make program. Before invoking these
commands we must prepare files that will be process by the above commands. To do this
a bootstrap procedure is executed.

4.1 The bootstrap file

A bootstrap file is a script which just runs the various commands required to bring

the source tree into a state in which the end user can invoke the configure and make
commands.
This is the bootstrap file:

— 14 —

#!/bin/sh
set -x
aclocal -I config
autoheader
libtoolize --automake
automake --foreign --add-missing --copy
autoconf

It must be invoked everytime any of the files configure.in or Makefile.am is
changed, anywhere in the package tree.

Because configure.in contains macro invocations that are not known to Autoconf
itself (like AM_INIT_AUTOMAKE), it's necessary to collect all the macro definitions for
Autoconf to use when generating configure. This is done using the aclocal program, so
called because it generates aclocal.m4. If we examine the contents of aclocal.m4, we find
the definition of the AM_INIT_AUTOMAKE macro. The –I config option inform the aclocal
program of the existence of the new directory config where many of the files added by
runninng autoconf and automake (such as config.guess, config.sub, install-sh ..) are
created.

Autoheader runs m4 over configure.in, but with key macros defined differently
from when autoconf is executed, such that suitable cpp definition are output to
config.h.in.

Libtoolize is used to add libtool support to package. In particolar, the option -–
automake adds config.guess, config.sub, ltconfig and ltmain.sh files to distribution. This
files are created under the config directory.

Automake command processes Makefile.am to produce a standards-compliant
Makefile.in. It creates all standard targets, such as install and clean. It also creates
more complex targets. For istance, simply typing make dist you can create a standard
.tar.gz file containing the package source distribution. This feature has not yet been tested
with the current provided version of autotoolized GDMP.

The option --add-missing copies some boilerplate file from Automake installation
into the current directory. A number of utility scripts are also installed that are used by
generated Makefile’s, in particolar by the install target. One of the this script is for istance
mkinstalldirs, to create installation directoris under the installation tree.

Autoconf processes configure.in to produce a configure script. Configure is a
portable shell script which examines the build environment to determine which libraries
are available, which features the platform has, where libraries and headers are located, and
so on. Based on this information, it modifies compiler flags, generates makefiles, and/or
outputs the file config.h with appropriate pre-processor symbols defined.

If there are errors when running bootstrap, one needs to check the correctness of the
Makefile.am or configure.in files.

4.2 Invoking configure

The configure script tests system features. The command is invoked as follows:

$./configure --prefix=<GDMP installation tree>

where the <GDMP installation tree> is the installation directory.
The script takes a large number of command line options. One of the most

frequently used is the prefix. If generated Makefiles choose to observe the argument
passed with this option, it is possible to entirely relocate the architectureindependent
portion of a package when it is installed. The prefix directory must be different from the

— 15 —

build directory ($HOME/gdmp). After invoking configure command in the top directory
several files are generated:

• config.cache where the result of system tests to determine the availbility of
features are stored;

• config.status that may be used to recreate the current configuration;
• config.log file to look when configure goes hay-wire or a test produces a nonsense

result.
• Makefile, one in the package directory and one for each subdirs.

4.3 Invoking make

Now that the build tree is configured, it is possible to go on and build the package
and install it into the installation tree. Now make is invoked to process the Makefile file in
the package directory. Several target can be specified on the make command line:

• all the default target which compiles the program;
• clean to delete the results of compilation (object file and executables);
• install to create installation directories if needed and copy the software into them;
• dist to build a tarball (.tar.gz) for distribution.

During building, in the various service subdirs where a convenience library is built,

the temporary hidden subdirectories .deps and .libs are created. In the .deps directory you
can find files which describe the source code dependencies from the header files.

In the .libs directory, convenience libraries and temporary files to build them are put
in place.

After all convenience libraries are built, the top level Makefile specifies to process
the lib subdirectory. Here, all convenience libraries are “linked” together in a bigger
library, the package library libgdmp.a (or its shared version).

Then, the Makefile for the Main subdirectory is invoked to build the executables
agains the library just built.

