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1.  -  INTRODUCTION

      In the field of electrical machine coil test the PJ is a well known method: with this
procedure the coil under test is pulsed by means of the discharge  of a capacitor.

The current and voltage waveforms at  the coil ends are typically damped oscillations. The
presence of a shorted turn strongly modifies the discharge parameters i.e.: the period, the
amplitude and the damping coefficient of the oscillation. In particular the period decreases
considerably while the current amplitude and damping coefficient increase.

The short circuit in a coil is easily detected if it is possible to compare the discharge
behaviour of two or several identical coils.

The detection of a single turn short circuit becomes hard if the coil is fully embedded in a
metallic structure of very low resistance. In this case the discharge parameters of an intact coil
are strongly affected so that the presence of a single turn short circuit could modify them of
imperceptible quantities. Moreover the discharge parameters of identical coils can be affected
by little changes of the coupling between the coils and the metallic structure so that their
comparison could leave unresolved the problem of the presence or not of short circuits.

This is exactly the situation of the ATLAS coils after their integration in the supporting
structure (casing).

The aim of this work is to verify the sensitivity of the method of capacitor discharge when
the coils are strongly coupled with the casing.

The theoretical analysis of the discharge process, when the coil ( or double pancake) is
inside the casing, results complicate because it requires an adequate evaluation of the electrical
parameters of the casing and the coil. In particular the self inductance of the casing is
depending by its complex structure (several sections weakly coupled among them) and by the
induced current distribution inside the bulk of the casing, moreover the resistance of the coil
is depending by the magnetic coupling  and by the frequency of the discharge.

In the following the analysis of the discharge will be carried out by means of simple RLC
circuit in the case of intact and isolated coils (Fig. 1), by means of two coupled circuits (R1 L1

C and R2 L2) in the case of coil and short circuit or coil and casing (Fig.2) and by means of
three coupled circuits (R1 L1 C - R2 L2 – R3 L3) in the case of coils, casing and short circuit
(Fig.3) -

  

2.  - FIRST CIRCUIT ANALYSIS

      As shown in Fig. 1, C is the capacitor capacitance, Q(t) the charge on its armatures,  Lx
and Rx  are respectively the self-inductance and the resistance of an intact double pancake
(Lx=Lg and Rx=Rg) or coil (Lx=Lb ed Rx=Rb).

The  discharge  process  is described by the following differential equation:
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                                            Lx dI1/dt +Rx I1  +Q(t)/C = 0                                              (1)
    
The  solution  of  the equation (1) is  represented by:

                                           I1(t) = A1e
-dt sin(w0t + f)                                                    (2)

                                                                                      
 where:
                           d = Rx/(2 Lx)               w0 = [1/(LxC)-Rx

2/(4Lx
2)]1/2                                      (2bis)

 

                                                                                       
FIG. 1  -  Electric diagram for the discharge on an intact and isolated element

     (double pancake or coil)  

The constant A1 and f are determined by the initial conditions:

I1(t = 0) = 0                              - Lx (dI1/dt)t=0 = Q/C                                                           (3)

with the following result:

                  A1 = Q/(w0Lx C)                                     f = 0                                                     (4)

In particular if  Rx<<2(Lx/C)1/2   the amplitude of the oscillation is given by  A1=  Q/(Lx C)1/2 .                     
The measure of the period T (T=2p/w0) and  the damping coefficient d allows to determine the
self inductance Lx and the resistance Rx of the coil under test.

Rx

C
Lx
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3. -  SECOND CIRCUIT ANALYSIS

Indicated with Lx (Lx = Lg for double pancake and Lx = Lb for the coil) and with Ly
(Ly=Ls)

for the shorted turn e Ly = Lc for the casing) the self  inductances of  both items present in
the electric diagram, with Mxy their mutual inductance and with Rx ed Ry their equivalent
resistances, the behaviour of the electrical circuit, shown in Fig. 2, is described with the
following differential equations:

                                     Lx dI1/dt + Mxy dI2/dt +RxI1 + Q/C = 0                                  (5)

                                        LydI2/dt + Mxy  dI1/dt +RyI2 = 0                                          (6)
                                                                                     
where I1 is the current intensity in the double pancake (or coil), and I2 (with polarity
opposite to I1) is the current intensity in the shorted turn (or in the casing).

FIG. 2 - Electric  diagram  for  the  discharge on  a double  pancake  (or coil)
with  shorted  turn  or  intact double pancake (or coil) inside the
casing.

      The  two differential equations  (5) and (6) can  be reduced to a single differential
equation bringing   from  equation (5) the expressions of  dI2/dt and  I2  and  substituting
them  in  the equation (6):
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                                  a1 d
3I1/dt3 + a2 d

2I1/dt2 + a3 dI1/dt + a4 I1 = 0                            (7)

where:
                                     a1 = LxLy –Mxy

2                               a2 = LyRx + LxRy    

                                  a3 = Ly/C + RxRy                             a4 = Ry/C                                 (7 bis)

The solution of the differential equation (7)  is given by:

                               I1(t) = A2 e
x1t +B2e

x2t + C2e
x3t                                          (8)

where x1, x2, x3  are the roots (in general two real and one complex) of the third order
algebraic equation:

                                              a1 x
3 + a2 x

2 + a3 x + a4 = 0
(9)

      By applying Tartaglia method (1)  and by defining the following parameters (expressed
as a function of the algebraic coefficients (7 bis)) :

p = -(1/3) a2
2/a1

2 + a3/a1                                                                                                                              (10)
                                                                                                                                     
q = (2/27) a2

3/a1
3 – (1/3) a2a3/a1

2  + a4/a1                                                                   (11)

r = a2/(3a1)     
(12)

the three roots of the equation (9) are obtained and expressed by:

x s+1 = Us u +U3-s v – r                         con s = 0,1,2                                                       (13)

being:

u = [-q/2+(q2/4+p3/27)1/2]1/3                                                                                                                         (14)

v = [-q/2-(q2/4+p3/27)1/2]1/3                                                                                                                          (15)

where U represents one of the two complex roots [U = (-1± (3)1/2 i)/2].
      Considering that, for physical reasons the current amplitude behaviour would be a
damped oscillation it is easy to foresee that one root will be real and negative whilst the
other two will be complex and conjugate. Consequently the term q2/4 + p3/27 must be
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positive  and the quantities “u” and “v” are real. With these premises the three roots of
algebraic expression would be written in the following form:

x1 = u + v – r                                                                                                       (16)

x2 = - (u + v)/2 – r + i (3)1/2 (u – v)/2                                                                 (17)

x3 = - (u + v)/2 – r - i (3)1/2 (u – v)/2                                                                         (18)

Therefore the equation  (8) becomes:

I1(t) = A2e
bt + edt  [B2e i w1t  + C2e -i w1t]                                                                       (8 bis)

where:     b = u + v – r        d = -(u + v)/2 – r         w1= (3)1/2 (u – v)/2                     (18 bis)

The equation (8 bis) can be written again in the form:

I1(t) = A2e
bt + D2e

dt  cos [w1t + f]                                                                             (18 ter)

where    B2 = D2 cos f           and            C2 = D2 sin f                                                   (19)

The conditions for the  calculation of A2, D2 and f are the following:
a) the current intensity I1 at time t = 0 must be null, from the equation (8 bis) the first

relation becomes :

                                                     A2 + D2 cos f  = 0                                                     (20)

b) the voltage at the ends of the coil under test  at time t = 0 must be  DV = - Q/C.
From the equation system (5) and (6), by taking into account  the condition a) also
valid for current I2, it is possible to obtain:

                                           Lx dI1/dt + Mxy dI2/dt  + Q/C = 0                               (5 bis)

                                                 LydI2/dt + Mxy  dI1/dt  = 0                                          (6 bis)

         By computing dI2/dt from equation (6 bis) and replacing it in (5 bis)  the following
relation  is obtained:

                                       [(LxLy – Mxy
2)/Ly] dI1/dt = - Q/C                                         (21)

          and finally the second relation:
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                           [(LxLy – Mxy
2)/Ly] [A2b + D2(d cos f – m sen f)] = - Q/C                  (22)

c) the integral of current intensity in the interval  t = 0 and t = ∞, that must be equal to
the charge Q, gives the third relation:

        ∞
       ∫    I1(t) dt = -A2/b -  D2[d cos f + m sen f] / (d2 + m2) = Q                                (23)
        0

      The values of A2, D2 e f, obtained from the initial conditions, are given by:

    tg f = {d – b – [1/b – d/(d2 + w1
2)] / (yxy C)} / {w1 [1-1/[(d2 + w1

2) yxy C]]}  (24)

      A2 = - Q / [yxy C (d – b - w1 tgf)]                                                                      (25)

      D2 = + Q (1 + tg2 f)1/2 / [yxy C (d – b – w1 tg f)]                                               (26)

where :           yxy = [(LxLy – Mxy
2)/Ly]

The calculation of the definite integral (23) and  the quantities A2, D2 and tgf is
reported in Appendix A.

      The time evolution of current intensity I2 (in the short circuited turn or casing) are well
described by the same differential equation (7). Therefore the solution is given by:

                                   I2(t) = A’2 e bt+ D’2 e
dt cos(w1t +f’)                                       (27)

where the damping coefficients b e d and the angular frequency w1 are identical to those
ones of the current intensity I1(t). The amplitudes A’2, D’2 and the phase f’ can be obtained
from the initial conditions:

a’)  I2(0) = 0                                                                                                                     (28)

b’) (dI2/dt) t=0 = (Mxy/Ly) (dI1/dt) t=0 = Q/(y’xy C)  where  y’xy = (LxLy – Mxy
2)/Mxy (29)

         ∞
c’)   ∫  I2(t) dt = 0                                                                                                             (30)
         0

By exploiting the previous equations by means of (27) the following relations are obtained:

a”)  A’2 + D’2 cos f’ = 0                                                                                            (28
bis)
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b”)  A’2 b + D’2 (d cos f’ – w1 sen f’) = Q/(y’xy C )                                                (29
bis)

c”)   A’2/b – D’2 (d cos f’ + w1 sen f’)/(d2 + w1
2)                                                     (30

bis)

and finally:

tg f’ = [(d2 + w1
2)/b – d]/w1

(31)

A’2 = - Q / [y’xy C (d – b – w1 tg f’)]                                                                             (32)

D’2 = + Q (1 + tg2 f’)1/2 / [y’xy C (d – b – w1 tg f’)]
(33)

      Whereas the current intensity of the double pancake (or coil) can be easily measured, the
current intensity I2(t) cannot be measured, nevertheless it is necessary to evaluate it in order
to determine its effect in the resistance of the double pancake (or coil) (see paragraph 5b).                                         

4.  -  THIRD CIRCUIT ANALYSIS.

      The third circuit , whose diagram is presented in Fig. 3, describes the configuration with
a double pancake (or coil) installed in the casing  with one or more turn-to-turn short
circuited .
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FIG. 3 - Electric diagram for the discharge in a double pancake (or coil)
installed  in the casing  with one or more turns short circuited.

The capacitor discharge in the coil is described by the following differential equations:

Lx dI1/dt + Mxc dI2/dt  + Mxs dI3/dt + RxI1 + Q/C = 0                          (34)

LcdI2/dt + Mxc  dI1/dt + Mcs dI3/dt + RcI2 = 0                                 (35)

LsdI3/dt + Mxs  dI1/dt + Mcs dI2/dt + RsI3 = 0                                 (36)

where:
Lx, Lc, Ls are the self-inductances  respectively of the intact double pancake (or coil) , the
casing, and  the short circuit;
Mxc, Mxs, Mcs are the  mutual inductances respectively between the double pancake (or coil)
and the casing, the double pancake (or coil) and the short circuited turns, the casing and
short circuited turns;
Rx, Rc, Rs are the resistances  of the double pancake (or coil),  the casing and  the short
circuited turns;
I1, I2, I3 are the current intensities in the double pancake (or coil), the casing and short
circuited turns.