4.4 Invoking make install

When running make install the directories lib, bin, include, utils, tmp, var, etc will
be created the in the installation directory specified via the –-prefix option with
configure. In lib the gdmp library will be put, in bin the executables, in include the header
files, in etc the .cert .key .proxy files, in utils the services files. var and tmp are currently
empty.

To do this the Makefile.am in the top dir must contain few other lines. Here is the
final Makefile.am:

SUBDIRS= Common ControlMsgs Security RequestManager DataMover Threads
DBManager ReplicaCatalogue FlatFile StagingPlugins HRMIDL Misc lib etc utils
Main

configincdir = $(prefix)/include/gdmp
configinc_HEADERS = config.h

TMPDIRS = var tmp

install-data-local:

for f in $(TMPDIRS); do \
echo "Creating $(prefix)/$$f dir"; \
$(mkinstalldirs) $(prefix)/$$f; \

done

— 16 —

Automake enables the user to extend the list of directories to create new ones. The
line

configincdir = $(prefix)/include/gdmp

instructs Automake to automatically create the directory specified as the value of the
variable configincdir under the installation dir and

configinc_HEADERS = config.h

puts a config.h header file in this new directory. The macro used to define the new
directory must end with ‘dir’. Automake provides the predefined variable pkgincludedir to
accommodate package include files [its value is $(includedir)/$(PACKAGE)]. In our case
this predefined variable could not be used because the GLOBUS automake_header
redefines the value of the variable includedir to point to the GLOBUS installed include
directory. So we have to explicitely define its value to be $(prefix)/include/gdmp. During
the install processs the install-datalocal target is invoked, if defined by the package
maintainer. This target has been used in our case to create the var and tmp directories used
by gdmp. The default ownership and mode of this directories can also be changed here.

Now the SUBDIRS variable contains the etc and utils dirs as well. So also in these
directories there is a Makefile.am. The Makefile.am under utils is :

gdmputilsdir = $(prefix)/utils
gdmputils_DATA = gdmp_server_start.in \

gdmp_stage_from_mss\
get_progress_report

install-data-hook: gdmp_server_start
if test -d $(prefix)/utils; then $(mkinstalldirs) $(prefix)/utils;fi
rm $(prefix)/utils/gdmp_server_start.in
cp gdmp_server_start $(prefix)/utils

The installation of miscellaneous data files is supported by automake using the

DATA family of variables. Automake installs its auxiliary data files according to the line:

gdmputils_DATA = gdmp_server_start.in \

gdmp_stage_from_mss \
get_progress_report

The data will be installed in the directory $(prefix)/utils .

4.5 Invoking make dist

When running make dist a tar distribution is created in the top directory. The

generated tar file is named package-version.tar.gz, and will unpack into a directory named
package-version. For the most part, the files to distribute are automatically found by
Automake: all source files are automatically included in a distribution, as well as all
`Makefile.am'’s and Makefile.in’s. Automake will recursively include all subdirectories in
the distribution because the SUBDIRS macro has been defined. All files which aren’t
included automatically (by default) in the distribution are added using the macro
EXTRA_DIST in Makefile.am. So in the main Makefile.am we add the line

EXTRA_DIST = bootstrap

to add the bootstrap file.

— 17 —

In Makefile.am one needs also to define a dist-hook rule which Automake will
arrange to run when the copying work for this directory is finished. We use this rule to do
several things to the distribution directory: remove files that erroneously end up in the
distribution or are not very important; copy files that are not distributed.

dist-hook:

mkdir $(distdir)/bin $(distdir)/tmp $(distdir)/var
for f in $(DIST_SUBDIRS); do \

rm $(distdir)/$$f/Makefile.in;\
done
cp $(srcdir)/utils/gdmp_server_start\

$(srcdir)/utils/get_progress_report $(distdir)/utils
cp $(srcdir)/etc/gdmp_server.cert $(srcdir)/etc/gdmp_server.key \

$(srcdir)/etc/gdmp_server.proxy $(distdir)/etc
-rm $(distdir)/Makefile.in $(distdir)/aclocal.m4 \

$(distdir)/config.h $(distdir)/config.h.in \
$(distdir)/configure \
$(distdir)/stamp-h.in \
$(distdir)/etc/gdmp_environment.in \
$(distdir)/utils/gdmp_server_start.in

5 Adding a new module to GDMP
We give here a short summary of the steps needed in order to add one or more

modules to the GDMP package and correctly configure this new module with the GNU
Autotools.

1 Create the directory module gdmp/<module>.
2 Change gdmp/config.in file to add in the configure output list (AC_OUTPUT) in

the right place (i.e. before lib and Main), the string <Module>/Makefile.
3 If there are executables to be built for this module, than the correspondent source

files and headers should go into the gdmp/Main directory. In this case, the
gdmp/Main/Makefile.am file needs to be updated with the the name of the
executables in the bin_PROGRAMS line (look at what is done for the others) .
Also the corrispondent lines, relatives to: <program_name>_SOURCES and
<program_name>_LDFLAGS need to exist. You can copy one of the existing
examples.

4 Copy into the module directory one of the Makefile.am that you find for instance
in gdmp/Common or gdmp/Threads. Lets supposed that you copy the
gdmp/Common/Makefile.am.

5 Change the word "Commonincdir" with <Module>incdir.
6 Change the word Commoninc_HEADERS with <Module>inc_HEADERS and

make it equal to whatever header files you have for this module. If you do not have
header files you just delete those two lines.

7 Specify after the noinst_LTLIBRARIES the library name for this module, it should
be lib<Module>.la

8 Change the line "libCommon_la_SOURCES =" with lib<Module>_la_SOURCES
and after that specify the sources and headers for this particular module.

9 In gdmp/lib, change Makefile.am to add in libgdmp_la_LIBADD the string
../<Module>/lib<Module>.la

10 In the top Makefile.am under gdmp, on the SUBDIRS line, add the name of the
new module.

6 A short summary of commands

— 18 —

In order to build GDMP with the new tools, you need to execute from the gdmp root
directory:

• ./bootstrap (the first time or everytime you change the configure.in or
 Makefile.am)
• ./configure –prefix=<install directory>
• make clean (to clean up what previously done in the build directory)
• make
• make install

7 The todo list

Here we give a short list of things that still need an implementation or need
improvement.

• The new package version of GDMP needs a good revision to eliminate the
dependency on the hardcoded GLOBUS makefile_header.

• It is foreseen to include the GDMP RPM spec file among the files preprocessed by
configure to generate installation specific implementation. This work is on going.

• The installation step should also include the production of a script to correctly
install a gdmp_server on a machine, defining its entry in the superdaemon
configuration file or have the machine invoke a startup file at reboot. Also, the
customization of the gdmp_environment and gdmp_server_start files can be
improved.

• GDMP contains same architecture dependent code (see the usage of the
getsockopt). Some macro definitions should be added in order to check the correct
signature of system calls and use them correctly in the code.

• What has been described is just a first attempt to use the GNU tools to package
GDMP in a more portable way. With experience many things and choices can
surely be optimized.

8 Appendix

Configure.in file

dnl Process this file with autoconf to produce a configure script.
AC_INIT(Common/gdmp_common.C)
dnl Set config options
AC_CONFIG_AUX_DIR(config)
AM_CONFIG_HEADER(config.h)
AM_INIT_AUTOMAKE(gdmp,1.2.2)
dnl Checks for programs.
AC_PROG_CXX
dnl Checks for use of libtool
AM_PROG_LIBTOOL
dnl Checks for libraries.
dnl Replace `main' with a function in -lpthread:
AC_CHECK_LIB(pthread, main)
dnl Checks for header files.
AC_HEADER_DIRENT
AC_HEADER_STDC
AC_CHECK_HEADERS(fcntl.h malloc.h sys/file.h unistd.h)