     The solution of the system of equations (34÷36) with the analytical procedure is quite
complicate, thus a numerical solution has been preferred.  The steps to get a first order
system of differential equations, solvable with the Runge Kutta method, are reported in
Appendix B.

5. - CALCULATION OF THE PHYSICAL CHARACTERISTICS OF THE
CIRCUIT ELEMENTS.

For the analysis and comparison of the  circuits response it is necessary to evaluate  very
carefully the self-inductances, the mutual-inductances  and resistances of the circuit
components.

a) Self and mutual  induction coefficients
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A quick evaluation of the induction coefficients is done with the same procedure used
during the design of the  ATLAS toroid(2).  The specific flux (per unit length) produced by
the longer sides of the double pancake (or coil) considered of infinite length has been
calculated and corrected with a proper coefficient  (e t=1.10) to compensate this
approximation(3).

 This procedure allows the calculation of the self and mutual-inductances of the double
pancake (or coil) and short circuited turns with an accuracy of few percent, considered that
the distribution of induced currents during the capacitor discharge produces small variation
of self and mutual inductance calculated for continuous transport currents. This accuracy
seems  enough for the aim of our analysis that is based on the comparison of discharge
parameters of intact coil and short circuited coil, rather than their absolute values.

As already written the calculation of the casing self and mutual-inductances is quite
complicate, therefore we have evaluated the variation range of these parameters and we have
considered these values that make more critical the detection of a short circuit.

The  analytical calculation of these quantities are reported in Appendix C. The results are
listed in Tables I and II.

Table I
Induction coefficients of an intact double pancake or coil

Item L(H) M(H) k
Double pancake 0.145 Mgc = (1.52 ÷ 3.69) E-03 0.80 ÷ 0.97
Coil 0.521 Mbc = (2.89 ÷ 7.0) E-03 0.80 ÷ 0.97
Coil anti-inductive 0.060 Mbc = (0.98 ÷ 2.38) E-03 0.80 ÷ 0.97
Casing (2.5 – 10) E-05

Table II
 Induction coefficients of double pancake or coil with one short circuited turn

b) Resistances  of the components

Item L(H) M(H) k
Double pancake 0.140 Mgc = (1.50  ÷3.63) E-03

Mgs = 2.12 E-03
0.80 ÷ 0.95

0.67

Coil 0.512 Mbc = (2.87 ÷ 6.97) E-03
Mbs = 3.54 E-03

0.80 ÷ 0.95
0.58

Coil anti-inductive 0.059 Mbc = (0.97 ÷ 2.35) E-03
Mbs =  1.19 E-03

0.80 ÷ 0.95
0.58

Casing (2.5 ÷10) E-05 Mcs = (3.2 ÷ 8.2) E-05 0.80 ÷ 0.95
Short circuited  turn 7.17 E-05
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The resistance values are obtained from the power dissipated in the different elements.
The power is the sum of two terms one linked to current flowing in the circuit  from the
capacitor discharge or from the variation of magnetic flux coupled with the element under
test; the other term linked to the current loops induced in the conductor body itself.
Therefore we get the equivalent resistance Rt of a circuit element, with the approximation of
a stationary process, like a sum of a resistance Ri related to the transport current and an
equivalent resistance Re related to the current induced in the conductor body.

The resistance Ri of a rectangular conductor with height “h”, width “a”  and lenght
“L” is equal to:

Ri = r L/(2 d h )                                                                      (37)

where “r” is the material resistivity, “h” the conductor side parallel to the field B and “ d ”
the conductor thickness where the transport current is confined because of the skin effect:  

d = (wm/2r)-1/2                                                                                      (38)

where “w is the transport current angular frequency and  “m” the material permeability.
If  d ≥ a/2 the resistance Ri  in practice is equivalent to the d.c. resistance (Ri=rL/ah).  

The equivalent resistance Re  is given by the ratio of the power We  (produced by the
Joule effect of the current induced in the conductor body)  to the square of the transport
current Ieff 

(4) :

      Re = We/I
2
eff = [2(2m2d/r)-1 ∫Bo

2 dS]/I2
eff                (39)

where dS = Ldh is the conductor lateral side surface, where the induced currents are flowing,
and Bo is the amplitude of oscillating magnetic field, produced by transport current only
nearby the surface S. We can assume  Bo constant  along the lateral side of the conductor
and variable with respect to its position inside the double pancake (or coil) as follows:

                                                            N
              Bo

j =a (mo I/2p) [(1-2j/N)/a ∑  (1/n) + N/D]                    j = 1,…..,N              (40)
                                                           n=1  

where N is the number of turns of a single pancake (N=30), a=2 in case of double pancake
and a=4 in case of coil, “a” is the shorter side of a cable of rectangular cross section, “ D ”
is the average distance  between the two long sides of the double pancake (or coil).

By taking into account that  m ~ mo from the relations  (38), (39) e (40) the following
expression  for the resistance Re is obtained:

                                  K                                       N
            Re = (a/2p)2 ∑ (mo r w/2)1/2 [(1-2j/N)/a ∑  (1/n) + N/D] 2 (hL)  (I/Ieff)

2             (41)
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                                 j=1                                     n=1

where the summation on index “j” is extended to K=1, in case of single turn, to K = 30
(or 60) in case of double pancake (or coil).

The relations (37) and (41) show that the total resistance of one element of the circuit
increases with the angular frequency “w” of the discharge current and is related to the
capacitance “C” used in the discharge circuit.

 For the double pancake (or coil) the ratio (I/Ieff)
2 assumes the value 2 so that Re››Ri

while for a single turn and casing the term (I/Ieff)
2 assumes very low values (in this case the

real current circulating in the examined element is quite higher than the current I generating
the magnetic field Bo) consequently the total resistance of  these two elements is mainly
determined by  Ri.

 The values of Rt= Re+Ri  for the double pancake, for the coil, for a single turn and for
the casing at three different values of the capacity “C” of the condenser are reported in
Table III.  We notice that the average value of the total resistance of one turn  reported is
coincident with Ri , while for the casing resistance, in order to take into account the structure
complexity, is reported a reasonable range of values.