— 19 —

dnl Checks for typedefs, structures, and compiler characteristics.
AC_C_CONST
AC_TYPE_SIZE_T
dnl Checks for library functions.
AC_FUNC_UTIME_NULL
AC_CHECK_FUNCS(putenv strdup strtoul)
dnl Get globus install directory from command line option or environment
dnl variable GLOBUS_INSTALL_PATH.
AC_MSG_CHECKING([for globus-install directory])
AC_ARG_WITH(globus-install,[--with-globus-install=<dir> Default is
\$GLOBUS_INSTALL_PATH],
globus_install="$withval", globus_install="$GLOBUS_INSTALL_PATH")
if test -d "$globus_install" ; then
AC_MSG_RESULT([found $globus_install])
GLOBUS_INSTALL_PATH=$globus_install
else
AC_MSG_ERROR([no such directory $globus_install])
Fi
dnl Determine globus flavor from command line option.
dnl If command line option is not given, look in
dnl $GLOBUS_INSTALL_PATH/development for a directory with threads (but not
dnl nothreads) in the name.
echo "Attempting to determine globus flavor..."
AC_ARG_WITH(globus-flavor,[--with-globus-flavor=<dir> Default is <globusinstall>/
development/<directory with threads>],
globus_flavor=$withval, globus_flavor="")
if test -z "$globus_flavor" ; then
globus_flavor_tmp=`ls -1 $GLOBUS_INSTALL_PATH/development 2>/dev/null | grep thread |
grep -v nothread`
globus_flavor=$GLOBUS_INSTALL_PATH/development/`echo "$globus_flavor_tmp" | head -n 1`
fi
echo "globus flavor is \"$globus_flavor\""
GLOBUS_FLAVOR=$globus_flavor
dnl We need globus flavor in order to get the globus makefile_header.
dnl Make sure we can find it.
AC_MSG_CHECKING([for makefile_header in globus-flavor])
if test -f "$GLOBUS_FLAVOR/etc/makefile_header" ; then
AC_MSG_RESULT([yes])
else
AC_MSG_ERROR([$GLOBUS_FLAVOR/etc/makefile_header not found])
Fi
dnl Get gsnicftp source directory from command line option or environment
dnl variable NCFTP_SOURCE_DIR
AC_MSG_CHECKING([for gsincftp source directory])
AC_ARG_WITH(gsincftp-src,[--with-gsincftp-src=<dir> Default is \$NCFTP_SRC_DIR],
ncftp_src_dir="$withval", ncftp_src_dir="$NCFTP_SRC_DIR")
if test -d "$ncftp_src_dir" ; then
AC_MSG_RESULT([$ncftp_src_dir found])
NCFTP_SRC_DIR=$ncftp_src_dir
else
AC_MSG_ERROR([no such directory $ncftp_src_dir])
Fi
dnl Make sure we can find ncftp.h in NCFTP_SRC_DIR.
AC_MSG_CHECKING([for ncftp.h in gsincftp-src])
if test -f "$NCFTP_SRC_DIR/libncftp/ncftp.h" ; then
AC_MSG_RESULT([yes])
else
AC_MSG_ERROR([$NCFTP_SRC_DIR/libncftp/ncftp.h not found])
fi
AC_MSG_CHECKING([for globus replica catalog source directory])

— 20 —

AC_ARG_WITH(globus-rep-cat-src,[--with-globus-rep-cat-src=<dir> Default is
\$GLOBUS_REP_CAT_DIR],
globus_rep_cat_dir="$withval", globus_rep_cat_dir="$GLOBUS_REP_CAT_DIR")
if test -d "$globus_rep_cat_dir" ; then
AC_MSG_RESULT([$globus_rep_cat_dir found])
GLOBUS_REP_CAT_DIR=$globus_rep_cat_dir
else
AC_MSG_ERROR([no such directory $globus_rep_cat_dir])
Fi dnl Make sure we can find globus_replica_catalog.h in GLOBUS_REP_CAT_DIR.
AC_MSG_CHECKING([for ncftp.h in globus-rep-cat-src])
if test -f "$GLOBUS_REP_CAT_DIR/libraries/catalog/globus_replica_catalog.h" ; then
AC_MSG_RESULT([yes])
else
AC_MSG_ERROR([$GLOBUS_REP_CAT_DIR/libraries/catalog not found])
fi
dnl Get staging option default is script
dnl variable STAGING_PLUGIN.
AC_MSG_CHECKING([for staging plugin option])
AC_ARG_WITH(staging-plugin,[--with-staging-plugin=<option> Default is script],
staging_plugin="$withval", staging_plugin="script")
if test x$staging_plugin = xhrm || test x$staging_plugin = xscript ; then
AC_MSG_RESULT([$staging_plugin selected])
STAGING_PLUGIN=$staging_plugin
else
AC_MSG_ERROR([invalid option $staging_plugin])
fi
if test x$STAGING_PLUGIN = xhrm ; then
dnl Get orbacus source directory from command line option or environment
dnl variable ORBACUS_DIR.
AC_MSG_CHECKING([for orbacus directory])
AC_ARG_WITH(orbacus-install,[--with-orbacus-install=<dir> Default is \$ORBACUS_DIR],
orbacus_dir="$withval", orbacus_dir="$ORBACUS_DIR")
if test -d "$orbacus_dir" ; then
AC_MSG_RESULT([$orbacus_dir found])
ORBACUS_DIR=$orbacus_dir
else
AC_MSG_ERROR([no such directory $orbacus_dir])
fi
fi
AM_CONDITIONAL(STAGING_SCRIPT, test x$STAGING_PLUGIN = xscript)
AM_CONDITIONAL(STAGING_HRM, test x$STAGING_PLUGIN = xhrm)
dnl Just set GDMP_INSTALL_DIR
GDMP_INSTALL_DIR=`pwd`
dnl Define required variables.
AC_SUBST(GLOBUS_INSTALL_PATH)
AC_SUBST(GDMP_INSTALL_DIR)
AC_SUBST(NCFTP_SRC_DIR)
AC_SUBST(GLOBUS_REP_CAT_DIR)
AC_SUBST(GLOBUS_FLAVOR)
AC_SUBST(GDMP_INSTALL_DIR)
AC_SUBST(ORBACUS_DIR)
AC_SUBST(STAGING_PLUGIN)
AC_OUTPUT(Common/Makefile Threads/Makefile DataMover/Makefile ControlMsgs/Makefile
RequestManager/Makefile Security/Makefile DBManager/Makefile Flatfile/Makefile
HRMIDL/Makefile StagingPlugins/Makefile ReplicaCatalogue/Makefile Misc/Makefile lib/Makefile
Main/Makefile Makefile etc/gdmp_environment etc/Makefile utils/gdmp_server_start utils/Makefile)

Makefile.am file

SUBDIRS= Common ControlMsgs Security RequestManager DataMover Threads DBManager

— 21 —

ReplicaCatalogue FlatFile StagingPlugins HRMIDL Misc lib etc utils Main
configincdir = $(prefix)/include/gdmp
configinc_HEADERS = config.h
TMPDIRS = var tmp
install-data-local:
for f in $(TMPDIRS); do \
echo "Creating $(prefix)/$$f dir"; \
$(mkinstalldirs) $(prefix)/$$f; \
done

Common/Makefile.am file

include $(top_srcdir)/makefile_header
Commonincdir = $(prefix)/include/gdmp
Commoninc_HEADERS = gdmp_common.h
noinst_LTLIBRARIES = libCommon.la
libCommon_la_SOURCES = gdmp_common.C gdmp_common.h