Table III
Electrical resistance of  the circuit elements

Item C = 50 mF C = 500 mF C = 5 mF
Double pancake          Rt = 3.92 W          Rt = 2.32 W         Rt = 1.42 W
Coil          Rt = 8.22 W          Rt = 4.86 W         Rt = 2.96 W
Coil anti-inductive          Rt = 4.78 W                 Rt = 2.83 W         Rt = 1.72 W
Single turn          Rt = 2.2  mW          Rt = 2.2  mW         Rt = 2.2 mW
Casing    Rt = 0.24 ÷ 0.96 mW Rt = 0.133 ÷ 0.53 mW Rt = 0.075 ÷ 0.3 mW

6. -  SELECTION OF THE DISCHARGE CAPACITOR

The selection of a proper test capacitor takes into account three different values (C=50
mF, 500 mF , 5 mF) and the discharge parameters are compared in case of an intact coil
(diagram of Fig. 1) and in case of a coil with a  short circuited  turn (diagram of  Fig. 2).

For the calculation the values of self and mutual inductances reported in the Tables I, II
and III have been used.

The waveform of the discharge current for the three selected capacitors, charged at  400
Volt, are reported in the figures 4, 5 and 6. The current in the intact  and isolated coil and the
current in the isolated coil with one short circuited turn are indicated respectively with Iint
and Ish.
     The main discharge parameters (the period T and the damping coefficient d ) and their
percent variations  for three different  values of the capacitance C are reported in Table IV.
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FIG. 4 – Discharge waveforms with C=50 mF in an isolated and intact coil (Iint)
and in the isolated coil  with one  short circuited turn (Ish).

FIG. 5 – Discharge waveforms with C=500 mF in an isolated and intact coil
(Iint)

and in the isolated coil  with  one short circuited turn (Ish).
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FIG. 6 – Discharge waveforms with C=5 mF in an isolated and intact coil (Iint)
and in the isolated coil  with one short circuited turn (Ish).

The analysis of the plots and data of Table IV show wide differences in the discharge
behaviour of the three capacitors with reference to the oscillating period and damping
coefficient.   

In the following paragraphs only circuits with the higher capacitor (5mF) will be
considered. In this way the sensitivity of the method in the worse conditions can be verified
but in the same time the measurements are less influenced by the effect of the parasitic
capacitance of the system and finally the designer will have wider possibility in the choice of
the data acquisition system (i.e. the possibility to choose the proper discharge period
correlated with the switch opening speed, data acquisition speed, sensitivity and full scale of
the measuring instruments, etc).

                                                                   Table IV
       Discharge parameters of an intact coil and of a coil with one short circuited
turn

C Item T (ms)        D(%) d (s-1)        D(%)

    50 mF Intact Coil
Coil with short (Rs = 2.2 mW)

   32.09
   26.0       - 19.0

 - 7.88
 - 20.0        + 154

  500 mF Intact Coil
Coil with short (Rs = 2.2 mW)

 101.7
   86.6       - 14.8

 -  4.66
 -13.80       + 196

     5 mF
Intact Coil
Coil with short (Rs = 2.2 mW)

 324.0
 323.6       -  0.12

 - 2.84
 - 5.08        +  79
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7. - ANALYSIS OF THE DISCHARGE IN AN ISOLATED AND INTACT
DOUBLE PANCAKE  AND IN A DOUBLE PANCAKE WITH  ONE
SHORT CIRCUITED  TURN.

       In  Figs. 7 and 8 the time evolutions of the capacitor currents  (C = 5 mF ) are plotted
for an intact double pancake, for a coil with one short circuited turn and for an anti-inductive
coil (intact and with one short circuited turn). These plots must be compared with those of
Fig. 6 related with a coil discharge. In the same figures the current behavior in the shorted
turn is reported.  The values of the discharge  parameter of a coil, anti-inductive coil and
double pancake are reported in Table V for comparison.

                                                                 Table V
                       Discharge parameters in the coil and the double pancake (C = 5 mF)
                                                                   
        Item                        T(ms)      

D(%)
   d(s-1)     
D(%)

 Imax(A)   
D(%)

Coil intact

Coil with short circ. turn

 324.0
                  - 0.12
 323.6

 - 2.84
                  + 79
 - 5.08

  31.5
                  - 1.0
  31.2

Coil  anti-induct. intact

Coil anti-induct. with short circ.
turn

 112.3
                   - 8.8
 102.5

 - 14.33
                  + 93
 - 27.6

  79.8
                  + 8.8
  86.8

Double pancake intact

Double pancake with short circ.
turn

 170.7
                   - 7.9
 157.3

 - 4.90
                  +210
 - 15.2

  60.8
                  +5.8
  64.3

                       

As expected, the detection of a short circuited turn is easier if the discharge is performed
on the double pancake rather than on the whole coil (in both configurations: normal and
anti-inductive).

This method of analysis is always applicable (even if the double pancakes are installed
in the casing) so that it will  be adopted as a standard test procedure.
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FIG. 7 - Time  evolutions  of  the  discharge currents with C=5 mF in an intact   
and isolated  double  pancake (Iint),  in  an  isolated double pancake
with  one  short  circuited  turn (Ish)  and  in  the  short circuited turn
(Iturn) (in this case  Iturn  is ten times lower than the actual one).

FIG. 8 - Time evolution of the discharge current in the anti-inductive coil :
Iint (current in the intact and isolated coil) -  Ish  (current in the coil
with
one short circuited turn) - Iturn (current in the short circuited turn).

 

-120 

-80 

-40 

0 

40 

80 

120 

0 0,05 0,1 0,15 0,2 
t(s) 

I(A) 

I(turn)/10 

I int 

I sh 

 

-160 

-120 

-80 

-40 

0 

40 

80 

120 

0 0,05 0,1 0,15 0,2 
t(s) 

I(A) 

I(turn)/10 

I int 

I sh 



— 17 —

8 .  - DISCHARGE ANALYSIS ON AN INTACT DOUBLE PANCAKE
INSTALLED IN THE CASING.

For this analysis the electric diagram of Fig. 2 has been used  by assuming that the
casing is represented by a single turn coil  coupled with the double pancake.

The large size (wide cross section of the ring obtained by sticking two parts only
partially insulated) and the particular shape (presence of “ribs” connecting the long sides
of the casing) do not allow a precise estimate of the self inductance and resistance of the
casing. For this reason a range of values has been chosen for  “ Lc”, “ Mgc” and “ Rc”, in
order to evaluate analytically the effects produced by the casing on the discharge parameters
and to find the sensitivity limits for the detection of a single short circuited turn.
    In order to choose properly the inductive and resistive  parameters of the casing the
damping coefficient d and the period T=2p/wo (equations (18 bis)) have been calculated as a
function of the coupling coefficient k, defined by:

k =  Mgc/(LgLc)
1/2                                                                              (42)

for a set of values of  Lc  and  Rc.  The results are  plotted in Figs. 9 and 10.

FIG. 9 - Damping coefficient d as function of coupling coefficient k  for
boundary values of Lc ed Rc.
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 FIG. 10 - Period T as a function of coupling coefficient k  for boundary
values of Lc ed Rc.

As shown in Fig. 9 the damping effect, in the considered range, reaches the maximum
value (curve 2) when the self inductance assumes the value Lc=2.5 10-5 H (minimum in the
range) and the  resistance the value Rc=3.0 10-4 W (maximum in the range) and grows up
quickly in the interval  0.9<k<0.95. While we have the minimum damping effect (curve 3)
when Lc assumes the upper limit of the range values Lc=1.0 10-4 H and  Rc the lower limit
of the range values Rc=7.5 10-5 W.

Fig. 10 shows that the period decreases from T=170.7 ms (discharge period for an
intact and isolated (k =0) double pancake) to T ~ 60 ms  (for  k=0.95) for all the couples of
Lc and Rc range values except for Lc=2.5 10-5 H and Rc=3.0 10-4 W. For this couple of
values the period  rises quickly in the range  0.92 ‹ k  ‹ 0.95.

The behavior of the damping coefficient d as a function of k, Lc ed Rc can be easily
understood by considering that the energy transfer from the first inductive element (double
pancake) to the coupled inductive element (casing) increases with the coupling coefficient k,
and moreover the a.c. current in the casing  is mainly determined by the self inductance Lc.
Therefore it follows that the power losses in the  casing increase for small values of Lc and
high values of Rc.

The behavior of the period T, as a function of k, Lc ed Rc, can be understood with an
equivalent circuit where the pulsation w  increases for low values of the coupling coefficient
k  and  decreases for  high  values  of  k  due  to  the  significant  power losses in the casing.
In particular  when Lc=2.5 10-5 H  and Rc=3.0 10-4 W  and  k increases, the system behavior
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is quite similar to that one of an RLC circuit in critical damped or over-damped conditions
(w2≤0).

The discharge parameters T and d  for an intact and isolated double pancake and an
intact double pancake installed in the casing  with different values of Lc and Rc  (see insert of
Figs. 9 and 10) are listed in Table VI.

                                                                  Table VI
            Discharge parameters of an isolated  d. p.  and  a d. p.  installed in the
casing

Isolated
double pancake

                        Double pancake installed in the casing

      Lg = 0.145 H
      Rg = 1.42 W

Lc =2.5 E-5 H
Rc =7.5 E-5 W

Lc =2.5 E-5 H
Rc =3.0 E-4 W

Lc =1.0 E-4 H
Rc =7.5 E-5 W

Lc =1.0 E-4 H
Rc =3.0 E-4 W

T (ms)          170.7       64.6     130.6       61.2       64.6
d (s -1)          -  4.90    - 23.4     - 44.0     - 18.4     - 23.4

    The graphs of Figs. 11 and 12  show the discharge currents  in an intact and isolated
double pancake and in an intact double pancake  installed in the casing  when the following
parameters are considered:

Lc = 2.5 10-5 H                 Rc = 7.5 10-5 W                      k = 0.95                            (43)
Lc = 2.5 10-5 H                 Rc = 3.0 10-4 W                      k = 0.95                            (44)

      In the following the analysis of the discharge process of a double pancake installed in
the  casing  will be done with the three values reported in (43) and based on the following
observations:

i) if the inductive and resistive parameters of the casing used produce an excessive
damping effect (like in the case of the parameters (44)) it will be enough to decrease
the  capacity C of a proper  factor and the system will return to the conditions similar
to that above indicated;

     ii)   the  choice  of a k value so high (not corresponding to the value estimated in
Appendix C) is needed   to  take  into  account  the  power  loss  process  inside
the body of the casing  that produces a strong  damping  effect  and  a reduction  of
the period of the current in the double pancake.
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 FIG. 11- Current intensity in an intact and isolated double pancake (I(g)), in

an intact double pancake installed in the casing (I(g+c)) and in the
casing (I(casing)), when the electrical parameters (43) are used.

FIG. 12 - Current intensity in an intact and isolated double pancake (I(g)), in
an intact double pancake installed in the casing (I(g+c)) and in the
casing (I(casing)), when the electrical parameters (44) are used.

9. - ANALYSIS OF THE DISCHARGE IN A DOUBLE PANCAKE WITH A
SHORT CIRCUITED TURN AND INSTALLED IN THE CASING.

        
      The integration of the differential equations (34-36) is performed with the Runge Kutta
method by using a time integration step Dt = 0.01 ms.  The inductance and resistance
parameters of the various elements are listed in the  Table VII.
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                                                             Table VII
                        Parameters of the double pancake, short circuited  turn and casing.

Item                               L(H)          M(H)             R(W)
Intact double pancake  Lg =  0.145  Mgc = 1.80 E-03  Rg = 1.42
Casing  Lc =2.5E-05  Rc =7.5 E-05
Double pancake with
short circuited turn

 Lg = 0.140  Mgc = 1.77 E-03
 Mgs = 2.1 E-03

 Rg = 1.418

Casing  Lc = 2.5E-05  Mcs = 2.6 - 3.4 E-05  Rc = 7.5 E-05
Short circuited turn  Ls = 7.17 E-05  Rs = 2.2 E-03

      Since the discharge behavior is also controlled by the coupling coefficient (kcs) between
casing and short circuited turn, the discharge has been evaluated for the two boundary values
of  kcs (kcs=0.6  and  kcs= 0.8)
     The graphs of Figs. 13 and 14 show the discharge currents respectively for kcs=0.6  and
kcs= 0.8, while the Table VIII contains the discharge parameters (T e d).