Main/Makefile.am file

include $(top_srcdir)/makefile_header
bin_PROGRAMS = gdmp_server stage gdmp_replicate_get gdmp_publish_catalogue
gdmp_host_subscribe gdmp_setup gdmp_get_catalogue gdmp_filter_catalogue gdmp_stage_complete
gdmp_cleanup gdmp_ping gdmp_catalog_cleanup
gdmp_server_SOURCES = gdmp_server.C
gdmp_server_LDFLAGS = $(GDMPOBJS) $(MYGDMPLDFLAGS)
gdmp_replicate_get_SOURCES = gdmp_replicate_get.C
gdmp_replicate_get_LDFLAGS = $(GDMPOBJS) $(MYGDMPLDFLAGS)
gdmp_publish_catalogue_SOURCES = gdmp_publish_catalogue.C
gdmp_publish_catalogue_LDFLAGS = $(GDMPOBJS) $(MYGDMPLDFLAGS)
gdmp_host_subscribe_SOURCES = gdmp_host_subscribe.C
gdmp_host_subscribe_LDFLAGS = $(GDMPOBJS) $(MYGDMPLDFLAGS)
gdmp_setup_SOURCES = gdmp_setup.C
gdmp_setup_LDFLAGS = $(GDMPOBJS) $(MYGDMPLDFLAGS)
gdmp_get_catalogue_SOURCES = gdmp_get_catalogue.C
gdmp_get_catalogue_LDFLAGS = $(GDMPOBJS) $(MYGDMPLDFLAGS)
gdmp_filter_catalogue_SOURCES = gdmp_filter_catalogue.C
gdmp_filter_catalogue_LDFLAGS = $(GDMPOBJS) $(MYGDMPLDFLAGS)
gdmp_stage_complete_SOURCES = gdmp_stage_complete.C
gdmp_stage_complete_LDFLAGS = $(GDMPOBJS) $(MYGDMPLDFLAGS)
gdmp_cleanup_SOURCES = gdmp_cleanup.C
gdmp_cleanup_LDFLAGS = $(GDMPOBJS) $(MYGDMPLDFLAGS)
gdmp_catalog_cleanup_SOURCES = gdmp_catalog_cleanup.C
gdmp_catalog_cleanup_LDFLAGS = $(GDMPOBJS) $(MYGDMPLDFLAGS)
gdmp_ping_SOURCES = gdmp_ping.C
gdmp_ping_LDFLAGS = $(GDMPOBJS) $(MYGDMPLDFLAGS)
stage_SOURCES = stage.C
stage_LDFLAGS = $(GDMPOBJS) $(MYGDMPLDFLAGS)

utils/Makefile.am file

gdmputilsdir = $(prefix)/utils
gdmputils_DATA = gdmp_server_start.in gdmp_stage_from_mss get_progress_report
install-data-hook: gdmp_server_start
if test -d $(prefix)/utils; then $(mkinstalldirs) $(prefix)/utils; fi
rm $(prefix)/utils/gdmp_server_start.in
cp gdmp_server_start $(prefix)/utils

etc/Makefile.am file

— 22 —

gdmpdir = $(sysconfdir)
gdmp_DATA = gdmp_environment.in gdmp_server.cert gdmp_server.key gdmp_server.proxy
install-data-hook: gdmp_environment
rm $(sysconfdir)/gdmp_environment.in
cp gdmp_environment $(sysconfdir)

9 Reference

(1) G.V.Vaughan, B.Ellison, T.Tromey, I.L.Taylor, GNU Autoconf, Automake, and
Libtool, New Riders, 2001

(2) http://www.gnu.org/manual/autoconf/html_mono/autoconf.html, Autoconf
manual

(3) http://www.gnu.org/manual/automake/html_mono/automake.html, Automake
manual

(4) http://www.gnu.org/software/libtool/manual.html, libtool manual
(5) H. Stockinger, “GDMP 1.2.1 Code Documentation”,

http://cmsdoc.cern.ch/cms/grid/code-docu/gdmp_1.2.1_code_documentation.ps
(6) “RPM HOWTO” - http://rpm.redhat.com/RPM-HOWTO
(7) “GNU Coding Standards” - http://www.gnu.org/prep/standards_toc.html
(8) “Filesystem Hierarchy Standard” - http://www.pathname.com/fhs/
(9) ”GNU m4” – http://www.gnu.org/software/m4