         
FIG. 13 – Current intensity in an intact and isolated  double pancake [I(g)],

in   an intact   double pancake installed in the casing [I(g+c)]
and in the double pancake into  the casing with one short
circuited turn [I(g+s+c)], when kcs = 0.6.
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 FIG. 14 – Current intensity in an intact and isolated  double pancake
[I(g)], in an intact   double pancake installed in the casing
[I(g+c)] and in the double pancake into  the casing with one
short circuited turn [I(g+s+c)], when kcs = 0.8.

                                                                Table VIII
                                 Discharge parameters in a double pancake

System                 kcs = 0.6                kcs = 0.8
    T(ms)  g (s-1)*   T(ms)    g (s-1)

Double pancake     170.7  -   4.90    170.7 -   4.90
Double pancake + casing       64.6  - 58.8      64.6 - 58.8
Double pancake + casing +
turn

      63.5    - 57.1      56.3 - 49.1

* Note: the coefficient “g” calculated by the formula g = ln(I2/I1)/(t2-t1) is coincident with
coefficient  d reported in the text only for the double pancake intact and isolated. It was
decided to report  the values of g because this quantity will be experimentally determined,
being I1 the first maximum and I2 the first minimum of the measured current.

These results show that the most sensible parameter to detect the presence of a single
short circuited turn is represented by the current peak (first maximum). The other two
parameters (T and g) are not very sensible if the coupling coefficient between the short
circuited turn and the casing is low (kcs = 0.6) and become sensible like the current peak
when kcs  assumes higher values.  This work states that the presence of a short circuited turn
inside a double pancake or coil, after a careful evaluation of the discharge parameters
(period, damping coefficient and current amplitude of the first oscillation), can be detected in
spite of the presence of the casing.
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10. - CONCLUSIONS

         The PJ method has shown enough sensitivity to detect short circuited turn inside the
double pancake also if the casing behaves as a strong screen.

The possibility to choose the capacitance “C” of the capacitor in a wide range of values,
allows a proper choice on the base of the characteristic of the coils under test and of the
speed of data acquisition system.

 For the research of possible short circuited turns inside the coils it is suggested to
perform the test on the single double pancake.
       Obviously the results obtained with this theoretical analysis are only an useful guide for
the experimental data analysis, in other words it is not possible to use the discharge
parameters hereby calculated and to state the presence or less of a short circuited turn.
Moreover we recall that the measured time evolution of the current intensity could differ
from the calculated one due to the complexity of the dissipation process inside the casing.
       On the basis of this work the following  test procedure should consist in the
measurement of the current intensity in each double pancake of the coils in these conditions:

a)  the two double pancakes are electro-magnetically isolated between them and with the
same electromagnetic coupling with the environment,

b) both double pancakes are inside the casing but the measurements will be done on each
     double pancake separately.

     Only after a very careful comparison of the  period, of the damping coefficient and of the
first current peak of each couple of double pancakes it will be  possible to detect a short
circuited turn.
Obviously this procedure is based in these assumptions:

i) the contact resistance of the short circuit is at least ten times lower than the resistance
of a single turn,

ii)  it is very improbable that two short circuits, with identical characteristics, happen in
the two double pancakes installed in the same casing under test. Furthermore it is
also possible to increase the accuracy of the analysis if the data of the  16 double
pancakes are compared.

iii) the effects on the discharge parameters due to the differences in electrical
characteristics of two double pancakes are very less important of those ones
produced by a single turn short circuit. It  is easy to verify with the relations (2bis) e
(2ter) that  the variations of 2% of the self inductance and resistance of the double
pancake will produce a maximum variation of the damping coefficient d of 4%  and
about  1% of the period T. These percent variations are significantly lower than
those ones produced by a short circuited turn.
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APPENDIX A

The integral (23) is given by:
       ∞                  ∞
     ∫   I1(t) dt =   ∫ (A2 e

bt + D2 e
dt  cos(mt + f) dt =

0 0
                           ∞
                     =  ∫  [A2 e

bt + D2 e
dt  (cos mt cos f - sen mt sen f)] dt =

                          0
                                         ∞                                                                                  ∞
                     = A2/b [ e bt]     + D2/(d

2 + m2) [e dt  (m sen mt + d cos mt ) cos f] 
                                         0                                                                                   0
                                                                                                                      ∞
                                         - D2/(d

2 + m2) [e dt  (m sen mt - d cos mt ) sen f]              (A1)
                                                                                         0

By considering that b e d assume always negative values, the integral (A1) becomes:
       ∞
      ∫  I1(t) dt =   - A2/b  - D2/(d

2 + m2) [d cosf + m sen f]                                  (A2)
     0

The system of the unknowns  A2, D2, f:

                                     A2 + D2 cos f  = 0                                                                      (A3)
                         A2b + D2(d cos f – m sen f) = - Q/(yxyC)                                             (A4)

                -A2/b - D2[d cos f + m sen f] / (d2 + m2) = Q                                           (A5)

can be easily solved  by extracting the quantity A2 by the equation (A3) and by replacing it
in the other two equations:

                               D2(- b cos f + d cos f – m sen f) = - Q/(yxyC)                                (A6)
                         D2[ cos f/b – (d cos f + m sen f) / (d2 + m2)] = Q                           (A7)

From equations (A6) and (A7) it follows:

      tg f = {d – b – [1/b – d/(d2 + m2)] / (yxy C)} / {m[1-1/[(d2 + m2) yxy C]]}             (A8)

and by considering that:       sen f = tg f / (1 + tg2 f)1/2              cos f = 1 / (1 + tg2 f)1/2

it is possible to deduce from the equations  (A6) and (A3) the relations for the quantities A2
e D2.
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APPENDIX  B

The system of the differential equations  can be written in the following form, where the
unknowns are represented by the second derivatives of the three currents  I1, I2 , I3, and the
other quantities (first derivatives and functions I1, I2 , I3) represent the known term:

   Lx d
2I1/dt2 + Mxc d

2I2/dt2  +  Mxs d
2I3/dt2   = - Rx dI1/dt – I1/C                                   (B1)

   Mxc  d
2I1/dt2 + Lcd

2I2/dt2 + Mcs d
2I3/dt2  = -  RcdI2/dt                                                (B2)

  Mxs  d
2I1/dt2  + Mcs d

2I2/dt2 + Lsd
2I3/dt2  = -  RsdI3/dt                                                 (B3)

The solution of the system is given by:

                             | - Rx dI1/dt - I1/C      + Mxc        + Mxs  |
d2I1/dt2  =  (1/D)   | -  RcdI2/dt                + Lc          + Mcs   |                                            (B4)
                             | -  RsdI3/dt                + Mcs        + Ls      |  

                             | + Lx           - Rx dI1/dt - I1/C     + Mxs  |                                   
d2I2/dt2  =  (1/D)   | + Mxc         - RcdI2/dt               + Mcs   |                                            (B5)
                             | + Mxs         - RsdI3/dt                + Ls      |
 

                             | + Lx          + Mxc       - Rx dI1/dt - I1/C  |                                   
d2I3/dt2  =  (1/D)  | + Mxc        + Lc            - RcdI2/dt              |                                           (B6)
                             | + Mxs        + Mcs        - RsdI3/dt             |  

where D is the  determinant of the  matrix:

          | + Lx          + Mxc       + Mxs   |                                   
  D =  | + Mxc        + Lc           +  Mcs    |  =   
          | + Mxs        + Mcs       + Ls      |

     = Lx(LcLs – Mcs
2) – Mxc(MxcLs - McsMxs) + Mxs(MxcMcs - LcMxs)                          (B7)

The equation system (B1 – B3) becomes:
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d2I1/dt2   = a10  I1 + a11 dI1/dt +a12 dI2/dt + a13 dI3/dt

d2I2/dt2   = a20  I1 + a21 dI1/dt +a22 dI2/dt + a23 dI3/dt                                                     (B8)

d2I3/dt2   = a30  I1 + a31 dI1/dt +a32 dI2/dt + a33 dI3/dt

where:

a10 = - (1/D)(LcLs – Mcs
2)/C

a11 = - (1/D)Rx(LcLs – Mcs
2)

a12 = +(1/D) Rc(MxcLs - MxsMCS)
a13 = +(1/D) Rs(McsLC -MxcMcs)
a20 = +(1/D) (MxcLs - MxsMCS)/C
a21 = +(1/D) Rx(MxcLs - MxsMCS)
a22 = -(1/D)Rc(LxLs – Mxs

2)
a23 = +(1/D) Rs(McsLx - MxsMXC)
a30 = -(1/D) (MxsLC -MxcMcs)/C
a31 = +(1/D) Rx(MxsLC -MxcMcs)
a32 = +(1/D) Rc(McsLx - MxcMXS)
a33 = -(1/D) Rs(LxLc - Mxc

2)

For the numerical integration with  Runge Kutta method the previous system (B8) is
transformed in a system  of differential equations of the first order. By putting:

                    y10 = I1                           y20 = I2                         y30 = I3

the system (B8) becomes:

dy10/dt =y11
dy20/dt =y21
dy30/dt =y31                                                                                                                                                          (B9)
dy11/dt = a10  y10 + a11 y11 +a12 y21 + a13 y31
dy21/dt = a20  y10 + a21 y11 +a22 y21 + a23 y31
dy31/dt = a30  y10 + a31 y11 +a32 y21 + a33 y31

The initial conditions (for  t = 0) are$:

                    y10 (0) = 0                           y20 (0) = 0                         y30 (0) = 0

                                           y11(0) = - (1/D)(LcLs – Mcs
2) (Q/C)

                                           y21(0) = +(1/D) (MxcLs - MxsMCS)(Q/C)                            (B10)

                                           y31(0) = +(1/D) (MxsLC - MxcMcs)(Q/C)
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APPENDIX C

      As specified in the paragraph 5 the self and mutual inductances of the various elements
are obtained by calculating the specific flux of the magnetic induction B produced by the
current I along two series of straight, parallel and infinitely long conductors.  The calculated
values are corrected by means of the factor.

et = 1.10
due to the finite length and the rounded corners of the element.
      Each element can be a single loop  (casing or short circuited turn) or several loops in
one plane  (single pancake), in two planes (double pancake) in four planes  (coil).

a) Self-inductance Ls of a single turn.

The following value of Ls is obtained by  applying the  Biot and Savart law:
                                               as
Ls/Ds = F(B)/I Ds = 2 et mo  ∫      dr/(2p r) = et (mo/p) ln(2as/hs)                         (C1)

                                                          hs/2

where Ds is the length of the long side of the loop, as the length of the short side and hs the
conductor thickness (for a single loop  hs = 12.0 mm i.e. it is equal to the thickness of the
superconductor matrix).

The value of the self inductance is a little different if the considered loop is located in
the internal region (Ds = 24.178 m and as =4.214 m)  or in the external region (Ds = 24.950
m and as = 4.974 m) of the pancake. The values of the self inductance are respectively:

                         Ls(int) = 6.97 10-5 H                             Ls(ext) = 7.37 10-5 H

By considering that  the value of the self inductance of the loop  can change at the
maximum of ±  3%  in respect to the mean value, the last one will be assumed in the
analysis of the discharge:
                                                     Ls = 7.17 10-5 H

b)  Self and mutual inductances of the pancakes in the coil configuration..

The aim of this calculation is to determine the self and mutual inductances of the double
pancakes and the self inductance of the whole coil as sum of the self and mutual inductances
of  the pancakes. The self inductance of the pancake with N turns (see Fig. 1c for the
integration parameters) is given by:
                                     N      a                                                             N     b
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Lg1/Dg1 = et (mo/p){N ∑     ∫  dr/[r + b -(j-0.5)h]   +  Nb/(a+b)   +    ∑    ∫ (bx– a) dx} (C2)
                                    j=1    0                                                            j=1   jh

where:
                        N
                 a = ∑ 1/[(j-0.5) h]                     b = 2a/b
                       j=1

The first term in (C2) represents the contribution of all turns to the magnetic flux inside the
internal region (region of size a in Fig. 1c) , the second and third terms represent the
contributions to the magnetic flux produced by the currents in the conductor regions
(regions of size b in Fig. 1c).
By solving the integrals in (C2) the following result is obtained:
                                    N                                                                         N
Lg1/Dg1 = et (mo/p){N ∑  ln [(a+b-(j-0.5)h)/(b-(j-0.5)h)] + Nb/(b+a) + ∑ [(b/2)(b2-j2h2)
a(bjh)]}
                                   j=1                                                                       j=1

and by putting:

      N = 30        Dg1 = 24.564 m       a = 4.214 m       b = 0.386 m       h = 12.87 mm    C(3)

  the following value of the self inductance  is obtained:

                                                        Lg1 = 41.4  mH                                                       (C4)

      The mutual inductance between two pancakes (with the same number  N of turns) is
approximately given by:

 

 b a 

 

 b 

j=1          

dr      rj=r+b-(j-0.5)h 
h 

  r 

              Fig. 1c   Sketch of the pancake with the integration parameters. 
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   Mgij = et (mo/2p) Dg1 N
2 ln [(c2+dij

2)/(b2/4 + dij
2)]                                                     (C5)

where  c = a + 2b ,   dij   is the distance between the median planes of the two pancakes and
the other parameters are defined in Fig. 1c and in the list (C3).
The distances between the median planes of the pancakes are:

                            d12 = d2 1 = d34 = d43 = 0.06 m
                            d13 = d31 = d24 = d42 = 0.17 m
                            d14 = d41 = 0.23 m
                            d23 = d32 = 0.11 m

so that the following values for the mutual inductances are obtained:

                             Mg12 = Mg21 = Mg34 = Mg43 = 31.2  mH
                             Mg13 = Mg31 = Mg24 = Mg42 = 28.8  mH                                           (C6)
                             Mg14 = Mg41 = 27.3  mH
                             Mg23 = Mg32 = 30.3  mH

c) Self and mutual inductances of the double pancakes in the coil configuration.

From the previous values (C6) the self and mutual inductances of the double pancakes
(when they are assembled in the casing) are deduced:

                                        Lg = 2 Lg1 + 2Mg12 = 145.2  mH                                             (C7)

                                         Mgg = Mg13+ Mg24 +Mg14 +  Mg23 = 115.2  mH                   (C8)

d) Self inductance of the coil.

From the data (C7) and (C8) the self inductance of the coil is obtained:

                                                     Lb = 2Lg + 2Mgg = 520.8 mH                                    (C9)

This value is in good agreement with that one  (Lb = 525 mH) calculated during the design
of the ATLAS Toroid (2) .
If the two double pancakes are connected anti-inductively  the self inductance of the coil is:

                                                    L’b = 2Lg - 2 Mgg = 60  mH                                      (C10)
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e) Mutual inductance between a single loop and the double pancake or the coil.

In average the mutual inductance of a single loop (short circuited turn) can be calculated as
sum of two terms: the first one is due to the N-1 turns of the pancake in which is present
the short circuited loop, the second one is due to the N turns of the second pancake:

                                                                 N      as  
Mgs =   [(N-1)/N2] Lg1 +  et (mo/p) Dg1   ∑    ∫  rdr/[(r + (j-0.5)h) 2 +d2]                     (C11)
                                                                j=1    h/2

where as = a+b =4.594 m   and   d = 0.06 m is the distance between the median planes of
the two pancakes.

By solving the integral in (C11) the following expression for the mutual inductance Mgs
(turn-double pancake) is obtained:
                                                
                                                                        N
Mgs =   [(N-1)/N2] Lg1 +  et (mo/p) Dg1 {0.5  ∑  ln [((as+(j-0.5)h)2+d2)/(j2h2+d2)]  -
                                                                       j=1
                                                        N
                                                     - ∑ (j-0.5)h/d  [arctg[as+(j-0.5)h/d] – arctg(jh/d)]} (C12)

                                                 j=1

With the geometrical data of the pancake and loop the mutual inductance assumes the
following value:

                                                           Mgs = 2.12  mH                                                 (C13)

with a coupling coefficient  kgs  = Mgs/(LsL’g)1/2 (where L’g = 140.4  mH   is the self
inductance of a double pancake with  N=59 turns):

                                                             kgs = 0.67

The mutual inductance between a single loop and the coil has been obtained by scaling the
data of the pancakes:

                                      Mbs = 3.54 mH                                  kbs = 0.59
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f) Self inductance of the casing.

In the calculation of the self inductance  the casing has been assumed as a tape of
thickness (w2-w1), being 2w2 = 5.15 m and 2w1 = 3.55 m respectively the external and the
internal dimensions of the short side of the casing. Being  the average length of the casing
Dc = 24.32 m,  the self inductance is given by:

Lc = et (mo/p) Dc/(w2-w1){w2 ln [(w2+w1)/(w2-w1)] + w1 ln [(w2
2-w1

2)/4w1
2]}         (C14)

and by substituting the numerical data the following value is obtained:

                                                                   Lc = 27.9  mH                                             (C15)

This value is probably underestimated because of the approximations used in the
calculations so that in the discharge analysis values of Lc in the range  25 mH < Lc  <100 mH
will be considered.

g) Mutual inductance between casing and double pancake and  between casing and
turn.

Also in this case only an approximate estimate of the mutual inductances has been
carried out.

The values of these mutual inductances are respectively:

                          Mgc = 1.6 mH                                 kgc = 0.8                              

                          Mcs =  32  mH                                 kcs = 0.7

In the discharge analysis the coupling coefficient between the casing and the double pancake
will be increased up to a value in the range 0.90 < kgc < 0.97  in order to increase the
screening effect of the casing and to evaluate the limits of  sensitivity of the method.
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